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ABSTRACT

In many regression models, the variance conditional on regressors
depends in part on the conditional mean. For example, generalized linear
models and power of the mean models have this property. For such models, this
paper proposes tests of the assumed heteroscedasticity against an alternative
more general form of heteroscedasticity, conditional on correct specification
of the mean. Given parameter estimates under the null hypothesis, the tests
are simply implemented by univariate OLS regressions. When the variance is a
function of the mean alone, one regression is required, while if the variance
is an unknown scalar multiple of a function of the mean alone, two regressions
are 'requir‘ed. These tests require specification of the first two moments,
rather than the complete distributions, under the null and alternative
hypotheses. When distributions are specified, the optimal regression based
test coincides with the score test for several examples in the linear
exponential family, but in other examples the two test procedures may lead to

different tests.

Some key words: heteroscedasticity; overdispersion; variance-mean
relationships; heterogeneity; score tests; lagrange multiplier tests; moment

specification tests; generalized linear models; linear exponential family.
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1. INTRODUCTION

In many regression models, the variance conditional on regressors depends
in part on fhe conditional mean. For example, generalized linear models and
power of the mean models have this property. This paper proposes tests of the
assumed conditional variance-mean relationship of such models, against an
alternative variance-mean relationship, conditional on correct specif ication
of the mean. Thus, rather than testing homoscedasticity against
heteroscedasticity, we test one form of heteroscedasticity against an
alternative more general form of heteroscedasticity. In specific examples
such as the Poisson and binomial such tests are often called tests of over— or
under-dispersion.

The dependence of the conditional variance on the conditional mean,
rather than on an unrestricted function of the regressors, can complicate
inference. For example, see Carroll and Ruppert (1988). Simplification is
achieved here by considering tests based on a particular linear combination of
residuals and squared residuals, rather than only squared residuals. Then
asymptotic inference using estimated residuals coincides, under the null
hypothesis, with inference using unobserved true errors, if the conditional
variance depends on the conditional mean alone. If the conditional variance
depends on both the conditional mean and additional parameters, allowance
needs to be made only for estimation of these additional unknoWn parameters.

The tests are "regression based" in the sense explained in the body of
the paper, and introduced by Cameron and Trivedi (1990) who considered tests
of variance-mean equality. Implementation of the tests, given parameter
estimates under the null hypothesis, is achieved by univariate OLS
regressions. When the variance is a function of the mean alone, one such

regression is required. If the variance is an unknown scalar multiple of a



function of the mean only, two regressions are required. These cases cover
many of the generalized linear models in McCullagh and Nelder (1989).

The tests require specification of the first two moments under the null
and alternative hypotheses, rather than the complete distribﬁtions under the
null and alternative hypotheses. Furthermore, the test statistics are of
correct size given only the first two moments assumed under the null
hypothesis.

With the additional specification of the third and f ourth moments under
the null hypothesis, an optimal tesf; in the class of regression-based test can
be analytically- obtained.

For a number of leading cases of fully parameterized models, this optimal
test coincides with score tests. These cases include: écore tests of variance
constancy in the regression model under normality (Breusch and Pagan (1979),
Cook and Weisberg (1983)), score tests of variance-mean equality in the
Poisson regression model (Collings and Margolin (1985), Lee (1986), Cameron
and Trivedi (1986), Dean and Lawless (1989)), and score tests; of
extra-binomial variation in binary data (Tarone (1979), Prentice (1986)).

More generally, however, the optimal regression-based test does not always
coincide with the score test. And even when the regression-based test
coincides with a score test, the score test may be implemented by a different
method requiring stronger stochastic assumptions.

In section 2, the general theory and test procedures are presented.
Specific examples and discussion of the related literature on conditional
moment tests is given in section 3. Fully parameterized models are introduced
in section 4, where the tests are compared to score tests and the
overdispersion test of Cox (1983). Some concluding remarks are made in

section 5.



2. REGRESSION BASED TESTS FOR YARIANCE-MEAN RELATIONSHIPS

2.1 General Framework
The data ((yi, Xi)’ i = 1,...,T} are independent across i. Conditional
on the vector of exogenous explanatory variables Xi’ the mean of the scalar

dependent variable v, is
(2.1) [EO[yi | Xi] = p = u(Xi,B),

where the subscript O denotes expectation under the null hypothesis, u(-)
is a differentiable function thaf is first-order identifiable, i;e., “(Xi’ [31)
= u(Xi, Bz) {=m=) 131 = Bz, and B is a kxl vector of parameters.

Cx.:msider' models where the variance of ¥ conditional on Xi depends on
Xi in part through M This is a parsimonious model for heteroscedasticity,
and encompasses a large range of models such as generalized linear models and

power of the mean models. Under the null hypothesis,
(2.2) HO: Varo(yi | Xi) = v(ui,Xi,qS) ,

where the function v(:) Iis specified, different subcomponents of Xi may
appear in the right-hand sides of (2.1) and (2.2), and ¢ 1is a nxl vector
of nuisance parameters unrelated to B. In many applications ¢ appears
multiplicatively, i.e. v(ui,Xi,qb) = f(Xi,qS)-h(ui,Xi), even more simply as a
multiplicative scalar, ¢-h(ui,Xi), and in some cases does not appear at all.
Under the alternative hypothesis, the conditional mean is still correctly

specified:

(2.3) [El[yi I Xi]

il
=
]

u(xi,B)



The assumed variance-mean relationship in (2.2) is to be tested against the

following specific alternative hypothesis that

(2.4) le Var‘(yi | Xi) = v(ui,Xi,qb) + g(ui,Xi,qb)’oc ,
where g(-) is a pxl function and « is a pxl parameter vector. In
applications g(ui,Xi,qS) i.s often a function of My alone or Xi alone.1
Tests of the variance-mean relationship (2.2) are tests of whether o = 0 in
(2.4).

A trivial example of (2.4) is that the null hypothesis variance is
misspecified by a scalar multiple, in which case g(ui,Xi,¢) is a scalar
equal to v(ui,Xi,d}). For models with quadratic variance-mean relationships,
i.e. for models where V(”i’xi’¢) = v(pi,q&) = ¢0 + ¢1“i + ¢2p.iz, (2.4) arises
from the following form of parameter heterogeneity. Let A conditional on
¥; have mean ¥ and variance v(',yi,qb), where Cf] is a random variable.
If, conditional on Xi’ A has mean * Ky and variance g(ui,Xi,qb)’«S, then
the variance of v conditional on Xi equals V(ui,qb) + (¢2+1)-g(ui,Xi,¢)’6,
which is exactly of the form (2.4). Thus (2.4) encompasses any mixture model
for the Poisson, binomial, gamma, normal (constant variance) and the
geometric, i)rovided only that the mixing distribution has a finite Var‘iance.2

More generally, suppose under H Var(yi | Xi) = h(ui,Xi,qS,i\) where

l’
h(ui,Xi,qS,?\*) = V(ui,Xi,qb). Then by first-order Taylor series expansion about
A= A%, h(ui,Xi,(b,?\) = V(ui’Xi’¢) + Vlh(ui,xi,qﬁ,h*)'(?x - A¥), This is of the

form (2.4), with remainder term in the Taylor series expansion that will

—1/2)‘

disappear asymptotically for local alternatives A — A¥ = O(T
An example of the above framework is testing variance-mean equality.

