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N —
Course Outline

@ 1: Variable selection and cross validation
@ 2. Shrinkage methods
> ridge, lasso, elastic net
e Part 3: ML for causal inference using lasso
» OLS with many controls, IV with many instruments
@ 4. Other methods for prediction

> nonparametric regression, principal components, splines
> neural networks
> regression trees, random forests, bagging, boosting

B. More ML for causal inference

» ATE with heterogeneous effects and many controls.

@ 6. Classification and unsupervised learning

> classification (categorical y) and unsupervised learning (no y).
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Introduction

Introduction

@ Consider the leading first work on inference with machine learning.
@ This focuses on OLS and IV estimation of the partial linear model

» using LASSO to select among potential controls and/or instruments
» make assumption of sparsity.

@ Work from 2010 on by Belloni, Chernozhukov and Hansen and their
coauthors.

@ This has been implemented in Stata version 16.

A. Colin Cameron Univ.of California - Davis | ML Part 3: Causal Inference with Lasso April 2024 3/59



Introduction

Overview
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o
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o

Partial linear model

Partialling-out estimator
Orthogonalization

Cross-fit Partialling-out Estimator
Double Selection Estimator

Other Models

Double/debiased machine learning
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iL1 Pyl Winzey Mot
1.1 Partial Linear Model

o A partial linear control function model specifies
y =da+ g(xc) + u where g(-) is unknown.

@ Interest lies in estimating &
» d are policy or treatment variables of interest
* for simplicity we will later focus on the scalar case

> X are "nuisance" control variables
> g(-) is an unknown function

@ Selection on observables assumption is made

> consistent OLS estimation of « requires Efu|d,x.] =0
> this is more plausible the better is g(xc).
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1.2 Robinson (1988) Semiparametric Estimator
1.2 Robinson (1988) Semiparametric Estimator

@ Robinson (1988) proposed semiparametric estimation

y = d/“+g(xc)+u, E[U|XC] :O

where g(-) is unknown.
e Then

Elylxc] = E[d|x]a+g(xc)+0
y—Ellx] = (d—Eldix])a+tu

@ Estimate by OLS regression of kernel residuals on kernel residuals
o
Uy|x, = ud|xcoc +v

> Kernel regression of y on x gives residual vy,
» Kernel regression of d on x. gives residuals Ug|x,

o OLS of vy,

on ugly, gives root-/V consistent asymptotically normal .
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SRR ETEINRTEETAVEEEN 1.2 Robinson (1988) Semiparametric Estimator

Curse of Dimensionality

The Robinson method entails kernel regression on a vector xc.

So only works if x. is of low dimension

> e.g. y = energy consumption; d = usual demand determinants;
Xc is time of day (scalar).

@ Instead we are interested in a high-dimensional set of controls x,

> kernel regression fails due to the curse of dimensionality

* the sample size required for adequate local regression grows
exponentially with the dimension of x..

Solution: use a machine learner rather than kernel regression

> here use the LASSO instead of kernel regression

* requires a sparsity assumption
* and use of clever methods.
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2.1 Partialling-out Estimator
2.1 Partialling-out estimator
@ Allow for complexity by assuming
glxe) =Xy +r

where x consists of flexible transformations of x. such as polynomials,

interactions, splines, ... and r is an approximation error that
disappears at appropriate rate.
@ Then

y=da+xy+r+u

@ Belloni, Chernozhukov and coauthors have suggested several
LASSO-based methods that yield root-N consistent and
asymptotically normal estimates of &

> we start with the partialling-out estimator
» consider scalar d for simplicity.
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2.1 Partialling-out Estimator

@ Recally =axd+xy+r+u.
@ Method is similar to Robinson except use LASSO not kernel regression

> 1. Perform LASSO of d on x and obtain residual uy from OLS
regression of d on the selected variables.

> 2. Perform LASSO of y on x and obtain residual 1, from OLS
regression of y on the selected variables.

> 3. Obtain & from OLS regression of Ty, on iy.

o A key assumption is the sparsity assumption that the true model
is small relative to the sample size N and grows at rate no more than

VN.

> s/(\m/ In p) should be small
» p =dim(x) is the number of potential regressors
> s is the number of variables in the true model.

e Wiithrich and Zhu (2023) find in finite samples Lasso can omit
relevant controls leading to omitted variables bias.

A. Colin Cameron Univ.of California - Davis | ML Part 3: Causal Inference with Lasso April 2024 9 /59



2. Partialling-out Estimator 2.2 Stata xporegress command

2.2 Stata poregress command

@ poregress depvar varsofinterest, options

> varsofinterest is d

> option controls([alwaysvars)] othervars splits x into controls to
always include and controls to be selected by Stata

> default option plugin determines the penalty A by plug-in formula
rather than by CV or adaptive CV.

@ For independent heteroskedastic errors use the following.
@ The plug-in penalty is A = cv/N®(1 — %)

where ¢ = 1.1 and ¢y = 0.1/ In{max(p, N) }.
@ LASSO has individual loadings for each regressor

1 vN = ;
» Kj =/ Li1(xj&)? for normalized x;;

and €; is a residual from a sequence of first-stage LASSOs.
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2.3 Application of Partialling-out Estimator
2.3. Application of Partialling-out Estimator

o Data is 2003 data from the U.S. Medical Expenditure Panel Survey
> people aged 65-90 years.

