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ABSTRACT

The information matrix (IM) test of White (1982) is a model specification test
obtained by specifying a null hypothesis model only. A criticism often made
is that failure to specify an alternative hypothesis model makes it difficult,
in a general setting, to interpret what types of departure the IM test is
testing against. In this paper it is shown how the IM t;ast can be interpreted

as a test against an alternative hypothesis.
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1. INTRODUCTION

The information matrix (IM) test of White (1982) is an intuitively
appealing model A"specif‘ ication test, and is easily implemented using results of
Chesher (1983) and Lancaster (1984). Yet it is not widely adopted as a model
specification test, in part because of lack of knowledge as to what
alternative hypothesis the null hypothesis model is being tested against.

In this paper we provide a general interpretation of the IM test as a test
that a certain conditional moment has expectation zero under the null
hypothesis and expectation equal to a specific functional form under an
alternative hypothesis.

This interpretation of the IM test is more general than that in other
siudies in specific settings, such as the linear regression model with
constant variance normally distributed error, discussed in White (1982, p.12)
and analyzed in detail by Hall (1987), and the linear regression model with
autocorrelated errors, analyzed by Bera and Lee (1990). At the same time it
provides a more tightly specified alternative hypothesis than does the general
treatment of Chesher (1984).

The interpretation of the IM test as being a test against an alternative
hypothesis is possible because par‘amétric econometric models with denéities
depending on g parameters, say, are typically based on densities depending
on underlying parameters of dimension much less than q. For example, for the
linear regression model under normality, the unde;‘lying parameters are the
mean and variance. These two underlying parameters are in turn modeled to
depend on explanatory variables and q unknown parameters.

The particular alternative hypothesis obtained can be interpreted as
arising from local parameter heterogeneity in the underlying parameters, with

a specific functional form for the covariance matrix of the underlying



parameters. The IM test is accordingly a score test against 'a quite specific
form of heterogeneity in the underlying parameters. By contrast, Chesher
(1984) considered heterogeneity in all q parameters, in which case the IM
test is a score test against quite general forms of heterogéneity in the q
parameters.

The general theory is presented in section 2. Substantive examples of
IM tests for commonly-used regression models based on the linear exponential
family (one underlying parameter) and for the regression model with normally
distributed homoscedastic error (two underlying parameters) are given in
section 3.

Previous in-depth studies of IM tests for specific examples have
implicitly restricted analysis, by considering models that are linear in
parameters. More generally, the underlying parameters may be a non-linear
function of the q parameters, e.g. a non-linear regression model. Then the
results of section 2 hold, provided the derivative of the log density with
respect to the underlying parameters has expectation zero. Results when this

condition is instead not imposed are given in section 4. Section 5 concludes.

2. GENERAL THEORY

2.1 Information Matrix Tests

We are interested in explaining dependent variables, a vector Ve
conditional on pre-determined explanatory variables, a vector Xt'
Statistical inference is based on an assumed parameterized density function
f'(ytl Xt,e), denoted f(yt,Xt,e), where 6 is a gxl1 parameter vector, that
satisfies the regularity conditions of White (1982). This paper focuses on

cross-section data, ((yt, Xt)' t = 1,...,T}, independent across t.



The information matrix equality implies that [EO[D(yt’Xt’e) | Xt] = 0,
where the subscript O denotes expectation with respect to the assumed

density f(yt‘,Xt,B), and
2 '
(2.1) D(yt,Xt,B) = V9 L(yt’Xt’B) + V9 L(yt’xt’e) (VB L(yt’Xt’e)) »

where L(yt’Xt’e) = log(f(yt,Xt,B)), and V; denotes the j-th derivative

with respect to 6. Define
(2.2) d(yt,Xt,G) = vech(D(yt,Xt,e)) ,

where vech(e) is the "vector half" operator which stacks the lower
triangular part of a symmetric matrix into a column vector. Thus d(yt,Xt,e)
contains the q(q+1)/2 unique elements of the gxq symmetric matrix
D(yt,Xt,e).

The information matrix (IM) test of White (1982) is based on the

qlg+1)/2 moment conditionslz
(2.3) Eold(y.X,.0) | X,] = 0

IM tests are statistical tests of the departure from zero of the corresponding

sample moment, dT(BT), where

-1

(2.4) dT(O) = T .

d(yt,Xt,e) ,

N ™M~

1

and 9T is an estimator consistent for © under the true rnodel.2
We note that the IM Test is a special case of the conditional moment (CM)

tests of Newey (1985) and Tauchen (1985). In their more general framework,



d(yt,Xt,G) in (2.3) and (2.4) may be any function with expectation zero under
the assumed model, not just that function defined by (2.1). The CM test

" framework is used below.

2.2 An Underlying Alternative for the IM Test
For the case where Yy is i.i.d., there is a large menu of density
functions of the form f (yt,n), where 7 is a hxl vector. In regression

analysis, the dependence of y, on explanatory variables X

+ is captured by

replacing ni by LI ni(Xt,Bi), i=1,...,h, where ei is qixl, and

6 = (6’1,..,9{1)’ is the gxl vector of parameters in section 2.1. The vector
of underlying parameters 7 has dimension (h) that is considerably less than
q. For example, in the classical linear regression model under normality, Yy
. vt _ 2 _ _

is N(nlt, 'nZt), where n, = Xt B and Ny, = O, SO h=2and q=1+

dim(B).

The assumed density is therefore of the form:
(2.5) f(yt,Xt,e) = f(yt’nl(xt’el)”"’"h(xt’eh))

Given this representation of the density, the moment conditions tested by the

IM test are obtained by application of the chain rule of differentiation.

