Machine Learning Methods: Course Overview

A. Colin Cameron Univ.of California - Davis

April 2024

1. Prediction

- We wish to **predict** y given \mathbf{x} using fitted function $\hat{f}(\mathbf{x})$.
- We could use various nonparametric methods
 - kernel regression such as local linear, nearest neighbors, sieves
 - but these perform poorly if x is high dimensional
 - * the curse of dimensionality.
- Machine learning uses different algorithms that may predict better
 - including lasso, random forests and neural networks
 - these require setting tuning parameter(s)
 - ★ just as e.g. kernel regression requires setting bandwidths.

2. Terminology

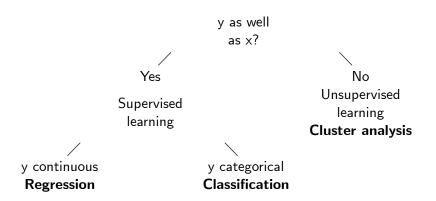
- The term **machine learning** is used because the machine (computer) determines the model $\widehat{f}(\mathbf{x})$ using only data
 - compared to a modeler who e.g. specifies \mathbf{x} and $y = \mathbf{x}' \boldsymbol{\beta} + u$.
- "Big data": The data may be big or small
 - typically $dim(\mathbf{x})$ is large but n can be small or large.
- Many different fields developed ML methods
 - ▶ leading to the same method having different names
 - ▶ and some names can seem strange to economists.

Supervised learning = Regression

- We have both outcome y and regressors (or features) x
- ▶ 1. **Regression**: *y* is continuous
- ▶ 2. **Classification**: *y* is categorical.

Unsupervised learning

- ▶ We have no outcome y only several x
- 3. Cluster Analysis: e.g. determine five types of individuals given many psychometric measures.
- Focus on 1. as this is most used by economists.



3. Model Fitting

- Machine learning algorithms use best predictive ability
 - often minimize mean squared error.
- Recall MSE = Variance + Bias-squared.
- So allow for some bias in the prediction if this reduces the variability of the prediction
 - unlike traditional econometrics
- Shrinkage (or regularization) uses many predictors but shrinks estimated coefficients towards zero
 - examples are LASSO and Ridge regression.
- Other popular machine learning algorithms are
 - regression trees and random forests
 - neural networks.

4. Model Selection

- Econometricians often determine the model using economic theory, existing models for similar data, and statistical significance.
- Machine learners use model fit so need to control for inherent overfitting of the data.
- One approach uses model complexity penalties such as AIC, BIC.
- More often machine learners use cross-validation
 - this is out-of-sample predictive ability
 - new to econometrics.
- Terminology
 - training data set (or estimation sample) is used to train a model
 - in some cases this is further split into
 training data which is used to estimate a model
 validation data to evaluate how well model fits out-of-sample
 - test data set (or hold-out sample set) is additional data used to determine how good is the model fit of the preferred model after training.

5. Partial Effects

- Machine learning literature traditionally focused purely on prediction
 - sometimes useful in microeconomics applications
 - e.g. predict one-year survival following hip transplant operation.
- Empirical microeconomics emphasizes estimating a partial effect.
- In principle can perturb an x to get $\Delta \hat{f}(\mathbf{x})$
 - but very black box especially if $\widehat{f}(\mathbf{x})$ is very nonlinear
 - statistical inference following machine learning is a problem
 - it is noncausal.
- Instead economists impose more structure.
 - e.g. estimate β in the partial linear model $y = \beta x_1 + g(\mathbf{x}_2) + u$.

6. Causal Analysis for Partial Linear Model

- Estimate β in the partial linear model $y = \beta x_1 + g(\mathbf{x}_2) + u$.
- A causal interpretation of β as giving dy/dx_1 is possible if
 - $E[u|x_1, \mathbf{x}_2] = 0$
 - selection-on-observables assumption.
- The assumption is more plausible the better is $g(\mathbf{x}_2)$.
- So use a machine learning method to determine best $\widehat{g}(\mathbf{x}_2)$.
- Subsequently estimate β in a way that allows for valid inference on $\widehat{\beta}$ controlling for the data mining used to get $\widehat{g}(\mathbf{x}_2)$
 - ideally $\widehat{\beta}$ is consistent and asymptotically normal.