@ Dependent variable 1totexp is log total medical expenditures.

@ Regressor of interest is suppins
> indicator variable for supplemental insurance beyond Medicare.

@ Add many control variables to hopefully control for endogeneity of
suppins

> use LASSO to reduce number of control variables.
@ In example here all control variables are chosen by lasso

> in practice | would include some variables always such as totchr.
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PINEETGEI SN ST BTN 2.3 Application of Partialling-out Estimator

Data and key variables

.B*EDatalfor@inferenceBonBsuppinsBexample:B5EcontinuousBand@13BbinaryBvariables
.BuseBmus203mepsmedexp.dta,Bclear
(A.C.CameronB&BEP.K.Trivedil(2021) :EMicroeconometricsBusingBStata,B2e)

.Bkeep@ifBltotexpd!=0Q.
(109Bobservationskdeleted)

.BdescribeBltotexpBsuppins

variableBnamek variable@label
ltotexp 1n(totexp)Rifltotexp>E0
suppins =1BifBhasBsuppBpriv@insurance

.BsummarizeB@ltotexpBsuppins

[BStd.EDev . BEEREREMinEEREEREEEMa X

EVariable ‘uuuuuuuudbhuuuuuuuuncan

EEEREltotexp |EREERE2,955E

BREERsuppins | BEREERZ2, 9556
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PINEETGEI SN ST BTN 2.3 Application of Partialling-out Estimator

Continuous regressors

.@*BContinuouskvariables
.BglobalBxlist2BincomeBeducyrilageBfamszeBtotchr

.Bdescribel$xlist2

PEEvariableBlabel

income BdoubleBl@%12.0g annualBhouseholdBincome/1000
educyr BdoubleR%12.0g YearsBofReducation

age BdoubleBlE%12.0g Age

famsze BdoublellE%12.0g SizeBlof@theBfamily

totchr Bdoublell%12.0g #RlofRchronicBproblems

.BsummarizeB$xlist2

BEEREVariable |EEEEEEEEOLSEREREEEEEMeanEEEEStd . EDev . BEEREREEMInEERREEREMax

2,955
2,955
age |EREREREZ2,955E
EERREREfamsze |BREEEREERZ2, 955!

BRREREtotchr |ERERER2,955

713
REEEORERREERRRRE7

1.808799RIREL . 29461 3R
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PINEETGEI SN ST BTN 2.3 Application of Partialling-out Estimator

Binary regressors

.B*EDiscretelbinarylvariables
.BiglobalPdlist2@femalelwhitelhispBmarryEnortheBmwestBsouthi///

.Bdescribef$dlist2

variable@nameBRERtypelRERformat

msaBphylimBactlim@injuryBpriolist@hvgg

storageBBRdisplayBBERvalue
labell

BEvariable@label

female
white
hisp
marry
northe
mwest
south
msa
phylim
actlim
injury
priolist
hvgg

BdoubleB%12.
BdoublelBr%12.
Bdoublelr%12.
BdoubleBR%12.
12.
BdoubleBR%12.
BdoubleB%12.
BdoubleBr%12.
%12 .
BdoubleBR%12.
BdoubleBr%12.
Bdoublelr%12.

Bdoublel

BdoublelH

BfloatBRER%9.0g

=1BifEfemale

=1BifEwhite

=1RifEHispanic

=1BifEmarried

=1BifBnortheastBarea

=1BifEMidwestBarea
=1RifRBsouthBareal(WestPisBexcluded)
=1BifBmetropolitanBstatisticalbarea
=1BifBhasBfunctionalPlimitation
=1BifBhasPactivity@limitation
=1BifBcondition@is@causedBbyBanBaccident/injury
=1RifBhasPmedicalBconditions@thatBaredonEtheBpriority@list
=1BifBhealthBstatusBisBlexcellent,BgoodBorveryfgood
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PINEETGEI SN ST BTN 2.3 Application of Partialling-out Estimator

OLS without & with products & cross products of controls

o Little change when add all the interactions
.@*E0LSEonBsmallEmodelBand@fullBmodel
.BglobalB@rlist2Bc. ($x1list2)##c. ($x1ist2)Bi. ($dlist2)Bc. ($x1list2)#i. ($dlist2)
.BquiBlregress@ltotexpBsuppinsB$xlist2@$dlist2,Bvce(robust)
.BestimateskistoreEOLSSMALL
.BquiBregress@ltotexp@suppins@$rlist2,Bvce(robust)
.BestimatesBstoreEOLSFULL

.BestimatesBtableFOLSSMALLEIOLSFULL ,Bkeep(suppins)Bb(%9.4f)Bselstats (NBdf_mBr2)

BREEEVariable |REOLSSMALLEEEREEOLSFULL

.1706
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2.3 Application of Partialling-out Estimator
Partialling-out Lasso with plug-in lambda

o Estimate between preceding OLS estimates with similar standard error

.B*BPartialingBoutBpartialBlinearBmodelBusingfidefault@plugin@lambda
.Bporegress@ltotexpBsuppins,Bcontrols($rlist2)