Proposition 1: For the density (2.5), the (partial) IM test is a test of the

q(q+1)/2 unique moment restrictions:

(2.6) E()[gij(xt’e)'Hij(yt’xt’e) | Xt]

il
o
-
i
-
e

v
G
]
=
P"

where Hij(yt’xt’e) = Hij(yt,n(Xt,B)) is a scalar defined by



(2.7) Hij(yt’xt’e)

2

= Vn-’n- L(yt,*n(Xt,B)) + Vn.L(yt,n(Xt,e))'Vn ‘L(yt,n(Xt,e)),
i'j i j
Ly.,n(X.,8)) = log(f(y.,n(X.,8))), V_ = 8/8m.,, V> _ = 8°/3m.0n’ , and
t) t’ t, t’ » ni i) ninj i J‘ t
(2.8) gij(Xt,Q) = vec(Veini(Xt,ei)'(Vejnj(Xt,Gj)) ), i= ],

= vech(Veini(Xt,Bi%(Veini(Xt,Gi)) ), i=,

1

where Ve 8/861, vec(+) denotes vectorization, and vech(+) denotes
i
vectorization choosing unique elements. The vector gij is of dimensions

N » . - . -
9y 1 # j, and qi(qi+l)/2, i=j

For derivation of Proposition 1, see the Appendix. The term "partial" IM
test is used in the sense that the second term in (A.3) is neglected. This
second term actually equals zero when Vgni(Xt,e) =0, i=1,...,h, which is
the case in existing detailed studies of applications of the IM test, notably
Hall (1987), Orme (1990), Bera and Lee (1990). More generally, however,
Vg”ni(Xt,B) # 0, in which case the discussion in sections 2 and 3 needs to be
viewed as an analysis conditional on the assumption Eo[VnL(yt,n(Xt,G)) | Xt]
= 0, which also permits neglect of the second term. The more cumbersome
analysis including the second term is deferred to section 4.

For given i and j, a test of tﬁe moment conditions (2.6) can be viewed,
following Newey (1985), as being based on the underlying scalar moment

condition:

(2.9) HO: EO[Hij(yt’Xt’e) | Xt] = 0 ,



since (2.6) implies (2.9) by the law of iterated expectations. i.e. IM tests
based on the moment conditions (2.6) are tests of the departure of (2.9) in

the direction in which the vector function vec(Veini(Xt,Bi)'(Vej'nj(xt,ej)) )

of the explgnatory variables is correlated with Hij(yt’xt’e)'

Thus the IM test of q(g+1)/2 moment conditions, seemingly with no
alternative, is in fact a test of h(h+1)/2 underlying moment conditions {(2.9).
The departure of each individual underlying moment condition is tested in a
specific direction, given by the orthogonality condition (2.6).

A more precise statement of the direction in which departure is being

tested is the following.

Corollary: IM Tests based on (2.6) are optimal regression-based CM tests of

It
o

(2.9) HO: IEO{HiJ.(yt,Xt,G) ! Xt]

against the alternative:

(2.10) H: E [Hij(yt’xt’e) l Xt]

L ZiJ.(Xt,e)'giJ.(Xt,e) I

J

where the subscript 1 denotes expectation with respect to the true d.g.p.,
(2.11) Zij(xt’e) = Var‘O(Hij(yt,Xt,G)),

is a positive definite matrix, and “ij is a pxl1 vector of additional

unknown parameters. L]

Optimal regression-based CM tests are presented in Cameron and Trivedi

(1990). The term "regression-based" CM tests, henceforth RBCM tests, is used



in the following sense. Tests of the moment condition (2.9) under H, against
(2.10) under Hl are tests of whether “ij = 0. The obvious basis for such a

test is the estimated coefficient of “ij in the regression corresponding to

(2.10):

(2.12) . Hij(yt’xt’e) = zij(xt’e)'gij(xt’e) '“ij + eij’t,

where eij ¢ is a heteroskedastic error under HO’ with variance given in
(2.11).

The term "optimal" RBCM test is used to indicate that the most powerful

test of “ij = 0 against local alternatives aij = T"I/Z',rij, based on the

regression (2.12) will use the weighted least squares estimator, which divides
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terms by Zij(Xt,e) and equals:
- T -1 -1 T
(2.13) aij ={Z gij(Xt,e)'ZU(Xt,G)'gU(Xt,O) Y e Z gij(Xt,9)°Hij(yt,Xt,9)

t=1 t=1

Tests based on &ij are equivalent to tests based on the second summation
term only, but this is just the CM test based on the sample moment
corresponding to (2.6).

Therefore the IM test can be interpreted as a test of a null hypothesis
moment condition' against one for the alternative hypothesis. This overcomes
one of the perceived weaknesses of the IM test.

The above results also suggest why IM tests can have poor power. The IM
test as commonly used does not vary with possible alternative hypotheses. It
is clear from (2.6) or (2.10) that the IM test can be generalized to test
(2.9) against alternatives other than Zij(Xt,G)'gij(Xt,e)-ociJ., thereby

increasing the power of the IM test in certain directions.3



2.3 A Random Parameter Heterogeneity Interpretation of the IM Test
Tests for random parameter heterogeneity have been given by Chesher
(1984) and Cox (1983). Chesher considered the general framework of section
2.1, i.e. heter‘ogeneityﬂ in the q parameters O, and found that a score test
against quite general forms of heterogeneity in 6 is equivalent to the IM

test. Cox instead considered heterogeneity in the underlying parameters .

the simplest specialization of the type in section 2.2,

namely that the underlying parameter =w is a scalar, without loss of

presead £or
generality equal to the mean of y. Here we gemeradi=e the approach of Cox *=

tests of heterogeneity in h underlying parameters.

We consider the following form of random parameter heterogeneity. The
func‘;ional form for the density function f (yt,°) is the same ﬁnder the null
and alternative hypotheses. Under the null hypothesis, the underlying
parameter vector of this density is n(Xt,e), as defined in section 2.2. Under
the alternative hypothesis the parameter of this density is random with mean
n(Xt,e) and variance matrix of O(T-l/z) that is defined below.

We have the following hypotheses for the density:

(2.14) Hy: fly,a), A= n(X,,0) ,

(2.15) Hl: f(yt,At), ht random with mean n(Xt,B), variance matrix I‘t,

where I‘t = I"(Xt,e,oc) is a positive definite matrix with typical element:

~1/2 ,
(2.16) rt,ij(xt’a’aij) = T gij(xt’e) aij’
where gij(Xt,B) is defined in (2.8), and ociJ. is a vector of unknown

parameters.