Then V(ui,Xi,qS) equals BiooHy is usually set to exp(Xi'B); g(ui) is



usually set to 1, M, O p.iz; and distributions are usually specified for ¥;

under both HO’ the Poisson, and H.,, most often the negative binomial obtained

1
by assuming a gamma distribution for A conditional on M Most previous
studies are similarly specialized: a specific variance-mean relationship is
studied; often the functional form for the mean is given; a specific
functional form for the alternative variance-mean relationship is studied;

and the distribution of A under both H, and H1 is specified. The

0
framework here is considerably more general.
We begin with the simplest case of no nuisance parameters, i.e. ¢ in

(2.2) is known or is of null dimension. Nuisance parameters are deferred to

section 2.4.

2.2 Regreésion Based Tests without Nuisance Parameters

We wish to obtain a test of the variance-mean relationship that applies
to as broad a class of models as possible, relies on relatively weak
distributional assumptions, and is simple to implement. In this and the next
sub-section, the variance is assumed to depend on the mean alone.

From (2.4) the model under H, implies:

1

2 — L d
Ell((yi - ui) - v(ui)) | Xi] = o g(ui) ,

where v(ui,Xi) and g(ui,Xi) are abbreviated to v(ui) and g(ui). This
moment condition suggests testing HO by testing the significance of « in the
regression of ((.yi - ui)2 - v(ui)) on g(ui). Since the parameters f are
unknown, to operationalize this the terms in K in the regression need to be
evaluated at an estimate of g, leading to a considerably more complicated
asymptotic distribution. |

Instead, we introduce a moment condition similar to that above, except



that the resulting regression is asymptotically unaffected by replacing B by
a root-T consistent estimate. Specifically, since the mean is assumed to be

still correctly specified under H., the model under I—I1 implies:

1)
2 = .
(2.5) lIEl[((yi - ui) - V“v(ui)(yi - ui) - v(ui)) | Xi] = o g(ui) ,

where Vuv(ui) is the scalar derivative of V(ui) w.r.t. . This choice
of moment condition as the basis of tests is not immediately obvious. An
explanation is given after statement of Proposition 1.

Define

- IR _ _
(2.6) y’; = (yi “i) \7uv(ui)(yi ”i) V(”i)'

I My is observed, we can test HO by testing the significance of « in the

regression
* ’
2.7 i g(ui) « + g,
where the error term g = y’; - !E[y’iE | Xi] is possibly heteroscedastic.

We therefore consider weighted least squares estimation, with weights w, =
w(ui,Xi).

In implementation, we estimate by OLS (without intercept):
~1/2,7 ~ 1/

2 0
* = . ’
(2.8) W, v W, g(ui) « + u,

~

~ ~ ~ ~ ~ 2 "~ ~
= = * = - - -
where My u(Xi,BT), W, W(“i’xi) and v} (yi ui) V“v(ui)( ¥, ui)

- v(ui). The least squares estimator wr is:



~

(2.9) . = (G’ WG) LG’ wy* |

A

where the Txp matrix 6 has ith row g(p:i)’, W is a TxT diagonal matrix with
ith entry ‘;i’ and the Txl1 vector ;* has ith entry ;’;

Tests using &T in (2.9) are called regression based tests, as the
motivation is testing o = O in the regression (2.5). The asymptotic
distribution of gc is given in Proposition 1.

T

Proposition 1: Let Var‘o(yi | Xi) = V(”i’xi) be a function of iy (and Xi)

alone, and BT be a root-T consistent estimator of B under HO'

Subcomponents of Hl in (2.4) can be tested using the result that under HO:
(2.10) OLT ~ N(O, (G'WG) (G'WZWGHG'WG) ),
where £ is a diagonal matrix with ith entry

2 = *
(2.11) of = Var 3t | X)),

and ¥ is a matrix such that T—l(G’W§WG - c'wswe) B 0, where G has ith

entry g(ui)’, and W has ith entry W(ui). u

Note that o*% is the variance of y’;, which from (2.6) is quadratic in

¥y It is not the variance of ¥y The notation & is used to indicate that

MR

need not be consistent for . & may be a diagonal matrix with ith entry

]

. o n 2 : < * 2

* _ ’ ; = *
i (yi g(ui) ocT) , the squared unweighted residual, or Z (yi) ,
since ¢ = O under HO'

The derivation of this proposition, and subsequent ones, is given in the

Appendix. It essentially states that (2.8) can be treated as a regular



regression equation, ignoring the dependency of p; on BT’ and can be
explained as follows. Let BT be a root-T consistent_ estimator of £, and

m(yi,Xi,B) be a pxl vector function. Then by a Taylor series expansion:

T . T
125 my,x,8.) =T 725 m(y,X,B)
. i"i7T . i
i=l i=1
-1 T 1/2,%
+T i21\7Bxxx(yi,Xi,B)'T (BT -B) + op(l) ,

where V m(yi,Xi,B) is the pxk matrix of derivatives with jth column

B

VB m(yi,X,B)’. The second term disappears asymptotically if IE[VBm(yi,Xi,B) |
J

Xi] = 0. If we consider the initially suggested regression, unweighted for

simplicity, of ((yi - ui)z - v(ui)} on g(ui), the OLS estimator equals

N
A, ~ "'l . ~ _ _ 2 _
(G'G) times izl m(yi’xi’BT)’ where m(yi,Xi,B) = g(ui)((yi ”i) v(ui)).
Then IEOIVBm(yi,Xi,B) | Xi] = - g(ui)-vuv(ui)-vﬁu(xi,ﬁ) # 0, except in the

case of homoscedasticity when Vuv(ui) = 0. To handle the case of nonconstant
variance we note that we can add a multiple h(ui) of (yi - ui) to the
dependent variable in the regression, since lE[(yi - ui) [ Xi] = 0, in which

2 .
case rn(yi,Xi,B) = g(pti)((yi - ui) + h(ui)(yi ui) - v(ui)). The choice

h(ui) = - V”v(ui) ensures EO[ m(yi,X,B) | Xi] = 0.

e

The covariance matrix for ;LT in (2.10) allows for the possibility of a
heteroscedastic error in the regression, following the heteroscedastic
consistent estimate of White (1980).

Subcomponents of the alternative hypothesis (2.4) can be tested by
t-tests for individual components of « equaling zero, or F-tests for
subsets of & equaling zero. This can be directly done by estimating (2.8)
using the heteroscedastic consistent variance-covariance option available on

many packages, which uses gii = (y}* - g(ui)’a,r)z. If this is not available,

an instrumental variables package can be used along the lines suggested by



Domowitz (1983).
The joint test of whether all components of a equal zero is given by
the chi-square test statistic:

(212)  dp = 7+ WG(G’ WEWG) 16 wy*

~

Under HO’ d.. is asymptotically chi-square distributed with p degrees of

T
freedom.

This chi~square test statistic, when §ii = (y’;)z, can alternatively be

computed from an auxiliary regression, as given in Proposition 2.