EstimatingBlassolforBltotexpRBusingBplugin
EstimatingBlassolforBsuppinsBusingBplugin

PartialingBlout®linearEmodel

EREEEEltotexp B[95%EConf.BInterval]

09214930 .2756892

Bsuppins

Note:BChiBsquareditestBisBalWaldBtestBofEtheBlcoefficientsBlof@thelvariables
PREEERofEinterestBjointlyBequalltolzero.Blassos selectBcontrols@for@model
stimation.BType lassoinfoBtoBseelnumberBofBselectedBvariables@inkeach
asso.
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PINEETGEI SN ST BTN 2.3 Application of Partialling-out Estimator

Lassoinfo

@ 21 overall, 12 for y and 9 for d

» so distinct variables chosen for y and d

.B*BLassoBinformation

.Blassoinfo

stimate:
ICommand :

active
poregress

EPREVariable

No . Blof
IR i PRREEREselected
EEIIEModeIIEEIIEmethodellElambdaEElvarlables

BEREE1totexp

EEEllnearEEEEEpluglnEEE 080387RRRERRERE12
9
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PINEETGEI SN ST BTN 2.3 Application of Partialling-out Estimator

lassoknots gives the variables chosen

@ For y (1totexp) totchr, actlim, phylim especially important.

@ For d (suppins) income especially important.

.Blassoknots,Efor(1ltotexp)

el No.Eof
onzeroBIn@sample iablesB(A)dded,B(R)emoved,
ID |EEEl oef. ] d BleftB(U)nchanged
BREE*E1 |BRE.08038 1200EE0. 2390 |BABtotchr

c.age#ic.totchr
1.white#c.totchr

0. phylim#c.famsze
BEE0.actlim#c. famszeBEREEO . female#c. totchrBEEEEL. priolistic. educyr

BIEIRO . hispi#c. totchrpE

*BlambdaBselectedBbyBpluginfassumingBheteroskedasticBerrors.

.Blassoknots,Bfor(suppins)

al No.Eof

al onzeroPInBsample iablesB(A)dded,B(R)emoved,
BEERID |BEElamb oef. quared BleftB(U)nchanged
BEE*E1 |BE.08038 .0809 inc 1.hvgg#c.income

.hisp#c.educyrel
.marry#c.famszel

1.marry#c.income
c.income#c.totchrl

1.white#c.educyr
northe#c.income

*Blambda@selectedBbyBpluginBassumingBheteroskedasticBerrors.
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PINEETGEI SN ST BTN 2.3 Application of Partialling-out Estimator

Partialling out done manually

@ The following gives same results as earlier poregress

.B*BPartialingBoutBdoneBmanually
.BquiBlassoBlinearBsuppinsB$rlist2,@selection(plugin)

.BquiBpredictBsuppins_lasso,Bpostselection

.BquiBgenerateBu_suppinsB=BsuppinsBRERsuppins_lasso
.BquiBlassoBlinearBltotexpB$rlist2,@selection(plugin)
.BquilBlpredictBltotexp_lasso,Bpostselection
.Bquiligeneratelu_ltotexpl=EltotexplRRltotexp_lasso

.BregressBu_ltotexplu_suppins,Bvce(robust)Bnoconstantlnoheader

Pu_ltotexp BP> | t | BREEEE[ 95%EConf . BInterval]

Bu_suppins |BRE.1839193ERE.0468223RREEEER3 . 93EEE0 . 000RERRR . 0921117EERR. 2757268
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2.3 Application of Partialling-out Estimator
Cross validation instead of plugin lambda

o Cross validation selects 73 controls (40 for y and 50 for d).
.B*BCrossBvalidationBinstead
.BporegressBltotexpBsuppins,Bcontrols($rlist2)Bselection(cv)Brseed(10101)

EstimatingBPlassoBforBltotexpBusinglicv
EstimatingBPlassoBforBsuppinsBusinglicv

PartialingBlout®linearEmodel

EREEEEltotexp B[95%EConf.BInterval]

09327310 .2772619

Bsuppins

Note:BChiBsquareditestBisBalWaldBtestBofEtheBlcoefficientsBlof@thelvariables
PREEERofEinterestBjointlyBequalltolzero.Blassos selectBcontrols@for@model
stimation.BType lassoinfoBtoBseelnumberBofBselectedBvariables@inkeach
asso.
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24 (Clusire Dzie
2.4 Clustered Data

@ Data are grouped with correlated observations within group and
uncorrelated across groups

> Yig is outcome for individual i in cluster g, i =1,...,N;, g =1,.., G.

@ Two methods for the LASSO have objective function

1 G N
Method 1 : Qi(B) = E ngl Zifl Yig — X§g,3)2 + /\Zj;l |IBJ‘
Method 2 : ng INLZ/ l(}’lg /gﬁ +)\Zf ]_|;B ’

@ Stata uses method 2.
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24 s Beiz
Clustered Data (continued)

@ Belloni, Chernozhukov, Hansen and Kozbur (2016), “Inference in
High-Dimensional Panel Models with an Application to Gun Control”,
JBES, 590-606.