Under the null hypothesis of no random parameter heterogeneity, I‘t = Q.
This can be tested by testing whether “ij =0, i=1..,J,j=1L..,h. In
the Appendix, an O(T_I) approximation to the density of Ve conditional on
'n(Xt,O) and I‘t(Xt,e,oc) is obtained. The score test for aij = 0, using

~this approximate density, is a test for a specific form of random parameter

heterogeneity, viz. that defined by (2.16).

Proposition 2: The score test based on a local approximation to the density

(2.15), with random parameter heterogeneity that has specific functional form
for the covariance matrix equal to that given in (2.16), is a test of the

moment conditions:
. = ||
(2.17) [EO[Hij(yt’n(Xt’e)) gij(Xt,G) | Xt] o .

The derivation of Proposition 2 is given in the Appendix.

The moment restrictions (2.17) equal those tested by the IM test, given
in (2.6). It follows that the IM test is a test of a very particular form of
r'andém parameter heterogeneity, namely heterogeneity in the h underlying
parameters with variance matrix defined in (2.16). This is to be contrasted
with the result of Chesher (19284), that the IM test can be interpreted as a
score test for quite general forms of heterogeneity in the q parameters 8.

In applications, random parameter heterogeneity is typically posited for
the underlying parameters, the approach taken here. The resulting
generalizations of the null hypothesis model are mixture models. In such
applications, the assumed functional form for the variance matrix of the
random parameters is typically much simpler than that in (2.17). For example,

the negative binomial model for count data results when the (random) mean



parameter for the Poisson is gamma distributed, and in applications the
variance of the (random) mean parameter is simply a multiple of its mean or

the square of its mean; see Hausman, Hall, and Griliches (1984).

2.4 Implementation of IM Tests
The above discussion has focused on the function d(yt,Xt,e) to be used
in forming the sample moment dT(e) in (2.4). In implementing an IM test,

~

® needs to be replaced by an estimator 6., consistent under HO'

T!

Auxiliary regressions to implement IM tests are given in Chesher (1983)
and Lancaster (1984). For example, Lancaster (1984) shows that T times the

2 . - o .

uncentered R~ from regression of 1 on d(yt’Xt’eT) and VeL(yt,Xt,GT) is
chi-square with q(q+1)/2 degrees of freedom under HO' The more general
literature on implementation of CM tests may also be used.4

As noted by White (1982, p.12) considerable simplification occurs if
EO[ved(yt’Xt’e) | Xt] = 0, since then the asymptotic distribution of dT(G)

in (2.4) is unaffected by replacing 6 by ) For example, we can modify

T
Lancaster’s procedure and regress 1 on d(yt’xt’éT)'
For the IM test given in section 2.2, we note that such simplifications

are possible if:

(2.18) EO[ VB(Hij(yt’xt’e)) | Xt] = 0, i=1..J Jj=1...,h

Then a chi-squared test statistic is computed as T times uncentered R2 from
the auxiliary OLS regression of 1 on gij(xt’eT)'Hij(yt’xt’eT)' Following
Cameron and Trivedi (1990), given (2.11) an asymptotically equivalent
chi-square test statistic can be computed as T times uncentered R2 from the

OLS regression:

10



o V) S N V7 oo
(2.19) Zij(xt’eT) Hij(yt’xt’eT) = zij(xt’eT) gij(xt’eT) aij + error.
The regression (2.19) actually permits testing the sighif‘ icance of
individual components of gij(Xt,G) by 't-tests’ on individual components of
o s Note that it is just the weighted least squares regression given in

section 2.2, with 8 replaced by 8 Condition (2.18) holds for a number of

T

examples given below.

3. EXAMPLES

3.1 IM Tests for Regression Models based on the Linear Exponential Family

The linear exponential family (LEF) is a one-parameter distribution that
generates a wide range of commonly used models. The LEF includes the normal
{with known variance), Poisson, binomial (with known number of trials), gamma,
exponential, and geometric distr‘ibutibns. For more details, sée Gourieroux,
Montfort, and Trognon (1984) and McCullagh and Nelder (1989)‘. For CM tests
for the LEF, see Wooldridge (1990b).

Using the mean parameterization, the LEF is defined by:
(3.1) f(y,u) = exp{A{p) + B(y) + Cl)-y} ,

where the functions A, B and C are such that the density integrates to 1,

and it can be shown that:

(3.2a) Elyl = u = -(V“C(u))—l-VuA(u)

(3.2b) Elly-w?] = V(o = (v”cm))'l

(3.2¢) El(y-w3] = V(Y VG

(3.2d) El(y-w'] = V(u)«v“vm))z+V(u)-vﬁvm) + V(W)

11



In terms of the discussion in section 2.2, n equals u, here a scalar,
and regression models are obtained by letting p = u(Xt,B). For example,
for the linear regression model u(Xt,e) = Xt’e, and for the Poisson

regression model, usually u(Xt,e) = exp(Xt’G). From the Appendix:

_ o2 2
(3.3) Hu(yt,xt,e) = v‘1 L(yt,u(Xt,e))+(VuL(yt,u(Xt,9)))

v(ut)“z«yt-ut)z A (RECETRIER (PRI

(3.4) (Xt,e) = vech(Veu(Xt,e)'Veu(Xt,e)’) ,

&n

(3.5) s (X.,0) = VarO(H

%y

= vmt)‘2~(vivmt) + 2)

The information matrix can therefore be interpreted as a test of the following

null versus alternative hypotheses:
(3. 6) H.: E.[V(u )—2((y -LL )2 -V V() (y,-u,) - V)t | X1 = O
‘ 0 0 "t t "t TRt AR A t t ’

-2 2
(3.7) H.: El[V(“t) ((yt—ut)

) - vuV(”t)'(yt—”t) - V(ut)) I Xt]

-2
= Vi) -(vivmt) + 2)+vech(V u(X,,0)+ (T u(X,,00) ) e -

This can also be interpreted as a test,. given IEO{yt | Xt] = [El[yt | Xt] = Ky

of the following null versus alternative hypotheses:

12



2
(3.8) H.: EO[(yt—ut)

t

2
(3.9) H,: Ell(yt-ut)

1 | X1

t

= Vig,) + (vivmt) + 2)+vech(V u(X,,0) + (V u(X,,0)) )" *at .