Proposition 2: Let Var‘O(yi | Xi) = v(ui,Xi) be a function of M (and Xi)
alone, and BT be a root~T consistent estimator of B under HO. An overall

test of HO versus H, can be implemented using the result that under HO:

1

T times Ri (uncentered Rz) from the auxiliary OLS regression (without
intercept) of

-~ ~ "~ 2 ~ ~ ”~
1 on g(ui)-vvi~<(yi - ”i) + VuV(”i)(yi - ”i) - V(“i))

is asymptotically chi-square distributed with p degrees of f reedom. L

For this and later regressions with 1 as the dependent variable, TRi
can also be computed as T minus the residual sum of squares. Such regressions
are auxiliary in the sense that they are a way to compute the test statistic.

By contrast regression (2.8) has an intrinsic interpretation.

2.3 Optimal Regression Based Tests without Nuisance Parameters
Different choices of the weighting matrix lead to different test

statistics. The optimal test using the regression (2.7), i.e. when B is



known, will use the generalized least squares (GLS) estimator. Since
inference for the regression (2.8) coincides with that for the regression

(2.7) under H_., we accordingly expect the optimal test within the class of

O’

regression based tests to use the feasible GLS estimator in (2.8), with

weighting matrix W = 2—1. Define

(2.13) aflipt = 6= oy ey,

the OLS estimator from the regression:

~ _1 A* - A~ __1‘ tA ,'
(2.14) o,y = o g(ui) @« + u,

~

where £ is a TxT matrix consistent for Z, with ith diagonal entry o*%

equaling o'? evaluated at BT'

172

We consider the limit distribution of T 'OLT under local alternatives

-1/2. .
HL' a=T S, i.e. .

(2.15) HL: Var‘(yi | Xi) = v(p.i) + g(p.i)’(T_l/zs), 8 a finite constant.

opt

The optimality of tests based on o

within the class of regression-based

tests for H0 versus H,  is given in Proposition 3.

L

Proposition 3: Let Var‘o(yi | Xi) = v(ui,Xi) be a function of 1y (and Xi)

alone, BT be a root-T consistent estimator of B under HL’ and o‘? defined
in (2.11) be correctly specified. Then the optimal regression based test is
implemented by the OLS regression (2.14). Under HO and given 0‘?:

&opt A ARt | a

(2.16) - ~ N, (G'SG) ) .

10



The covariance matrix in (2.16) indicates that subcomponents of H1 given
in (2.4) and the overall hypothesis that « = O can be tested using the usual
computer output from this regression. However, o‘? needs to be
correctly specified, which requires correct specif ication of the first four
-moments of the distr'ibution‘of ¥; under HO. To guard against possible
misspecification of 0'%, we can of course apply the tests of section 2.2,
using \;’i = ;i_z. This conservative implemeqtation of the optimal regression
based test requires correct specification of only the first two moments of ¥;
under HO'

The optimality is within a very restricted class of tests, those using a
weighted sum of the particular linear combination of residuals and squared
Iresiduals defined in (2.6). Nonetheless, in the fully parametric case where
the entire density is specified, the optimal regression-based test coincides
with a score test in several leading examples given in section 4.2 and then
enjoys the optimality properties of the classical testing procedures. In
other examples, however, the score test differs from the optimal regression

based test.

2.4 Regression Based Tests with Nuisance Parameters

In this sub-section we consider the more complex case where the n
nuisance parameters ¢ in (2.2) need to be estimated. Regression-based tests
again use the regression (2.8), with estimator &T defined in (2.9). The

only change is that (2.6) becomes

(2.17) y‘; = (yi ”i) VuV(”i’¢)(yi ”i) v(ui,¢),

with corresponding change to y’;.

11



The asymptotic theory is again unaffected by repvlacing B by a root-T
consistent estimator, but different root-T consistent estimators for ;T
lead to different asymptofcic distribﬁtions for &T Computation is simpler
for a parti;:ular_ choice of (;T’ but for completeness we first give a general
result.

Let ;T be a root-T consistent estimator for ¢ such that under HO,

—1/2)

(2.18) (oo - @) = a'alpz o+ 0 (T
where A and B are Txn matrices with ith rows Ai(X,B,qS)’ and Bi(X,B,q{))’
and z is a Txl vector with ith entry zi(yi,Xi,B,qS). This representation
is reasonably general in that a f irst-order Taylor series expansion of the

non-linear estimating equations defining a root-T consistent estimator ¢T

will yield (2.18) for some A, B and z.

Proposition 4: Let Var‘o(yi | Xi) = v(ui,Xi,qS) be a function of My Xi‘ and

the n nuisance parameters ¢, and BT be a root~T consistent estimator of fB
under HO' Let ¢T be the root-T consistent estimator for ¢ defined in
(2.18). Subcomponents of H1 given in (2.4) can be tested using the result

that under HO:

~ A A

(2.19) o A N, (G'WG) ! { G'WSWG + G’ WD(A’A)

B'E,,B(A’A) DWG
- G'W§IZB(A'A)'1DWG - G’WD(A’A)—IB’§21WG b (G'WG) L,

. . . . = *1 .
where D is a Txn matrix with ith row di {EO[V ¢yi] v ¢v(ui,¢),

zZ, 222 and 212 = 221 are TxT diagonal matrices with ith entries o, =

#* ¥ .
Vau*o(yi | Xi)’ Var‘o(zi | Xi) and COVO(yi’Zi | Xi)’

D is a Txn matrix with ith row di’ =V ¢V(“i’¢T);

12



and £, 522 and §12 are matrices such that T—I(G’WEWG - G'W=wWG) B 0,

S BV p S PP
lim T (B 222B BEZZB)~>Oand 1im T (G'WZ

B - G’'Wz,,B) B o. |
T T

12

The overall test of o = O is given by the test statistic:

AA A A A A A

(2.20) d. = y*WG+{ G'WEWG + G'WD(A'A)"IB’EZZB(A'A)'ln'wc

- G'WilzB(A'A)""ln'WG - G'WD(A'A)'lB'EZIWG }eG! Wy* .

~

Under HO’ dT is asymptotically chi-square distributed with p degrees of

freedom. Computation of tests of subcomponents of H1 or the overall test
in (2.20) will generally require Vaccess to matrix routines.

We now consider a specialization that permits use of regression routines

/2

only. Suppose (¢. - ¢) = (D’WD)-I(D’Wy*) + 0 (T"1 ), in which case A’A =
T P

D'WD, B=D'W, and z = y* so that Z = 222 = 212. Then the term in

braces in (2.19) and (2.20) becomes:

(2.21)  {G'WSWG + G’ WD(D’ WD) D’ WSWD(D’ WD) 'DWG - G’ WSWD(D’ WD 1 )DWG
- G*WD(D’ WD) D’ WSWG }
A A ~ o~ A A ~ —1A ~ A

(G'W - G'WD(D’ WD) D’ W}-$-{WG - WD(D' WD) 'DWG)

IRV Tk 7 o

where r = (WVZG - W1/2D°(D’WD)~1D’WG) is the Txn matrix of residuals from

the regression of Wil/z' g(ui) on wil/zdi. The covariance matrix in (2.19)

becomes (G'WG)—lr'Wl/zgwl/zr(G’WG)-l, and (2.20) is similarly simplified.
If in addition ¢T is defined to be the estimator that solves the
first-order conditions D’Wy* = 0, then r"Wl/zy* = G’Wy*. Combining this with

(2.21) with gii = (y’i‘)2 permits computation of the overall chisquare test by

13



the following auxiliary regressions.