@ Consider balanced panel model with fixed effects and endogenous
regressor

» uses partialling out IV given in section 6.2 below

» mean difference data (y and x and possibly z) to get rid of fixed effects
> so now clustered data with fixed effects now eliminated.

@ Then consider two uses of machine learning in the partial linear model

» section 4.1: select subset of many potential instruments
> section 4.2: select subset of many controls.

@ They use as method 1. giving equal weight to all mean-differenced
observations.
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3.1 @it wpeasizeion Beied
3.1. Orthogonalization defined

Define a as parameters of interest and # as nuisance parameters.
Estimate & is obtained following first step estimate 7 of #

> First stage: 7 solves Y. ; w(wj, i) =0

» Second stage: & solves Y7 ; ¢p(w;, 7)) = 0.

Noise in 7 usually affects the distribution &

» e.g. Heckman's two-step estimator in selection models.

But this is not always the case

» e.g. Frisch-Waugh such as mean-differencing out fixed effects.
> e.g. the asymptotic distribution of feasible GLS is not affected by
first-stage estimation of variance model parameters to get ().

Result: The distribution of & is unaffected by first-step estimation of
1 if the function ¥(+) satisfies

> E[0y(w;, &, 7)/05] = 0; see next slide.
@ So choose functions (-) that satisfy the orthogonalization condition

E[op(wi, &, 17)/0y] = 0.
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RINOL L EIFENLI 3.1 Orthogonalization Defined

Orthogonalization (continued)

@ Why does this work? By Taylor series expansion

1 n R
\ﬁi§1¢(wi'“'”)
1 1n 9 o ~
- \ﬁigwwi'ao'%) * E,El W o x v/n(& — o)
1 0 op(w, )
+;/§1 lp(“(';ﬂ'“ d % ﬁ(”_’io)

&0,

@ By a law of large numbers % 1 M
g 0.7y

expected value which is zero if E[9y(w;, &, 7)/0y] = 0.
@ So the term involving 7 drops out.
@ For more detail see Cameron and Trivedi (2005, p.201).

converges to its
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3.2 Orthogonalization for partialling-out estimator
3.2 Orthogonalization for partialling-out estimator
@ Consider the partially linear model with scalar d and manipulate

y=ad+g(x)+u where Efu|d,x] =0
= ElyX] =aE[d|x] +g(x)  as E[ulx] =0
y — E[y|x] = a(d — E[d|x]) + u subtracting

Robinson (1988) differencing estimator

» use kernel methods to get E[y|x] and E|[d|x]

> @ from OLS regress (y — E[y|x]) on (d — E[d|x])
Instead here use machine learning methods for E[y|x] and E[d|x].
Recall that OLS of y on x has f.o.c. ¥, xjui =0

> so is sample analog of population moment condition E[xu] = 0.

So partialling-out estimator therefore solves population moment
condition

~ E[(d — E[d|x)){y — Elylx] - (d — E[d]x])a}] = 0.
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3.2 Orthogonalization for partialling-out estimator
Orthogonalization for partialling-out estimator (continued)

o Partialling-out solves population condition E[(-)] = 0 where

¥(-) = (d = E[d[x]){y — Ely|x] = (d — E[d|x])a.
o Define 17; = E[d|x] and 17, = Ely|x], so

p(w,a,m) = (d=n){y —n,—(d—n)a}

= (d=m)(y—m,) —ald—m)"}

@ Then differentiating

p(w,a,m) /o, = —(y —1,) +2a(d —1,)
op(w,a,1)/dn, = —(d—1)
@ The orthogonalization condition E[d{(w, a,#)/dy] = 0 holds as
El=(y =mp) +2(d —nalx] = —(Ely[x] —1,) +2a(E[d]| ] )
= —(1p =) +2a(y, — 1) =
and E[—(d —ny)[x] = —(E[d|x] —#,)=0.
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RINOI T EIFEI 3.2 Orthogonalization for partialling-out estimator

Orthogonalization for partialling-out estimator (continued)

e More formally #,; = E[di;|x1;] and 1,; = E[d;|x1;] vary with i.
o A formal treatment deals with functionals #7,; = 17, (x;), 11,; = 11,(X2/)

> this allows a range of machine learners for d; and y; - not just lasso.

@ For simplicity consider the linear case where
11 = Eldj|x] = xj7r1 and 1y, = Ely;[x] = xjm,
@ Then

Y(wi,a, r) = (di —xim1){y; — xj7ro — (dj — xi7r1)a}
81/J(w,-,oc,rc)/arcz = —(d,-—x§7r1)x,-
E[at,b(w,-,uc,n)/anz|x,-] = E[—(d,-—x?n’l)x,-|x,-]
= —(X;7T1 — X§7T1)X,' =0

e Similarly E[0y(w;, &, 7r)/d7r1] = 0.
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4.1 Cross-Fit Partialling-Out Estimator
4.1 Cross-Fit Partialling-Out Estimator

The preceding partialling out used the same data at the first stage as
at the second stage.