Thus in regression models based on the LEF, the IM test is a test,
conditional on correct specification of the conditional mean, of a particular
form of misspecification of the conditional variance f unction‘, namely that
given in the second line of (3.9).

To connect this with the random parameter heterogeneity interpretation
given in section 2.3, note that if A has LEF density with mean parameter

A, that is random with mean “t and variance gll(Xt,O)’ . then

t %y

conditional on My and « Ve has mean B and variance E[V(?\t)] +

1’

, 5
(Xt,ﬁ) o

1 But a locally equivalent alternative is that e has mean

Sh
M and variance V(p.t) + gu(Xt,e)’ o i.e. the alternative in (3.9).6
Implementation of the IM test in the LEF case is straightforward. It

follows from (3.3) that EOIVMHH(y,u) ] XI = 0, and hence:

(3.10) EO[VBHu(yt’Xt’Q) | Xt] = 0

So (2.18) is satisfied, and we can simply use T times uncentered Rz or
individual t-tests from the OLS regression:

2

SR S NUESE S V) - - - -
(3.11) V(ut) -(VMV(ut) + 2) 0((yt—ut) - VMV(”t)'(yt—“t) - V(ut))

+ error,

= V() L (Vv + 2% vech(V pu(X,,6.)+ (V_u(X.,8.0)" )«
t p L it R Lt 11

where ﬁt=u(Xt,éT), and éT is the MLE for 8, under Hy

For example, for the Poisson regression model, V(ut) = K, SO V“V(ut) =

13



and gy

- -1 - ’ ) _
1, Et = Zut , and usually B, = exp(X,C 0), so Veu(X,c e) = “tXt

= u%-vech(XtXt’ ). So the IM test, seemingly without an alternative
hypothesis, can be interpreted as a test for overdispersion of the form
Var'(yt | Xt) = V(p.t) + vech(XtXt’)’ LT and the test is easily implemented

by OLS regression of (ﬁt)—l((yt—ﬁt)z - yt) on (ﬁt)_lvech(XtXt' ).

Similar interpretation and implementation is as straightforward for other
models in the LEF, which will only vary in the choices of variance function

V(ut) and regression function u(Xt,B).

3.2 IM Tests for Nonlinear Regression Models based on the Normal Distribution
As an example of a regression model based on a two-parameter

distribution, we consider the non-linear regression model, Yy is normal with

mean p, = “(Xt’B) and variance o*z. This example is that of Hall (1987),

except that he considered the linear regression model. Using results in

Appendix A.4, and letting the subscripts 11, 22, and 12 denote the terms

w.r.t. y, 0*2 and the cross-product, the alternative hypotheses HI: El[Hij]

Zij.gijl.aij are:
2 2 10,
(3.12a) le II-le((yt - nt) - o7} | Xt] = vech(VBu(Xt,B)°(VBu(Xt,B)) ) o
3 2 _ ..
(3.12b) H;: Ell((yt - “t) - 3¢ (yt - ut)) | Xt] = VBu(Xt,B) %,
4 .
(3.120) H;: EN(y, - u)" - 60'2(yt - pt)z v 30 | X = ay,

and the null hypotheses are that each of the functions on the left-hand side
have expectation zero. Equivalently, the IM test can be interpreted as
successive tests, given lEO[yt | Xt] = [El[yt | Xt] = M, of the following

null versus alternative hypotheses:

14



2 2
(3.13) H_.: Eo”yt"‘t) Ixtl =

0 oo
2 2 . e
(3.14) Hl: Ell(yt—ut) | Xt] = o + vech(VBu(Xt,B) (VBu(Xt,B)) ) %
(3.15) H: Elly, -p)° | X1 = 0
. o “o'r T Mt ¢t T Yo

3 _ /.
(3.16) H.: l‘El[(yt - ut) I Xt] = VB“(Xt’B) %5

4 _ .4
(317 Hy Eglty, - m)" | X] = 3",

4 4
(3.18) H.: El[(yt - ut) | Xt] = 3¢ + LI

b

It is well-known that the IM test in this case is a test of
heteroskedasticity, symmetry and non-normal kurtosis. See, for example, White
(1982) and Hall (1987). The following is a more precise statement. | In the
nonlinear regression model with homoskedastic normally distributed error, the
IM test decomposes into tests of: (1) a particular form of heteroskedasticity,
namely that in (3.14), given correct specification of the conditional mean;

(2) a particular form of symmetry, namely that in (3.16), given correct
specification of the first two conditional moments; and (3} a particular form
of non-normal kurtosis, namely that in (3.18), given correct specification of
the first three conditional moments.

Implementation of the IM test in this case is straightforward. We can

simply use T times uncentered Rz or individual t-tests from the OLS

regressions:
P Py
(3.19a) (yt - ut) -0 = vech(VBu(Xt,B)'Vﬁu(Xt,B) ) s, + error
(3.19b) (y, - 51 )3 - 36‘2(}' - [1 ) = V ulX ,B) ca + error
: t ~ Mt t M gt e 12
~ 4 -2 ~ 2 .4
(3.19¢) (yt - ut) - 60 (y,C - “t) + 30 = «,, + error ,

L VM) e = - k0 b tegresmion (319a) B vald
f»co\)i(kgo\ r fnc\wdes o Constont tarm.
15



since the functions Hij in the left-hand side of (3.12a)-(3.12¢) have zero

derivative w.r.t. B, so that (2.18) holds.

3.3 Discussion

Most ‘applications of the IM test have been to the normal regression
model. In this case the null hypothesis is that (second through fourth)
moments of residuals are constant, and the alternative hypothesis is that
these moments are respectively quadratic, linear or constant functions of the
regressors.