Proposition 5: Let Var‘o(yi ] Xi) = v(pi,Xi,qS) be a function of By Xi and

nuisance parameters ¢, and BT be a root-T consistent estimator of £ under
HO' Let ¢T be the root-T consistent estimator that solves the first-order

conditions D’ Wy* = 0, where D is a Txn matrix with ith row V ¢v(ui,¢») and

W is the same TxT weighting matrix as used to calculate o An overall test

for HO versus H1 can be performed as follows.

(1) Obtain the nxl vector of residuals r'i from the multivariate OLS
regression (without intercept):

~ 1 - - n A
w, /2°g(ui) = wil/z- V¢v(ui,¢)-7 + T

(2) Obtain Ri (the uncentered RZ), equals T - the residual sum of squares,
from the auxiliary OLS regression (without intercept) of

1 on rw, ((yi - ”i) - VMV(”i"I’T)(yi - ui) - v(ui,r.bT)) .
Then under HO’ T times Ri is asymptotically chi-square distributed with p

degr‘ees of freedom. L]

The regression (1) can be implemented by n univariate OLS regressions,
and the regression (2) is a univariate OLS regression. The poten{ially
difficult part is the estimation of ¢T. Given the estimator BT and hence

~ -~

My ¢T solves the first-order conditions

T
— o ’ N - - 2 — ~o — - — s
(2.22) 0 = i§1v¢V(”i’¢T) w(ui,4>T)((yi ui) V}J,V(“i'(pT)(yi “i) v(ui,tﬁT)).

¢T is easily computed when ¢ appears multiplicatively, ie. V(”i’xi’¢)

= f(Xi,qb)-h(ui,Xi). Then V v(ui,Xi,q’)) = h(ui)~V¢f(Xi,¢) and Vuv(ui,tb) =

¢

i4



f(Xi,tl))'V“h(ui,Xi), and (2.22) becomes:

T

- A A N N - - -
(2.23) 0 = i§=:1h(ui)Vqsf(tlxl.) w(ui)((yi- ”i) - [h(”i) + V“h(ui)(yi ui)]f(qST))
T ~ ~ ~ ~ -1 2 ” ~
= 3 h*(yi,ui)h(ui)w(ui)(h*(ui) (yi- ui) - f‘(¢T)}V¢f(¢T)’ ,
i=1

where h*‘(yi,;;i) = h(;Li) + Vph(':i)(yi_ ;i)’ dependence on Xi is suppressed,
and we assume w, is multiplicative in ¢ or does not depend on ¢. Then
;T can be computed by nonlinear weighted least squares regression of
b)) (- 1)% on f(g), with weights h¥(y,,)h()wli,).

The most common case of nuisance parameter is a specialization of (2.23),
where . ¢ appears as a scalar multiplicative constant, i.e. v(ui,¢) = dvh(ui),

so that f(¢,Xi) =¢ and V f(¢,Xi) = 1. Then (2.23) can be solved,

¢
yielding: ’
~ T . ~ A ~ ~ 1
(2.24) ¢T = (iil h(”i)W(”i)[h(”i) + V“h(ui)(yi - ui)] )
T - - ~ 2
. iil h(“i)W(“i)(yi - “i) .

;;T can be computed by finding the average of each of the scalar quantities in
the two sums, or by the LS regression mentioned after (2.23).‘ This estimator
differs from customary estimators, except when h(ui) is constant. For
example, for generalized linear models with multiplicative nuisance parameter,

McCullagh and Nelder (1989) suggest the estimator based on the Pearson
T - ~

chi-square statistic ;ST = (T—k)-—1 b (h(ui)) 1(yi - pi)z. This is close to
i=1

~

¢T when w(ui) equals a constant multiple of h(ui)“z, in which case

-~

T
(2.25) ¢T = ( .

~ -1 ~ 2
h(”i) (yi - ui) .

™M

[+ h(ﬁi)"lvuh(fzi)(yi - Li)l )L

i=1 i=1

15



A result for the optimal regression-based test with nuisance parameters
is not given, as it will vary with the estimator of the nuisance parameters.
Nonetheless, a natural choice for the weights function in applying procedures

-1
. - *
4 and 5 is W, (Var‘o(yi | Xi)) .

3. ExAMPLES AND DiscussiON

3.1 Examples of Regression~Based Tests

Examples of regression-based tests are given for several leading
vafiance—mean relationships. The estimator‘ ng will often be suggested by
the particular application. Alternatively, and at times coincidently, a
weighted least squares estimator may be used.

Subcomponents of H, in (2.4) may be tested using Propositions 1 (no

1
nuisance parameters) and 4 (nuisance parameters). The overall test of a = 0
can also be implemented using these propositions, or by using the auxiliary
regressions in Propositions 2 (no nuisance parameter) and 5 (a particular
estimator of the nuisance parameter). Use of Proposition 3 is deferred to

examples in section 4, where the first four moments of y under HO are

specified.

Example 3.1: Variance Mean Equality. In this case V(“i’xi’¢) = Wy and

Vuv(ui,Xi,(b) = 1. Propositions 1 and 2 are applicable, as there are no

nuisance parameters. Subcomponents of « can be tested by OLS regression

172

(without intercept) of LA {(y - ui)_z - yi) on Wi1/2°g(u.i), using a

heteroscedastic consistent estimate of the covariance matrix. This test was
proposed by Cameron and Trivedi (1990). The joint test for « = O can also be

~ 2

implemented by auxiliary regression of 1 on g(ui)°wi-((y - ui) - yi}.
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Exaniple 3.2: Constant Variance. In this case v(ui,Xi,d}) = ¢,

v v(ui,Xi,cp) =0, and V ¢V(“i’xi’¢) = 1. The obvious nuisance parameter

T ~
estimator is ¢T =T -1 = (y - u ) which is (2.24) with w, 2 constant. In

i=1

using Proposition 5, the first regression is of gi = g(ui) on a constant, so
~ ~ T ~
that r; = g - & where g =T 12 g(ui), and the chisquare test uses TRi
i=1

from the auxiliary regression of 1 on (gi - é)-((yi- ui)z - ¢T).