A better procedure uses different data in the first stage lassos to that
used for the second stage estimation of «.

Superficially this leads to a loss of precision in estimating « due to a
smaller sample size

> this is avoided by the following method.
@ Split the sample into K folds and for fold k =1, ..., K
» use most data for LASSO estimation of nuisance part
* yields model for prediction d = x’ﬁ'&k) andy = x/ﬁ')(,k)
» use remaining smaller data to get predicted residuals in fold k

* compute residuals Egk) =dk) — x(k)’?r((jk) and E}(,k) = yk) _ x(k)’?rg,k).
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4.1 Cross-Fit Partialling-Out Estimator
Cross-Fit Partialling-Out Estimator (continued)

(k) (k)

@ Given vectors of residuals u,” and 1y’ in each of the K folds ,
k =1, .., K there are two ways to estimate «.

e 1. Combine all residuals into N residuals @, and U4, regress and get @

» Stata default
@ 2. Foreach k =1, ..., K obtain a%) from OLS of H)(,k) on ﬂgk)
» then form the average & = % ZkKZI atk)
> there is little loss in efficiency as we average over K independent
samples

o Cross-fit partialling out under either method 1. or 2. reduces the
complications of data mining

> it allows s to grow at rate N and not v N.
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RN GRS SETHE TSN =S EI I 4.3 Stata xporegress command

4.3 Stata xporegress command

@ xporegress depvar varsofinterest, options

> varsofinterest is d

e Option controls([alwaysvars)] othervars splits x into controls to
always include and controls to be selected by Stata.

@ Default option plugin determines the penalty A by plug-in formula
rather than by CV or adaptive CV.

> default forms N residuals.
o Option technique(dmll) computes K estimates "’ and averages.

@ Option resample (#) of xporegress uses more than one K-fold split
so results not dependent on the random split

» should use in final results.
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N O R S EEVHE TSI =SAT EIIa 4.4 Cross-fit Partialling-Out Application

4.4 Cross-fitting partialling-out Application
o Leads to similar results.
.B*BCrossfitBpartialingBoutB(double/debiased)Busingkdefaultiplugin
.BxporegressBltotexpBsuppins,Bcontrols($rlist2)Brseed(10101)Enolog

CrossBfitBpartialingBiou
linearZmodelBRRERRRRRRRRERRRRRRRRRRRRR

BERRE2, 955

PRPEREE176

NumberBofRfolds@inBicrossBfi
NumberBoflresamplesREERERERER= BREREEERRE1
WaldBchi2(1)EERREERRRERRRERER= BRERER1S. 66
Prob@>Bchi2BRREEEREREERRRRRER= B .0001

Robust
Coef.BEEStd.BErr. BEEEERZERREP> | z | BEEEE[ 95%BConf .BInterval]

.2775582

01ntlylequalltolzero BlLassos selectlcontrolslforlmodel
estimation.BType lassoinfoPtoBseeBnumberBoflselectedBvariablesBinBleach
lasso.
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N O R S EEVHE TSI =SAT EIIa 4.4 Cross-fit Partialling-Out Application

Selected variables across the folds

@ Number of selected variables across the ten folds
.B*BSummarizel@theBnumberflofBselectedivariableskacrossBtheltentfolds
.Blassoinfo

stimate: active
Command: Xxporegress

fRselectedBvariables

PEEEModelR Emediangl

ax

PER1linearBRRREpluginfRRRRRE11RRRRRRER1 3ERRRRRE 14
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L W e Sempla s
4.5 Multiple Sample Splits

@ The sample-splitting adds noise.
@ To control for this can do the following
> S times repeat the sample splitting method (e.g. S = 500)
» each time get a @5 (from averaging the K @},) and G2 = Var[Qs]
o Thena = L1y7 4,
o And Var[®] = 1 Y2, 02+ Y2 (s —a)>.
@ This is option resample (#) of xporegress

» should use in final results.
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W SR 4.5 Multiple Sample Spits

Multiple Splits Application

@ This took a long time and the standard error is larger.

.Bxporegress@ltotexpBsuppins,Bcontrols($rlist2)Brseed(10101)Enologkresample(10)

INumberBofEobse
ENumberBoficontrol
NumberBofBselecte
NumberflofEfoldsBi
Number| ?
WaldBichi2(1)B@
Prob@>&Echi2®

CrossBfitBpartialin
linear&model

ERobust
Std.BErr.

EEEERLtotexp Coef.

.04701510

BEE. 1814719

ointlyBlequalBtolzero.BlLassos selectBcontrolsBfor@model
electedBvariables@inBeach

Bestimation.BType lassoinfoBtoBseelnumber
Blasso.
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5. Double Selection Estimator

5. Double Selection Estimator

@ A third method for estimating the partial linear model
» used and explained in the Belloni et al 2014 JEP article.
@ Recall y = a x d + x'y + r + u (where r is approximation error).

@ The method is

> 1. Perform LASSO of y on x and denote selected regressor x,,
» 2. Perform LASSO of d on x and denote selected regressor x.
> 3. Obtain & from OLS regression of y on d and the union of x, and x4.