The analysis of this paper indicates that generalization of this special
case is possible, though is perhaps not immediate. In place of moments of
residuals, we have the expectation of the products and cross-products of the
sum of the second derivative and outer product of the first derivatives of the
density, where these derivatives are taken with respect to the underlying
parameters of the density, i.e. Hij(Yt’Xt’e) defined in (2.7). Under the
alternative hypothesis, the non-zero expectation equals a linear function of
the cross product of the derivatives of the underlying parameters with respect
to the model parameters. Unlike the normal regression model case, this linear
function of cross products under the alternative is additionally weighted by a
variance function, given in general by (2.12), and for the LEF case in (3.9).

In general, the function Hij(Yt’Xt’e) may not be readily interpretable,
but it is in the examples given above, which subsume many commonly-~used
econometric models, and in some additional models. In particular, the LEF
results can be immediately extended to some non-LEF regression models, models
that conditional on some unknown "nuisance" par‘ameter:s are LEF. If an IM test
is performed conditional on these nuisance parameters, then the above theory

is still correct to (3.10). However, the tests cannot in general be

16



implemented using the regression (3.11), since (2.18) is not satisfied with
respect to the nuisance parameter's.7 Yet another application of the IM test
is that to the truncated normal model, given by Orme (1990). By inspection of
equations (4.8) of Orme (1990, p.318), the functions Hij(Yt'Xt’e) are then
functions of the first four truncated moments of the data.

For the normal regression model, Hall (1987) noted that the three
components for the IM test in the normal regression model are equivalent to
score tests for heteroskedasticity (Breusch and Pagan (1979)), and skewness
and non-normal kurtosis (Bera and Jarque (1982)). And for a number of members
of the LEF f amily, the IM tests in section 3.2 are equivalent to score tests
proposed for departures from the nuil hypothesis variance-mean relationship,
see Cameron (1990).

This coincidence of the IM tests with score tests generalizes, in that
the IM test can be interpreted as a score test of random parameter
heterogeneity of a particular type, namely that with variance of the
underlying parameters given by (2.16). However, in general there is no reason
to believe that for a given model the score tests that are equivalent to the
IM test will be the score tests typically used to test specification of the

given model.

4. EXTENSIONS

The preceding analysis has been of the simplest variant of the IM test,
the partial IM test which drops the second term in (A.3). This term is

identically zero if

2 _ .
(3.20) veni(xt,e) = 0, i=1..,h
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Condition (3.20) holds for linear parameterizations ni(Xt,e) = Xitl ei,
including the even simpler n; = Gi' This is the case for the linear
regression model, Hall (1987), and its extensions to truncation, Orme (1990),
and autoregressive errors, Bera and Lee (1990). For these examples the theory
of section 2 holds with no qualification.

Examples of IM tests where ni(Xt,e) is not linear in Bi, in which case

(3.20) does not hold, are seldom studied. The preceding analysis is still

appropriate if we view it as the IM test conditional on

(3.,21) IEO[anL(yt,n(Xt,e)) [ Xt] = 0 ,

for those i f or which ni(Xt’e) is non-linear in 8.. For non-linear
regression models under normality and for LEF regression models, (3.21) holds
if the conditional mean of Yy is correctly specified, as noted at the end
of Appendix sections A.3 and A.4. So for these examples the theory of section
2 and discussion in section 3 holds with the qualification that it is assumed
that the conditional mean of the dependent variable is correctly specified.
Alternatively, we éan consider a "full" IM test which includes the second
term in (A.3). Then from the Appendix, Proposition 1 is unchanged for the
cross terms ivat j. For the case i = j, Proposition 1 is modified by adding

ers 2 .
an additional term vech(Veieini(Xt,Gi)) VniL(yt,n(Xt,B)) in (2.6). An

interpretation along the lines of the Corollary is in general no longer
possible.

Simplification is possible if the only non-linearity in ni(Xt’ei) is that
it is a non-linear transformation of a linear function in Bi, viz. ~hi(Xt,ei)
= ni(Xit’ Gi). Then, from the Appendix, the only change to section 2.2, i.e.

both Proposition 1 and its Corollary, is that Hij(yt’xt’e) is replaced by:

18



-2 .2
#* = . .
(3.22) Hij (yt,Xt,G) Hij(yt,xt,e) + (V”ni) v n; V_nlL(Yt,T)(Xt,G)) )

where ani denotes V; ’e.ni(xit'ei)’ k = 1,2.
it 1

This type of nonlinearity in ni(xt’ei) is that typically used for LEF
regression models, such as discrete choice models and Poisson rnodels.8 In
that case i = 1, ni(Xt,G) = u(Xt'G), and from Appendix A.3 vuL(yt’ut) =
V(ut)-_ '(yt - ut). The full IM test will therefore be a test on a particular
linear combination of the first two conditional moments of | Yy

The random parameter heterogeneity interpretation of the IM test of
section 2.3 can also be modified to take account of the second term in A.3.
As shown in the Appendix, the null hypothesis (2.14) is unchanged, but the
alternative hypothesis is generalized - the parameter is random with
conditional mean not necessarily equal to n(Xt,e). Specifically, (2.15)
becomes A, is random with mean of Ay equal to ni(Xit,ei) +
T-l/z-vech(Vgieini(Xt,ei))’ocii, and mean-square error of )‘t equal to I“,c
defined in (2.16). The full IM test is equivalent to a score test against
this form of random parameter heterogeneity.

Interpretation of the IM test is simplest if (3.20) or (3.21) holds.
Previous in-depth studies of IM tests for specific examples have implicitly
restricted analysis to only cases where (3.20) holds, by considering the
linear regression model. And wﬁile a term analogous to the second term in
(A.3) appears in Chesher (1984), assumptions made permit neglect of this
‘ter'm.9 So the issue of whether or not to assume (3.21) has not usually arisen.