Example 3.3: Variance Proportional to the Mean. In this case v(ui,Xi,qb)

= ¢u., V v(u.,X.,tI)) =¢ and V v(u.. X.,¢) = My The nuisance parameter
e T Bl

estimate is ¢T ( AR ) + = W, (y - u ) In using Proposition
i=1 i=1

5, the first regression is of w, 1/2 g on wll/zu with residual T and

the chisquare test uses TRu from the auxiliary regression of 1 on

A A

2y, ui)z - py

Example 3.4: Constant Coefficient of Variation. In this case v(ui,Xi,q‘))
2

= ¢-u?, \Y v(u.,X.,¢) = qu. and V¢V(ui,Xi,¢) ol The nuisance parameter
estimator ¢T =(= W, [p. + 2uly, —pJdl )" o Z oW (y '
(=1 i7i i i=1 i
~ 1727 ~ 12t 2

Proposition 5 is implemented by first regressing w, g on W

giving residuals T and then computing TRi from the auxiliary regression of
S 1/2 ~ 2

e - ~ 2
1 on r.w, ((yi - ”i) - 2«;3,1411(yi - ui) - ¢T”i Y.
Example 3.5: Variance Quadratic in the Mean. We consider the simplest
case where v(ui,Xi,qb) =u o+ ¢-u? and ¢ is known. Here V”v(ui,Xi,d)) = (1
+ 2¢u.). Subcomponents of « are tested by OLS regression (without intercept)

of &lzay-ﬁl) -(1+2¢u)(y-—u)-—(u +¢u 2)} on &11/

~glw,),
using a heteroscedastic consistent estimate of the covariance matrix. The
joint test of « = O can also be implemented by the auxiliary regression of

1 on glu)wdly - ui)z - (L 2y - ) - Gy + ¢ui2)>.
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Example 3.6: Variance a Power of the Mean. In this case v(u,X.,¢) =
i’

¢ ¢ -1 = ?
2 ’ V¢ v(“irxi:¢) - "‘i 2, and v¢ V(“i’xl’¢)

NTH
1" 1 >

2, VpV("i’Xi’¢) = ¢,9,1,

¢

= ¢1”i 2log M Application of Proposition 5 is straightforward when ¢2

is known, while the more awkward Proposition 4 is needed if ¢2 is estimated.

The above examples cover many commonly used parametric models: the
Poisson (example 3.1), normal with constant variance 0‘2 (example 3.2 with ¢
= crz), gamma (example 3.4), binomial with m trials (example 3.5 with ¢ =
m—l), geometric (example 3.5 with ¢ = 1), normal with variance a power of the
mean {(example 3.6). Example 3.3 is a test of whether the simplest correction
for over— or under- dispersion in the Poisson model, that the variance is a
multiple of the mean, is adequate. Other examples are also easily
consfructed.

It should be stressed that these tests are valid under quite general
distributional assumptions, the essential assumptions being those on the first

two moments of A under H This point is illustrated in section 4.2.

o
3.2 Discussion

The approach taken here is to set up tests of variance-mean relationship
as a regression problem. This is similar in spirit to Carroll and Ruppert
{1988, p.10), for example, who state that "We view heteroscedasticity of
variance as a regression problem, i.e., systematic and smooth change of
variability as predictors are perturbed. Looked at this way, there are many
similarities with modeling the mean vector." The fests proposed here exploit
tt?e simplifications that arise by choosing the regressor to be y’; defined in
(2.6), and that for testing inference need be performed only under the simpler
null hypothesis. The spirit of the regression based test is that of a Wald

test, regression coefficients being obtained under Hl’ but unlike a Wald test
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inference is performed under HO.
The regression based test approach of this papér was introduced by
Cameron and Trivedi (1990), who considered regression-based tests for
variance-mean equality. In that case, where v(ui) = K they noted that H1
could be expressed as either lEl[((yi - ui)z - ui) | Xi] = oc'g(ui) or as
lEl[((yi— ui)z - yi) ] Xi] = oc-g(ui), and that the less obvious latter
representation lead to simpler tests, which coincided with score tests for the
Poisson against the Katz system. The results here explain why the latter
repr’esen‘cation "works", as it equals (2.5) with v(ui) =W and V“v(ui) = L
The regression based test of the joint hypothesis « = O is a chisquare

R V7 S

test based on the limit normal distribution of T G'Wy* =T = giwiy’!‘.
: i=1

This is a special case of a conditional moment (CM) specification test, Newey

T
1/2 "
.Z m(yi,Xi,GT) from

i=1

(1985) and Tauchen (1985), of the departure of T

zero, where m(+) is a vector function such that IEO[m(yi,Xi,G) | Xi] = 0.
Convenient auxiliary regressions for implementation of CM chisquare tests are
given by Newey (1985) and Tauchen (1985) when 5T is the MLE and the
likelihood function is specified, and by Whife (1990) in a number of special
cases. Wooldridge (1990) proposes "robust regression-based" tests, where
"robust" means validity under quite general distributional assumptions

4 comparable to those here and "regression-based” means computation by auxiliary
regressions, a different meaning than that used here.

The CM test literature is generally silent on the choice of m(yi,Xi,e)
except in the fully parametric case when the optimal choice is a score test.
This paper can be viewed as motivating the pgrticular choice of m(yi,Xi,e) =
giwiy’ie for testing variance-mean relationships. Furthermore, the choice
permits very simple computation, since then IEO[VGm(yi,Xi,G) I Xi] = 0.

Finally, the distribution of the test is obtained under quite general

distributional assumptions.
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Wooldridge (1991) has proposed CM tests of variance-mean relationships,
using m(y,X,0) = glit,$)-vl,$) >4y, - #)” - Viu,¢). These tests are
more difficult to implement than those here, as IEO[VB((Yi - ui)z - v(ui,¢)) |
Xi] % 0, uniess v(ui,qb) is constant in ui.3 Proposition 3 suggests that in

some cases better weighting functions than v(ui,¢)~2 might be used.4 These

CM tests are implemented by the method of Wooldridge (1990). This transforms

—1/2~T - —1/2T ~ ~
a test based on T s m, to one based on T z m*;, where m’; is such
i=1 i=1
T ~ T -~
that in general, T_l/2 z m, = T 172 T m* As a consequence, this
i=1 i=1

implementation method will test for misspecification in directions different
to g(ui,qb), as noted by Wooldridge (1990, p.26). If we instead consider
m(yi,Xi,B) = g(ui,d))'w(ui,d))'y’;, where y’; is defined in (2.17), then it is
possible to use the method of Wooldridge (1990) to test for misspecification
in the direction of g(ui,qS), provided that the estimator ;’T is chosen so

T ”~ ~ ~
that T_V2 =z diwiy’; = op(l). Proposition 5 here then coincides with the test

i=1

obtained by application of procedure 2.1 of Wooldridge (1990).

The preceding results have not assumed a particular distribution for Y
undgr‘ HO’ beyond the first two moments (or four moments for the optimal test
in Proposition 3). To permit comparison W';th other more parametric tests we

turn to fully parameterized models under HO'

4. TesTs FOR FuLLY PARAMETERIZED MODELS

4.1 Optimal Regression Based Tests for Generalized Linear Models

Generalized linear models assume a density of the form:

(4.1) £(y,0,4) = explal®) l(ye - b(8) + cly,8)} ,
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for some specific functions a(-), b(-) and c(-). If ¢ is known, this is a
member of the linear exponential family (LEF), which includes the normal,
Poisson, binomial, gamma and inverse Gaussian, where 6 is the canonical or
natural parameter. For further details, see McCullagh and Nelder (1989), or
Gourieroux, Montfort and Trognon (1984) who use an alternative equivalent
representation of (4.1) in terms of the mean parameter p.