@ Use Stata command dsregress.
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Double Selection Estimator Motivation

y=axd+xy+r+u
Naive method 1: LASSO of y on x where d is always included.

» fails as LASSO will not choose variables highly correlated with d since
d is already included.
@ Naive method 2: LASSO of y on x and then OLS of y on d and
subset of x chosen by LASSO.
» fails as variables omitted by the y on x LASSO may be ones that are
highly correlated with the OLS regressor d.
@ Naive method 3: LASSO of d on x and then OLS of y on d and
subset of x chosen by LASSO.

» fails as variables omitted by the d on x LASSO may be ones that have
a large effects in the OLS regression for y.

@ There are omitted bias problems.

@ The solution is to do naive method 2 and 3 lasso and do OLS on d
and the union of the x's chosen.

A. Colin Cameron Univ.of California - Davis | ML Part 3: Causal Inference with Lasso April 2024 36 / 59



5. Double Selection Estimator

Double Selection Estimator

@ Bring in a model for d = x’6 + s + v where s is approximation error
o Theny=ax (xX0+s+v)+xy+r+u=

X(a0+9)+ (as+r)+(v+v)=x(a0+7)+t+w
o We have

yi = X0+t +w
d = Xfe + s+ v
@ The double selection procedure implicitly obtains estimates of w; and

v; and obtains & by regression the estimates of w; on the estimates of
Vi.

> this is implicitly Robinson (1988).
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5. ble Selection Estimator

Double Selection Estimator Application

@ Double selection yields similar results to before.

.P*BEDoublelselectionBpartial@linearmodelBusingfidefaultiplugin@lambda
.BdsregressBltotexpBsuppins,Bcontrols($rlist2)

EstimatingPlassoBforBltotexpRusingBplugin
EstimatingBlassoBforBsuppinsBusing@plugin

DoublePselection@linearmodel

NumberBofRobs
NumberBofEcontrolsERRRRRERE

NumberBofEselectedBcontrols 21
WaldBchi2(1)® 15.30
ProbB>Bchi2BRERERERERERERRER= 710 . 0001

el EIEEIEEEIEEIEEEIERObuSt

BRltotexp

aldBtestBofRtheBicoefficients
qualBPtoRzero.BLassos selectBcontrol
BREREEERestimation.BType lassoinfoRtoBseeBnumberBoflselectedBvariablesBinBeach
lasso.
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O[TV 6.1 Generalized Linear Models

6.1 Generalized Linear Models

@ In economics we extend from OLS using the GMM framework
> this handles both nonlinearity and endogeneity.
@ In statistics the main extension is to commonly-used nonlinear models

> generalized linear models (GLM) for independent data
> generalized estimating equations (GEE) for clustered and panel data.

o A generalized linear model specifies E[y|x] = G(x'B) for specified
G(-)
@ The GLM literature calls the G~1(-) the link function
> G(a) = a for linear model uses the identity or linear link
» G(a) = exp(a) for Poisson for count y uses the log link since
G l(a)=Ina.
» G(a) =A(a) = 1+ 5 for logit for binary y.
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O[TV 6.1 Generalized Linear Models

Generalized Linear Models (continued)

@ Estimators for GLMs are quasi-MLEs based on the linear exponential
family which includes

normal distribution (with ¢ known)

Bernoulli and binomial (with number of trials known)

Poisson

exponential.

vV vy VY

@ For these models when the "canonical" link is used (which is
G(a) = a for normal, G(a) = exp(a) for Poisson and

» G(a) = A(a) = % for Bernoulli the resulting estimating equations
are

Lilyi—G(xiB)}xi = 0

Y.! residual; x regressors; = 0.

@ Then consistency ofB only requires correct specification of the mean,
since E[y; — G(x}B) }x; = 0 if Elyi|x;] = G(x}B).
» The GLM quasi-MLEs have similar robustness properties to OLS.
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O[TV 6.1 Generalized Linear Models

Causal Inference for Partial Linear GLM

@ Now consider a partial linear GLM
> a generalization of partial linear Ely|x] = ad + g(xc).

@ The problem is that the function g(-) is unspecified in
Ely|x] = G(ad + g(xc)) for specified G(-).

o We will again want to approximate g(x.) ~ x'B.

@ The paper Belloni, Chernozhukov and Wei (2016), JBES, 606-609,
proposes two methods

» 1. Estimator based on optimal instrument (Table 1)
* Stata perhaps misleadingly calls this "partialling-out"

» 2. Estimator based on double selection (Table 2).

@ Both estimators are complicated - see the paper or Stata
documentation.
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[INOEANECEE 6.1 Generalized Linear Models
Optimal instrument approach
@ We have the unconditional moment condition (given g(x.) ~ x'B)
E[{yi — G(ad; + xiB) }|di, x| = 0
o It follows that for any function f(d;, x;) unconditionally
E[{y; — G(ad; + xiB)} x f(d;, x;)] = 0.

o If B were known then we could estimate the scalar «a as solving the
single equation

Y {yi— G(ad: +x.B)}z =0

instrument” z; = f(d;, x;).

for some scalar

@ We instead first estimate E so the estimating equation for « is then

Yy p(wia, B) = L0 {yi — G(ad; +x;B)}z = 0.
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O[TV 6.1 Generalized Linear Models

Causal Inference for Partial Linear GLM (continued)

@ The estimating equation for « is
Lip(wi,w, B) = L1 {yi — G(adi +x/B)}z = 0.