The difference between imposing or not imposing (3.21) is well
illustrated by IM testing for the discrete choice model.lo In this model Yy

is Bernoulli distributed, a member of the LEF (binomial with one trial) with

mean W, and variance function V(ut) = ut(l - ut). Then Hll(yt’xt’e) in
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(3.3) equals (ut(l—ut))"z'((yt—ut)z - (1 - Z“t)'(yt'”t) - ut(l—ut)), which
equals zero when Yy takes either of its possible values O and 1. Thus
imposing (3.21) leaves nothing to 1:es'l:.11 "

Iﬁstead we should additionally use the second term in (A.3), equal to
Vgu(Xt,B%(ut(lﬂl.t))"l'(yt - ut). Then the full IM test for the discrete

choice models is a tést of the hypothesis:

2 -1 _
(3.23) Hy: EO[VECh(Vg“(Xth))'(“t(l”“t)) o(y, - ”t) | Xt] = 0.

t

Using Var‘(yt) = u.t(l-ut), this can be interpreted as the optimal RBCM test of:
(3.24) H.: E ‘[yt I Xt] = 0,
against the alternative hypothesis:

2 s
(3.25) HO. IEIO[yt | Xt] = vech(Veu(Xt,e)) o .
To summarize, for the discrete choice model the partial IM test is not
applicable, while the full IM test is a test for a specific form of

misspecification of the conditional mean. '

4. CONCLUSION

Parametric regression models are typically based on densities depending
on few, say h, parameters, where these few parameters are in turn modeled
to depend on explanatory variables and many, say q, unknown parameters. Two

types of IM test, sometimes equivalent, can be considered in this case: a
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partial IM test and a full IM test.

The partial IM test can be interpreted as a test of whether just h(h+1)/2
functions of the dependent variable have expectation zero, against the
alternative that they have expectation equal to the variance of the function
of the dependent variable multiplied by a linear combination of elements of
the outer product of the derivative of the underlying h parameters with
respect to the q unknown parameters.

Thus the partial IM test can in general be interpreted as a test of a
null hypothesis moment condition against an alternative hypothesis moment
condition. Furthermore, the claim that the IM test is in general a test for
random parameter heterogeneity of unspecified form in the q unknown
parameters'can be tightened, to a claim that it is a test for local random
parameter heterogeneity with a specific functional form for the covariance
matrix of the underlying parameters.

In considering specific examples, previous studies have taken the
following approach: obtain the IM test, find that it coincides with a
particular well-known score test, and hence conclude that the IM test is a
test against whatever form of misspecification the equival'ent score test was
testing against. The interpretation in this paper is less circuitous, as it
instead directly obtains the underlying null and alternative hypothesis moment
conditions.

Because previous studies have focused on the linear regression model,
they have implicitly restricted analysis to the case where the partial IM test
coincides with the full IM test. The more general case where the full IM test
differs from the partial IM test is also analyzed. In this case the f uil M
test again coincides with a score test for a very specific, albeit different,

functional form for local random parameter heterogeneity.
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FooTNOTES

1 If some of the moment conditions (2.3) are already imposed in estimation,

they are omitted from the IM test.

2 The IM test considered here is the original White (1982) IM test, called the
Second-Order IM test by White (1990). Two other IM tests are the
Cross-Information Matrix test, White (1990), and, for dynamic models, the
Dynamic (First-Order) IM test, White (1987).

3 IM tests based only on a subset of the elements of gij in (2.8) have been
considered by some authors. Wooldridge (1990b) proposes CM tests that are

variants of IM tests, using regressors other than gij'

4 References include Newey (1985), Tauchen (1985), Pagan and Vella (1989),
White (1990), Wooldridge (1990a). Much of this literature focuses on ways to

implement CM tests by means of auxiliary (or artificial) regressions.

> We use Var(y) = E[Var(y|A)] + Var(Ely|Al) = EIV(A)] + Var().
6 . . ~1/2

Since for local alternatives @, = T 7 E[V(At)] = V(ut) +
o (T™h.

p

7 Even with nuisance parameters, regression (3.10), can sometimes be run.

This is the case for the normal, and for the negative binomial if the variance
is an unknown scalar rhultiple of the mean. In other cases, more general
implementation methods need to be used, with the results of Wooldridge (1990a)
particularly relevant. For the LEF with nuisance parameters, Wooldridge
(1990b) proposed CM specification tests based on ((yt—ut)2 - V(p.t)), rather
thap Hu(yt,Xt,G) in (3.3), so that the simplest computational procedure,

running regression (3.11), is not used for the LEF models.

The common discrete choice models are the probit and logit models, where the
conditional mean is respectively @(Xt'B) and L(Xt’B), and ® and L are
respectively the standard normal and logistic c.d.f.’s. - For the Poisson, the

conditional mean is usually parameterized as exp(Xt’B). /
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° The second term in the second line of equation (2) of Chesher (1984)

disappears if the matrix R is constant across observations.

10 This example arose from conversation with Dick Jefferis.

1 This result should not be surprising, as for dalta taking only two values, O
or 1, the only possible distribution is the Bernoulli, and the only possible
distributional misspecification is in the Bernoulli parameter. (3.21) in this
example implies ‘that the Bernoulli parameter is correctly specified, leaving

no other misspecification to test.



APPENDIX

A.l1 Derivation of Proposition 1

Suppose the density of the vector dependent variable Yy conditional on
explanatory variables Xt is of the form f(yt,Xt,G) = f(yt,n(Xt,e)), where
n(Xt,O) is a hxl vector function of the gxl1 parameter vector © such that
@ is identified in the sense that n(Xt,el) = n(Xt,ez) iff e, = 6,. Then

1 2
L(yt,n(Xt,B)) = log f‘(yt.“fl(Xt,B)) has first derivative:

VOL(yt,n(Xt,e)) = Ve(n(Xt,e)’)-VnL(ytm(Xt,e))

h
= iil Veni(Xt,e)'anL(yt,n(Xt.B)) ,

-where n; is the i-th component of m. Differentiating again, (2.1) becomes

(A.1) D(yt,Xt,B) = Ve(n(Xt,B)’ )'H(yt,Xt,G) . (Ve(’n(Xt,B)’ )’

h
2 .
+ 'Z Veni(Xt,9)°VnL(yt,n(Xt,B)) ,
i=l i
where
S . ,
(A.2) H(y,X.8) = Vi Ly, n(X.,8)) + an(yt,n(xt,e)) an(yt,n(Xt,e)) ,

where VTZ7 = 82/61761;'. Then the IM test is based on the gxq matrix of moment

conditions:

(A.3) EO[VG(’O(Xt,B)' )'H(yt,Xt,G)' (Ve(n(Xt,G)’ )’
h 2
+ iil Veni(Xt,e)°Vn1L(yt,"n(Xt,9)) | Xt] = 0
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Different variants of the IM test arise according to whether or not
the second term in (A.3) is zero. Initially we consider the simplest case
where the second term is dropped, either by doing analysis conditional on the
assumption EOIVnL(yt,n(Xt,G)) | Xt] = 0, or because Vgni(Xt,G) =0, =
1,...,h. This latter condition holds in the most studied case, the IM test
for the classical linear regression model under normality.

Vectorizing, the IM test is based on the qle vector of moment

conditions, not necessarily unique:
’ 7y, -
(A.4) EOI(Ven(Xt,e) @Ven(Xt,e) ) VBC(H(Yt»Xt»e)) I Xt] 0

Now impose the additional structure on n(Xt,G), that it equals
(nl(Xt,el) T)h(Xt,Oh) ), where ei, i=1,...,h, are non-overlapping

qixl components of the gxl vector 8, q = q1+ RIS Then the IM test

A

based on the unique elements of (A.4) is a test of the moment conditions:

I
o

(A.5) E [vec(Ve.ni(Xt,B)%Ve.nj(Xt,B)) )°Hij(yt,Xt,9) | Xt] i=#1]

0
1 J
EO[vech(Veini(Xt,e)'(Veini(Xt,e)) )'Hii(yt,Xt,e) | Xt]

i
o

i=j

where Hij(yt’xt’e) is the (i,j)-th entry of H(yt,Xt,O).

A.2 Derivation of Proposition 2

For simplicity we initially suppress the subscript t. The null
hypothesis model is that conditional on 7, y has density £ (yv,m). The
alternative hypothesis model is that conditional on A, y has density f(y,A),

but A is itself a random variable with density p(y,n,I'), where conditional



on n and I, A has mean 7 and variance-covariance matrix TI'. Following
Cox (1983), we consider modest amounts of parameter heterogeneity, by assuming

/2

that T is o(T 2.

We obtain the following approximation of the density of y, conditional on

7 and T

(A.6) gly,n,J) = J f(y,A)p(A,n,I) da

J {flym) + an(y,n)“(?\-n)

« +%(A-—n)’vf'f(y,n)-(7\—n) + oI H)epa,mI) da
= flym) + O + -é—tr(VTz)f‘(y,n)-l") + oTh
= fym + 2 tolE(ym)eHE,m D) + O )
= fymll+ 3 wHymT) + oI ]

- f‘(y,n)-exp[—é— tr(H(y,m+T)] + o(T )

where
(A.7) Hom = Vo Liya) + 9, LGme9 L)’
with L{y,m) = log(f(y,n)). In (A.6), the second line follows from a

second-order Taylor series expansion of f(y,A) about A = 7; the third-line
follows from the assumed mean and variance of A given 7 and T; the
fourth line uses the result that for any density under suitable regularity
conditions V%f‘(y,n) = f(y,m)+H(y,n), since ViL(y,n) = f(y,n)—l-V,i'f(y,n) -
VnL(y,’n%VnL(y,n)’; and the final line uses the approximation exp(x) = 1 +
x for small x.

Now suppose the random parameter vector At in the density f (yt,lt) has
mean vector n(Xt,B), where 'n(Xt,G) is as defined in section 2.2, and
variance matrix I‘t with typical element rt,ij = T_1/2°gij(Xt,6)'ociJ.,

where gij(Xt,G) is defined in (2.8), and aij is a vector of unknown

parameters.
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Under the null hypothesis of no random parameter heterogeneity, ‘xij

0, i=1..,j j=1..,9. From (A.6):
v _ 1 . -1
(A.8) log(g(yt,nt,l“t)) = log(f(yt,nt)) t 5 tr(H(yt,nt) I‘t) + O(T ") .

Differentiating w.r.t. aij’ which appears only in I',C iy the score test for

“ij = 0 is based on the moment conditions:

(A.9) EO{HiJ.(yt,n(Xt,e)-)-gij(Xt,e) | Xt] = 0

But (A.9) equal the moment restrictions tested by the IM test, and

given in (2.6).

A.3 IM Tests for LEF Models

From (3.1), L(y,u) = A(u) + B(y) + C(u)+y, so that:

.10 , .
(A.10) VuL(y 1] VMA(u) + Vuc(u) y

-1
VuC(u) (y (V“C(u)) VHA(H))

V(u)—l-(y - o,

]

where the last line follows from (3.2a) and (3.2b). Hence:

(A.11) Hn(y,u) = vi L(y,u) + (V“L(y,u))2

(—V(u)-ZVuV(u)'(y—u) -vw ™y o+ vy - wH

wm*«w—uﬂ-zywwwm—vm»

Squaring, taking expectations, and using equations (3.2),
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(A.12) Var(Hn(y,}l))

]

vm)““[vm)«vuvmnz . vm)-vﬁvm) £ 3V(W)Y + (¥ uvm))z-(vm))

L V2 -2 U VG0 VAT V) = 2 V(- V(!

V(u)_4[V(u)2'ViV(u) v 2 (VD2

v(u)'z- [vivm) + 2]

The second term in (A.3) that was dropped equals Vgu(X,6)°V(u)_l'(y - W

This has expectation zero if the conditional mean of y is correctly specified.