7. Double / Debiased Machine Learning

- Consider partial linear model $y = \beta x_1 + g(\mathbf{x}_2) + u$.
- Estimation uses double/debiased machine learning.
- Orthogonalization
 - lacktriangleright estimation of eta is based on an orthogonalized moment condition
 - one where first stage estimation of $g(\mathbf{x}_2)$ does not affect the subsequent second step estimation of β
 - leads to consistency and asymptotic normality.
- Cross fitting (or sample splitting)
 - use part of the data to determine $\widehat{g}(\cdot)$
 - use a separate part of the data to determine $\widehat{\beta}$
 - reduces bias.
- This approach is general
 - not just for partial linear model (e.g. for ATE in binary treatment)
 - ▶ a variety of machine learners can be used (not just LASS0).

8. More on Machine Learning

- ullet Data carpentry or data wrangling creates y and ${f x}$
 - ▶ web scraping, text mining, digitizing images, SQL, ...
- Machine learning methods entail many decisions
 - how are features converted into x's, tuning parameter values, which ML method to use,
- For commercial use this may not matter
 - all that matters is that predict well enough.
- For published research we want reproducibility
 - at the very least document exactly what you did
 - provide all code (and data if it is publicly available)
 - keep this in mind at the time you are doing the project.
- For public policy we prefer some understanding of the black box
 - ▶ this may be impossible
 - and it can be misapplied
 - * e.g. using credit scores to decide whether to rent house.

9. Software

- Stata provides an easy entry but serious ML generally needs R or Python.
- R has many packages for ML prediction and is easy to install
 - ▶ including Introduction to Statistical Learning 2e is all in R.
- Python is viewed as being best for ML prediction
 - modules scikit-learn, Pytorch, Keras, TensorFlow.
- Stata has limited built-in commands for ML prediction
 - basically Lasso, Ridge and elastic net
 - importantly Stata does have some ML for causal analysis
- Some Stata add-ons provide a front-end to R and Python commands
 - then you need to have R or Python also installed.
- Stata can directly use Python commands once Python is installed.
- Stata can directly use R given the user-written Rcall package
 - https://github.com/haghish/rcall
- With R and Python it can be difficult to know which package is best, and the best package will change over time.

10. Course Outline

- 1. Variable selection and cross validation
- 2. Shrinkage methods
 - ridge, lasso, elastic net
- 3. ML for causal inference using lasso
 - OLS with many controls, IV with many instruments
- 4. Other methods for prediction
 - nonparametric regression, principal components, splines
 - neural networks
 - regression trees, random forests, bagging, boosting
- 5. More ML for causal inference
 - ► ATE with heterogeneous effects and many controls.
- 6. Classification and unsupervised learning
 - ightharpoonup classification (categorical y) and unsupervised learning (no y).

11. Key References

- ISL2: Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani (2021), An Introduction to Statistical Learning: with Applications in R, 2nd Edition, Springer.
 - Masters level book. Free PDF from https://www.statlearning.com/ and \$40 softcover book via Springer mycopy.
- ISLP: Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani and Jonathan Taylor (2023), An Introduction to Statistical Learning: with Applications in Python, Springer.
 - Masters level book. Free PDF from https://www.statlearning.com/ and \$40 softcover book via Springer mycopy.
- ESL: Trevor Hastie, Robert Tibsharani and Jerome Friedman (2009), The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd Edition, Springer.
 - PDF and \$40 softcover book at https://link.springer.com/book/10.1007/978-0-387-84858-7
- Geron: Aurelien Geron (2022), Hands-On Machine Learning with Scikit-Learn,

April 2024

Key References (continued)

- EH: Bradley Efron and Trevor Hastie (2016), Computer Age Statistical Inference: Algorithms, Evidence and Data Science, Cambridge University Press.
- A. Colin Cameron and Pravin L. Trivedi (2022), Microeconometrics using Stata:
 Volume 2: Nonlinear Models and Causal Inference, Second Edition, Stata Press.
 - especially Chapter 28.
- Alex Belloni, Victor Chernozhukov and Christian Hansen (2014),
 "High-dimensional methods and inference on structural and treatment effects,"
 Journal of Economic Perspectives, Spring, 29-50.
 - early causal methods with three applications.
- My website has some material
 - https://cameron.econ.ucdavis.edu/e240f/machinelearning.html
 - ▶ https://cameron.econ.ucdavis.edu/sfu2022/ has Stata code for these slides.