@ The partialling-out GLM estimator does the following

> 1. Post-lasso logit or Poisson of y; on d; and x; gives first-stage & and

B.

» 2. Construct an “instrument” z; for d; based on & and B
* this is the tricky bit - see next slide

» 3. Estimator « solves the preceding sample moment condition.
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O[TV 6.1 Generalized Linear Models

Causal Inference for Partial Linear GLM (continued)

@ The population moment condition is

Elp(w,a. B)) = El{y — Glad +xB)} x 2] = 0.

@ The hard part is constructing the “instrument” z from the x’s and &
and B

> (1) the instrument is relevant

£[LLBI] il — Glad-+xB)} x G'(ad +XB) x dxz] £0

> (2) the instrument is such that the orthogonalization condition holds

£ | P52 — Elly — Glad-+x )} x 6'(ad +x'B) xxx2] =0

> (3) For more precise estimation an “efficient” instrument is chosen.

@ For details see Stata documentation and Belloni, Chernozhukov and
Wei (2016), JBES, 606-609.
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O[TV 6.1 Generalized Linear Models

Partial Linear Logit Model

e Here Pr[y = 1|d,x] = A(a X d +x'B) and we want to select x.
@ Logit commands are pologit, xpologit and dslogit.
e Marginal effects are not identified as they depend on B and here we
have only consistently estimated a
IAaxd+xB) =axAN(axd+xp).
@ But logit coefficients have an odds ratio interpretation, since
for logit model £ = exp(a x d +x'B)

and 2 exp(a x d+x'B) =a xexp(a x d+xB).

@ Example: & = 0.2 then a one unit change in d increases the odds

ratio by a multiple €%? = 1.22.

A. Colin Cameron Univ.of California - Davis | ML Part 3: Causal Inference with Lasso April 2024 45 /59



O[TV 6.1 Generalized Linear Models

Logit Model Application

@ Define a binary outcome dy for whether or not totexp > 4000

> then dy=1 for 42% of sample and dy=0 for 58%
» sooddsatyisy/(1—y)=0.72.
> here do both partialling-out and double selection

.@*BLogitBvari partialdli ialingZoutBestimator
.Bgenerateldy=Atotexpd>P4000

.BquiPlogitadyPsuppinsa$rlist2, Foravce(robust)
.BestimatesPstore@FULL
.BquikpologitidyBsuppins,Bcontrols($rlist2)Eselection(plugin)Ecoef
.BestimatesEstoreBPARTIALOUT
.BquiBdslogitadyBsuppins, Bcontrols ($rlist2)Ecoef
.BestimatesEstore?DOUBSEL

.BestimatesEtableBFULLEPARTIALOUTEDOUBSEL , Bkeep (suppins )b (%9.4f)EseR// /
>ERIERES tats (NAF_mik_controls_sel)

EEPEVariable |BEEFULLEERREEPARTIAL~TEEEEDOUBSEL

EEPEEsuppins |BEEEO.2792 [EERER.2632 BRENO. 2680
[EPEe.0936 CIEPH.0892 RIING.0892

ERREERERAE_m | BEE99. 0000
ntrols~1 BEP19.0000  PEE19.0000

se
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O[TV 6.1 Generalized Linear Models

Exponential Conditional Mean Partial Linear Model
(Poisson)
@ Note that Poisson regression is applicable to any model with

exponential conditional mean

> it is not restricted to counts or Poisson
» but do be sure to use robust standard errors.

o Here E[y|d,x] = exp(a x d +x'B) and we want to select x.
@ Poisson commands are popoisson, xpopoisson and dspoisson.

@ Marginal effects are not identified as they depend on B and here we
have only estimated «

D exp(ax d+x'B) =axexp(axd+xp).

@ But exponential coefficients have a semi-elasticity or multiplicative
interpretation.

@ Example: & = 0.2 then a one unit change in d increases the
conditional mean by a multiple 0.2.
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O ETAVIC A 6.2 Instrumental Variables

6.2 Linear Instrumental Variables

Consider a partial linear model with a single endogenous regressor
> estimation is by instrumental variables (IV).
Problem 1: If we have hat if we add too many controls then we are

more likely to have a weak instrument as the instrument has less
incremental contribution after controlling for the exogenous variables.

Problem 2: If we have too many instruments we again run into weak
instrument problem.

Solution is to extend earlier partialling-out to restrict number of
controls and/or number of controls.

The poivregress command applies to multiple endogenous
regressors (d), regressors to always include (w) and controls to reduce
(x). There are instruments z with dim|[z] > dim[x].

y=da+wé+xvy+u
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O ETAVIC A 6.2 Instrumental Variables

Partialling-out for Linear Instrumental Variables

@ Consider scalar endogenous regressor d, potential exogenous
regressors x, additional instruments z, and, for simplicity, no

exogenous variables to definitely include (6 = 0):

y=axd+xy+u.