Differentiation of the logarithm of the density yields:
(4.2) Ely] = u = Veb(e) ,
2 2
(4.3) El(y - W) = vig,¢) = a(¢)°V9b(9) .

Since (4.3) is of the form (2.2), this is the natural family of models with
variance-mean relationships to investigate. Indeed, it is the different
variance-mean relationships that determine the different members of the linear
exponential family.

Propositions 1 and 2 are easily applied. The obvious root-T consistent

estimator BT is the MLE, defined by the first-order conditions:

T
(4.4)

V(u(X B8 ey - ROGBD) + Vau(X B = O,
i=1

where V(ui,q)) is assumed to be non-zero. This weighted least squares
estimator can actually be used to implement the theory in section 2 for any
data generating process, since it is consistent for B under both HO and
Hl of section 2, see McCullagh and Nelder (1989) or Gourieroux, Montfort and

Trognon (1984).

To implement the optimal regression based test of Proposition 3, we need
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only obtain 0'? = Var(y*;). This requires the first four central moments of 7y

under HO' For the LEF,

(4.5) Elly - w°l

v(u,sb)'vuv(u,qb) ,

(4.6) Elly - wH v(u,¢)°((vuv(u,¢))2 " v(u)-Viv(u,dﬂ + 3v(1,9)} ,

using the recursion formula E[(y - u)k+1] = Var(y)°((VuE[(y - u)k] +

...]_]

k-El(y - u)k } obtained in the Appendix. Hence:

(4.7) of = (v(ui,¢))2°((Viv(ui,¢))2 +2)

For members of the LEF with quadratic variance function, o*zi' reduces to
20v(p,$0)°.

Proposition 3 only applies in the case where ¢ is known. Nonetheless,
when ¢ needs to be estimated a natural choice for the weight function in
applying procedures 4 and 5 is still w, = 0‘;2. Thﬁs, if examples 3.3 and 3.4

2

are for LEF models, the weight function w, would be chosen to be My and

uia', respectively, in which case the estimators ¢T are of the form (2.25).

4.2 Score Tests for Specific Examples of Generalized Linear Models

The preceding sections give tests that can be applied to a very wide range
of models. A natural alternative test is the score (or lagrange
multiplier‘) test. Score tests may be easily implemented, requiring only HO
density parameter estimates. They are not necessarily easily derived, as the
H1 density may be very cumbersome. The Hl density may aléo be overly

restrictive, for example, permitting over- but not under-dispersion.

In this section we compare existing score tests for particular LEF models
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with the optimal regression-based test. From (2.13), the regression based
test for o = 0 is determined by G’Z_ly*, evaluated at ui. For models in
the LEF, the ith entry in ¥ is given in (4.7), so that G’Z_ly* equals:

T -2 2 2 -1
(4.8) = g(ui)°(v(ui,¢)) '((Vuv(ui,tb)) +2)

i=1

{ty; - ”i)z -V v, )y, - 1) - V90

We say that the optimal regression based test coincides with a score test for
LEF models embedded in a more general I—I1 distribution with mean M and
variance v(ui) + g(ui)’ot if (Va.SB(B,¢,oc=O))’, the efficient score evaluated
at o = 0, equals (4.8) to a multiplicative constant, where Z£(B,¢,a) is
the log-likelihood for the fully parameterized H1 model. For the examples
given below, the score is' found to be of the form (4.8).

It should be noted that even when (4.8) holds, the implementation of a
score test may differ from that for a regression Based test. In particular,
the distribution of Vaﬁ(éT,;l\:T,ocr-O) would typically be obtained under the

assumption that the H. model has an LEF density, whereas the regression based

0
test may be implemented under much weaker assumptions using propositions 1 and

2. We return to this point below.

Example 4.1: Poisson model under H() tested against the Katz system (which
includes the negative binomial) under Hl' The score test is equivalent to the

optimal regression based test. See Cameron and Trivedi (1990).

Example 4.2: Normal model under H0 with constant variance 02 tested
against a normal model with variance h(ui,Xi,oc), where h(p.i,Xi,oc=O) = 0*2. :
The efficient score, Breusch and Pagan (1979) and Cook and Weisberg (1983),

is:



T
(4.9) 0.5 « T V hiu,X,,a=0) +c¢ 40((y. - i)
i=1 o 1 1 1 1

2—0‘2}.

The regression based test is obtained by noting that Vau‘l(yi | Xi) =
: 2 .
h(ui,Xi,oc) = h(ui,Xi,oc—-O) + Vah(ui,Xi,oc-O) a = + Vah(ui,Xi,cx—O) «. So

2 2, 2 4
e — ’ L - - =
g(ui,Xi) =V h(ui,Xi,(x—O) . Also yi = ((yi ui) o}, and o, 20 .

Thus the optimal regression based test equals the score test.

Example 4.3: Binomial model with m trials. The score test against the
extended beta-binomial is obtained by Prentice (1986), generalizing the score
test against the beta-binomial of Tarone (1979). For the binomial v(p.i) =

-1 P | 2 _ 2
ui(l - m “i)’ so that Vuv(ui,¢) = (1 -~ 2m ui), Vuv(ui,qi) =0, and o =

ui(l - m—lui). For the extended beta-binomial, Var‘l(yi | Xi) = ui(l - mblpi)
+(1 + (m-1)a}, so that g(pi) = (m—l)ui(l - m—lui). For the optimal
regression based test, G’Z—ly* equals:

T

(4.10) % (2,01 - m_lui)}-l‘((yf ui)z— a- zm‘lui)(yi— u) - pl - m'lui».
i=1 :

By rearranging the equation immediately above equation (6) of Prentice (1986),
see the Appendix, (4.10) equals the efficient score Va2(3,¢,oc=0). The
regression based approach indicates that this test can be used against more
general alternatives than g(ui) = (m——l)ui(l - mnlui), and against more

general alternative distributions than the extended beta-binomial.

Even when the criter;ion function for the score test coincides with that
for a regression based test, implementation may differ. As an example,
consider testing for variance constancy under normality. The (chisquare)
score test statistic is usually calculated as one-half the explained sum of

squares from the auxiliary OLS regression (including an intercept) of
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n"—z(yi - ui)z on g(p.i). Let y* have ith entry ((yi - ui)z - 0‘2), G bea
- T . R
Txp matrix with ith row (g(ui) - g), where g = T 1 b g(ui), and ¥
: ~4 ~2 4 I ~ zl=1 '
have ith diagonal entry 20, where ¢ = T~ Z (yi - “i) . Then this score
i=1

test statistic statistic equals ;*’5(5’%@)_1(—}’;*, see e.g. Cook and Weisberg
(1983, eq. 8). By contrast, the regression based test in example 3.2 equals
;*’5(5’%5)—15’57*, where £ has ith entry (;}‘)Z. The difference between the
two is that the score test implementation assumes Varo(y’;) = Var‘o((yi - ui)z
- 0'2)) = 204. The regression based test is of correct asymptotic level for
all distributions, but differs from the usual correction to the score test for
nonnormal kurtosis, e.g. Carrpll and Ruppert (1988, p.98), which uses
}*’é(é’ié)’%@r* where £ has constant ith entry T—1 ’; (;’;)2.

i=1

The algebra in obtaining the efficient score in examples other than 4.2
is quite lengthy and tedious, whereas the general regression-based test is

easily obtained. Another relatively simple test is the overdispersion test of

Cox (1983).