A.4 IM Tests for Normal Models

L(y,u,o*z) = —% log(2m) - % logO‘Z - _15 (y - }1)2 for the N(u,oz)
20°

density, so that

(A.13a) V L(y,u,crz) = L (y - n) ,
n o2
(A180) ¥ Lyme?) = - L+ L y-w® = Liy-w’-d,
o 20° 20° 200
(A.13c) VzL(y,u,o*z) = -1
I o2
(A.13d) szL(y,u,rrz) = ~—1—4 - ._1.5 (y - “-)2 = —15 (2@4— 4o~2(y - u)z) ,
¢ 20° o 40
(A.13e) Vz_ 2L(y,u,o‘z) = - —% (y - ,
i,c 20°
and hence H.. g.., and Z,. are respectively:
ij ij ij
(A.14a) Hn(y,u,(rz) = ViL(y,u,vz) + (\7“L(y,u,o~2))2
= lZ-((y - u)z - o~2) ,
o
(A.14b) H (y,u,crz) = V2 L(y,u,o*z) + Vv L(y,u,az)'v L(y,u,o-z)
12 o2 -2 u

= Ly -w’ -3ty -,
20
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2y _
(A.14c) sz(y,u,o) =

Vz L(y,u,wz) + (v ZL(y,u,crz))z
0'2 o

Ly - w* - 6e?y - w? + 30Y
4

2, _ o« .
(A.15a) gn(X,B,O‘ ) = vec*(VBu(X,B) VBu(X,B) )
2y
(A.15b) glz(X,B,tr ) = VBu(X,B)
2y _
(A.15¢) gzz(X,B,O‘ ) = 1 ,
(A.16a) b (XBo*z) = Var_ (H (yuoz)) = e
’ |} o e 4
o
A 2y _ 3
(A.16b) le(X,B,O‘) = Var‘o(le(y,u,o ) = ';;“
(A.16¢) S (X,8,0%) = Var (H  (ymo2) = -
" 22 Hl it O 22 Y)u') 8 M

20

It follows that the alternative

hypotheses Hl:lE [Hij] =

1 Zij-gij'oc. . are:

1]
(A.17a) lE[;:—j((y w2 -2 1Kl = ;Z'vec*(VBu(X,B)'VBM(X,B)’)"ocll
(A17b)  El-id(y - w° - 302y - wh | X = eV _p(X,B)ea

’ 6 6 B 7 12
20 20
1 4 2 2 4 3
(A.17¢) IE[———S-((y -u) -6 (y-w +3¢}) | X] = 5 %0
:Tod 20

The equations in the text follow directly, upon

canceling the common
multiples in ¢ and constants.

The second term in (A.3) is zero for i =

=2, and for i =

1 is equal to
%'(y - w -Vgu(X,e). This has expectation zero if the conditional mean of y
o

is correctly specified, and in the linear regression model is zero since
2 20t ny
VBM(X,B) = VB(X e) = 0.

The above results are readily extended to the case where the variance is

specified to be heteroskedastic with functional form o

= v(X,¥). Then

29



the only changes will be that (A.15b) and (Al5.c) become glz(X,B,y) =
vec*(VBu(X,B%VWv(X,B)’) and g22(X,B,7) = vec*(V#v(X,y)-Vyv(X,ar)'), with

corresponding changes to the right-hand sides of (A.17b) and (A.17c).

A.5 Modification of Proposition 1 for the General Case
We consider the case where the second term in (A.3) does not disappear.
. e . . — . L. Y}
For the density defined in (2.5), i.e. n(Xt,e) = (nl(Xt,el) nh(xt’eh) ¥,
where Gi are non-overlapping components of @, the (i,j)-th subcomponent of

(A.3) yields the qiqu. matrix of moment conditions:

(A.18) EO[Veini(Xt,ei)'(Vejn(Xt,eJ.)) 'Hij(yt,Xt,G)
2
+ Veiejni(xt,ei) anL(yt,n(Xt,B)) I X1 =0

For cross terms, the second term in (A.16) will always disappear, since

Vg o ni(Xt,ei) = 0 for i # j, and we obtain the same result as in (A.5).

1]

The only concern is the case i = j. Then vectorizing yields:

(A.19) EO[VECh(VQini(Xt'ei) . (Vej(“n(Xt,BJ.))’ )e Hij(yt’xt’e)

2 —
+ vech(Veiejni(Xt,Bi)) anL(yt,T)(Xt,G)) | Xt] = 0

This differs from (A.5) in the second term, which is an orthogonality
condition involving the first derivative of the log-likelihood function with

respect to the underlying parameter.

Simplification is possible if =7.(X,,0.) = 9.(X. ’6.). Then
> it it 1 Kk
Vei'ni(xt Bi) = V'ﬂi‘X,C and Veini(Xt,ei) =V ni.XtXt , where V n denotes
k , _ e
int,eini(xit Bi), k = 1,2. (A.19) simplifies to:
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(A.20) EO[vech(V'ni'Xt),'(Vni'Xt) )'Hij(yt,Xt,G)

2 * " b1
+ vech(V n, XtXt VniL(yt,“n(Xt,e)) | Xt] = 0

Equivalently:

(A.21) EO[vech(Vni-Xt%(Vni'Xt) -(Hij(yt,Xt,e) +

il
o

-2 2
(V*ni) v, anL(ytm(Xt,G)) | Xt]

which leads to (3.22).

A.6 Modification of Proposition 2 for the General Case

Proceed as in section A.2, with the modification that the mean of A

2

equals (n + %), rather than 7, where ¥ is O(T_l/ ) and T is now the

mean-square error of A. Then the second term in the third equality in (A.6),

previously zero, becomes an (y,n)* ¥, and equation (A.6) becomes
(A.22)  gympD) = flymeexpl? Liy,m)’ -y + 2 (D + oT ) .

Parameterize I’t as before, and let the mean of the i-th component of At

/2 2

-1 , o _
equal ni(Xit,ei) + T vech(Veieini(Xt,ei)) Lo which implies that Vi =

t

-1/2, 2 . . -1/2
T vech(Veieini(Xt,ei)) LIS Then (to a multiple T )

(A.23) Vaiilog gly,n7, ) = Hij(yt,n(xt,e))'gij(Xt,e)

2 )

so that the score test coincides with the IM test given in (A.19).
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