4.3 Cox’s Overdispersion Test.
For models with variance-mean relationships' of the sort considered here,
Cox (1983) proposed a test for overdispersion that is a score test based on an
approximation to the H1 density of Y which is asymptotically valid for
local alternatives to the variance-mean relationship of the HO density.
Specifically, suppose ¥; has density f (y,'ari), where the scalar
parameter ¥; is itself a random variable distributed with mean M = u(Xi,B)
and variance g(ui)’oc. Under HO’ o = 0 and under Hl’ o > 0. The restriction
made by Cox is to consider only local alternatives: a = T_1/2§. The resulting

variance-mean relationship for ¥ conditional on My will be exactly H, given

L

in (2.15). Cox obtains an approximation to the log-likelihood function,
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denoted £*(B,8), and tests HO by a score test for & = O based on this

approximate log-likelihood £*(B,8). Cox obtains:

12 T
(4.11) (V62¥(B,6=0))’ = 0.5T = glp)H(y.,u.) ,
) i=1 1 1771
where
(4.12)  H(y., w) = V% log f(y,p) + (V. log £(y.,m)°
’ A u | 1l et

and f (yi,ui) is the HO density. Comparison with (4.8) reveals that in
general this will lead to a test different to a regression based test.

Specializing to the LEF density given in (4.1),
(4.13)  H(y.,m) = (v(,e) A, - 1) = ¥ vp,d)y. - p) - v, )
' 71 i’ i i [T i i i’ ?

since Vu log f(y,u,¢) = v(u,qb)—l'(y -'u) and Vi log f(y,u,¢) = - v(u,q‘))_l
- V”v(u,cp)-v(u,q&)—z-(y - p). Substituting (4.13) into (4.11) and comparing
with (4.8) reveals that for models in the LEF with quadratic variance
function, the optimal regression based test coincides with Cox’s test. For
other models in the LEF, Cox’s test is a regression based test, but is less
pov¥rerf ul than the optimal regression based test since it weights by

(v(ui,tﬁ))_z instead of 0'% defined in (4.7).

4.4 Tests for Parametric Models not in the LEF: An Example

The regression based test is very restrictive, and can only coincide with
a score test if the score is the particular linear combination of residuals
.and squared residuals given in (2.5). As a simple illustration of where the

regression based test differs from the score test, suppose that under HO’ A
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is normally distributed with mean My and variance ”i’ an example of a power
of the mean model.

The regression based test aéainst le Var(yi) = wt g(ui)’oc is given
in example 3.1. The optimal regression based test will weight by o*? =
Var‘o((yi - ui)z - yi) = Zui(ui+l). The joint test of o« = O is based on the
closeness to zero of:

T

(4.14) g(ﬁi)-(2ﬁi(;i+1))—l'<(yi - ;i)z -y

i=1 !
The score test against the alternative N(pi, “i+g(“i),“) distribution

is based on the efficient score evaluated at o = 0. From the Appendix this

is:

T ~ ~ —— ~ ~
(4.15) g(ui)'(ZuiZ) 1°((yi - ui)z - 1)
i=1

Clearly the two tests differ.
These tests both differ from Cox’s overdispersion test, a score test

against the local alternative to the N(“i’ ui). After some algebra given in

the Appendix this test will be a test of the closeness to zero of:

(4.16) z

PR R | ~ 4 - ~ 3 2o A ~ 2
1 g(ui) (8;1i ) ((yi - ui) + 4“i(y - ui) + (4“1 - Bui)(y - ui)

1
Ao - ~3
~6ui(y-ui)—4ui).
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5. CONCLUSION

In this paper heteroscedasticity tests are proposed for regression
models that specify a relationship between the variance and mean under the
null hypothesis, but do not require complete specification of the
distribution.

These tests are regression based in the sense that a linear combination
of the first two conditional moments under Hl (or equivalently of the errors)
leads naturally to a regression that can be run to test the HO variance-mean
relationship. The particular linear combination chosen is one that simplifies
implementation. The tests can be implemented directly from the regression
(Propositions 1, 3 and 4), or from an auxiliary regression {Propositions 2 and
5). Implementation is simplest when the HO variance depends on the mean
alone, but the more general case is also accommodated.

The tests have the advantages of simple derivation and implementation,
and of being of correct asymptotic size under minimal distributional
assumptions. These advantages are at the potential expense of low power,

though the optimal regression based test does coincide with the score test

for several leading examples in the linear exponential family.
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FOOTNOTES

1 The function g(+) may also depend on parameters in addition to B and ¢ .
Since the ensuing asymptotic theory is unaffected if these additional
parameters are replaced by root-T consistent estimates, they are suppressed

for ease of exposition.

2 These and other models in the linear (or natural) exponential family with
quadratic variance-mean relationships are detailed in Morris (1982).

3 In the case where the variance is constant, the test of Wooldridge (1991)
and the overall chisquare test given in example 3.2 are equivalent. Otherwise

the two procedures differ.

4 Wooldridge (1991) does not explicitly state what alternatives his CM test is

testing against, limiting discussion of power.
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APPENDIX

VR -1/27, 50

Proposition 1: The estimator is T o = (T_IG’WG)ulT G’ Wy*. Let g

2

£ 3 — — -
W v and v denote g(ui), w(ui), v(ui) and (yi “i) VMV(“i)(yi “i)
- v(ui); and let g Wy V; and y}‘ denote similar quantities evaluated at

= 2 n i - i * 1 =
B = u(Xi,BT), where BT is root-T consistent for B. EO[yi =0 from
2
* 1 = - - - - -

(2.1) and (2.2). l‘EO[Vuyi ] [EO[ Z(yi pi) \7”v(ui)(yi ui) + Vuv(ui)

Vuv(ui)] = 0 from {(2.1). By first-order Taylor series expansion:

~ ~ o~ —— T ~ -~ -~
T_l/zG’Wy** = 125 g.w.y¥
R Bl
i=1
T T
-1/2 N -1 . V-
= T ‘Z gwyt + T .Z V“(giwiyi)vﬁui T (BT B) + op(l)
i=1 i=1
T
= ’I"—l/2 b giw.y? + o_(1)
i=1 P
. 172, : 1L "
since T (BT - B) = Op(l) by assumption and T i‘:‘l Vu(giwiyi)vai = op(l),

. . 7] =
applying a LLN and using EO[Vp.(giWiyi)] vugiwiEO

* *]
[yi] + giwiEO[vuyi] 0,
i * - * —
since IEO[yi 1 =0 and EO[Vuyi] 0.

V26 wy* 3 N(o, 1im TG’ WEWG ). Formal

T

Applying a CLT under H, T

conditions for the CLT can be obtained from White (1980), for example.

Sufficient conditions will include boundedness of g Wp and (2+8)-th

absolute central moment of y}‘ and hence (4+8)-th central moment of ¥y

Under more general conditions (T_la’ﬁ’& - T“IG’WG) B o. Combining, TI/ZELT

4 wo, 1im T 6 we) ™ 1im T 6’ wewe- (17 6" wewG) ™. Proposition 1 follows
Tow T

by replacing the limit matrices by consistent estimators, following White

(1980).

Proposition 2: Consider the regression of 1 on a pxl vector z, and let 1

be a Txl vector of ones and Z be a Txp matrix with ith row zi’. Then

~A A A

Ri equals l’Z(Z'Z)—IZ’l /11 = l’Z(Z’Z)—IZ’l / T. If z,= giwiy}‘, then
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this equals dT / T, where dT is defined in (2.12) with iii = (y’;)z.

Proposition 3: First amend the proof of Proposition 1 to inference under H

L
*] = o/ 3 *] = T
Now tEL[yi] g'a from (2.4), while EL[V yi] 0. Again:
T T

1/ZGWy = TI/ZZgwy + T ZV(gwy*)Vu °T1/2(B - B) + 0 (1)
[T} B"i T P
T i=1 i=1
-1 .
Again T Z V (g.w.y*)V = o0 (1), this time since E [V w.y*¥] =
g z LBV = o WBiVY1
(V (g.w.))eg,'a = (V (g.w ))-T_l/zg ‘8. Applying a CLT under H T_l/ZG’Wy*
peivi i peii i L’
3 NC1lim T'6'WG+s, 1im T 'G'WSWG ). Again (T '6‘WG - T'6'we) B o .
T Tow
Thus under HL’ TI/Z-aT has the same limit distribution as in proposition 1,
except that the mean equals T—l/zﬁ rather than zero.
For the overall test of a = 0O, d 4 xz(p,k) under HL’ where the
non-centrality parameter A = 2 (lim T G’WG) *(lim T—IG’WZWG)°(lim
T>w Tow T
T_lG’WG)_l, and hence power, is maximized when W = 2_1.
Proposition 4: Proceed as in proposition 1, except now y’; = (yi - ui)z -

v v(ui,c;b)(yi - “i) - v(ui,qb) additionally depends on ¢. Again, EO{VMy’;] =

2
o1 ¥ = E [(\7 ¢v(u.,¢))(y. - u.) - V¢ A

Letting BT and ¢T be root-T consistent estimators, the Taylor series

0, while IE [v v(u.,¢)] =V v(u.,q)) # 0,

expansion yields:

~ A A T . T ~
T V26 Wy = Tl/zilgwy + leV(gwy*)-TVZ(«pT # +o

i=1 1¢

1/2

= T2 wy* 4+ (T_lG’WD) st larmyt (V2

B‘z) + o (1)
P
where the term in (BT - B) again drops out, since IEO[Vuy’;] = 0; we use

E[V¢(giwiy’;)] = V¢(giwi)[EO[y*;] + giwi[EO[Vqsy*{] = V¢v(ui,¢); D is a Txn
/2.

diagonal matrix with ith row di’ =V ¢v(ui,¢); and we have used T (¢T ¢)

(A’A) 'B’z + 0 (1) Applying a CLT, tedious algebra yields

/2,
T G'Wy -9 N(O, V11 + V22 + V12 + V21), where
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1

V., = (lim T G’WEWG)
11
T>e
V,, = (Llim T~ lsrwp)lim T A’ M1im T lB’Z B)(lim T L im T b we)
Tow Tow T T>w T
v, = (Lim T '6'WEB)(1im T im T'D'We) , v, = Vi,
: T>w T>w T
and where Z, 222 and 212 = 221 are TxT diagonal matrices with ith
. . _ _
entr;es Var‘o(yi | Xi)’ 222 = Var'O(Zi | Xi)’ and Zl Cov (y 2y | X)

Again (T_lG’WG - T—IG’WG) R o Combining and replacing the limit sums by

consistent estimates yields Proposition 4.

Proposition 5: (¢T - ¢) = (D’WD)_l(D’Wy*) + 0 (Tul/z), since by a first-order

Taylor series expansion T 1/ZD ‘Wy* =T /ZD ‘Wy* + (T D WD) 1/2(¢T 9,

v = di" Substituting A’A =D'WD, B =D’'W, and z = y*

using. E

o'

yields an expression for (Vll + V22 + V12 + V21) defined in the proof of

o

Proposition 4 which from (2.21) will be consistently estimated by

T w25w 2 Also o WM2p* = (G' w2 - GrwDm WD) lD’ W AWl Py
2w B e 2,

G’ Wy*, since D’Wy* = 0. So in (2.20), dT =y r(r rir

which equals TR\ZJ from regression (2) when Eii = (y}‘)z.

Moments of the LEF: For the LEF density, Vef(y) = a(¢)—1(y - Veb(e))f(y).

k, _ 3 k
So velE[(y - u)yl o= Ve J (y Veb(e)) f(y) dy

I -k 7o)y - b)) Y (y) dy

+ 5 (v - U oo a@) iy - v b(eNr(y) dy

k-1

- k Toble) Elly - w71+ a®) Ely - W< .

So  Elly - ™ a(IV ELly - wkl o+ ka($)72b(0) El(y - wk

Var(y)7 El(y - wEl + kvar(Ely - WK,

using (4.2) and (4.3).
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Score Test for Extended Beta-Binomial (4.10): From Prentice (1986), the score

statistic contribution, given in the equation above equation (6), for n trials
with probability of success p (and failure q = (1 - p)) is:
0.5+4y(y - Dp ™ + (n - y)n - y - g - nln -1)}

(2pq) My(y - D(1=p) + (0 - y)n - y = Dp - nln - p(l - p}

(qu)"l(y2 -y - 2nyp + 2yp + nzp2 - npz)

2pq) My - np)? - v + 2yp - np)

(2pq)_1((y - np)2 - (1 - 2p)y = np) - np(1 ~ p)}

np - 0w Ny - w? - 4 - 207 Wy - W - pa - o7y,

il

which to a scalar multiple is the term in (4.10). Note that the final form of
the score test statistic given in Prentice (1986, equation 6) for the i.i.d.

case actually drops the middle term - (1 - 2n_lu)(y - .

Derivation of (4.15): For y ~ N(u, p + ag(u) ),

log £(y) = - 0.5 log 2w - 0.5 log(i + ag(p)) - 0.5+(1 + aglu) Xy - W2
So V_log fly) = - 0.5 gl(u + ag) ! + 0.5-gWp + agw) 2y - w2,

which evaluated at « = 0 equals g(u)(Zuz)-l((y - u)z - ).

Derivation of (4.16): For y ~ N(u, p + ag(u) ),

log f(y) = - 0.5 log 21 - 0.5 log(p) - (2w "y - w?.

So 7, log f(y) = @u*) Hy - w + 2uly - W - W

and Vi log fly) = —(4u3)—1((y - “)2 + 2u(y - p) - pr + (Zuz)ul(—Zu -1} .
Combining as in (4.12),

Hiy,p) = Guh ™ eig-m? + apr-° + e’ 3wiy-w° - 6p°(3-p) - 4.
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