@ The partialling-out method is
> 1. Calculate a partial-out independent variable 1y,
* perform LASSO of y on x and obtain residual T, from OLS regression
of y on the selected variables.
» 2. Calculate a scalar instrument 1y as follows
* perform LASSO of d on x and z obtain prediction d from OLS of d on

the selected variabIeAs B
* perform LASSO of d on x and obtain prediction d and residual 4 from

OLS of d on the selected variables
» 3. Calculate a partialed-out endogenous regressor
* Ug=d— d which has purged out the role of x.
> 4. Obtain @ from IV regression of T, on Uy with instrument Ty .
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O ETAVIC A 6.2 Instrumental Variables

Partialling-out IV Application

@ Just-identified example from Acemoglu, Johnson and Robinson
(2001), AER, 1369-1401

@ Consider country GDP and role of secure institutions

y : loggdp ( log PPP GDP per capita in 1995, World Bank)

d : avexpr (average protection against expropriation risk)

z : logem4 (log settler mortality - a long time ago)

X : measures of country latitude, temperature, humidity, soil types and
natural resources.

vy vV VY

@ Problem: 24 potential controls and n = 64.
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O ETAVIC A 6.2 Instrumental Variables

Data summary

e From output not given Cor(d, z) = Cor[avexpr,logem4)= —0.52.

.P*BReadRinBAcemogluBJohnsonBRobinsonfldataandRdefinelglobals
.BquiBuseBmus228ajr.dta,Bclear

.Bglobalbixlistllat_abstRedes1975Favel filtemp*Bhumid*Psteplowtideslowd///
>EEEERs tepmidEdesmid@drystepBRdrywintBgoldm@iron@silvBizincBoilresBlandlock

escribe@logpgp95Bavexpri@logemd

PRvariable@label

logpgp95 Bfloat! 1ogBPPPREGDPEpcEin@1995, EWorldEBank
avexpr Bfloat . averageBprotectionBagainstBexpropriationBrisk
logem4 BfloatBREE%9.0g logBisettlerBmortality

.BsummarizeBlogpgp95tavexprilogem4,Bsep(0)

BEBEEVariable |EEEEEEEEObSEEREEEEEMeanERERStd . EDev . BRREREEMInEEEREREEMax

0gpgp95
BREERRavexpr | EEEEEEEER6ABERDG . 515625HARA1 . 46864 7RRRRRRRE3 . SHRRREREEE10

logem4
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O ETAVIC A 6.2 Instrumental Variables

poivregress results

@ Across the various Lassos five control variables are selected.

.B*EPartiallingBoutBIVBusingBpluginBfor@lambda
.BpoivregressBlogpgp95i(avexpr=1logem4),Bcontrols($xlist)Bselection(plugin,Bhom)

Estimating®lassoBforlogpgp95BusingBplugin
EstimatingB@lassoBforBavexpriBusingplugin
EstimatingPlassoBforBpred(avexpr)BusingBplugin

NumberEofEobsk
NumberBofEicontrolsel
NumberEofE1nstrumentsEmEEmEmEE

PartialingBoutBIV@linearEmodell

PRRobust
EREElogpgp9s |PEEREECoef.BEEStd. BErr . BERRRRZEEREP | z | BERER[ 95%EConf . BInterval ]

BEREEERavexpr |BRE. 8798503000 . 2976286EHEER2 . 96EEE0 . 00 3HRRREE . 296509EREE1 . 463192

Endogenous : BERavexpr
Note:EBChiBsquareditest@isBaBWaldEtestBofAthelicoefficientsBofBthelvariables

of@linterest@jointlyBequalltoBzero.BlLassos selectBcontrolskforiBmodel
lestimation.@Type lassoinfoBtoRseelBnumberBlofliselectedivariableskinBeach

[Blasso.
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6. Other Models 6.3 Belloni, Chernozhukov and Hansen (JEP, 2014)

6.3 Belloni, Chernozhukov and Hansen (JEP, 2014)

Belloni, Chernozhukov and Hansen (2014), “High-dimensional
methods and inference on structural and treatment effects,” Journal
of Economic Perspectives, Spring, 29-50

Accessible paper. Three applications using LASSO.
1. IV with excess of instruments and use LASSO to select subset.

» Application to house prices (y) affected by takings law (d) with 147
potential instruments and n = 184. Lasso picked just one instrument.

2. OLS with excess of controls and use double selection method.

» Application to crime rate (y) affected by abortion rate (d) with 284
controls and n = 550. Around 10 controls are selected.
3. Just-identified IV with single y, d and z. Three LASSOs of y, x
and z on x and then use the union of the chosen x’s as controls in IV
of y on d with instrument d.

» so like double selection rather than partialling-out IV of poivregress.
» Application same as the Acemoglu et al. example in these slides.
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7.1 Double or Debiased Machine Learning
7.1 Double or Debiased Machine Learning

@ Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey and
Robins (2018), “Double/debiased machine learning for treatment and
structural parameters,” The Econometrics Journal.

@ Interest lies in estimation of key parameter(s) controlling for
high-dimensional nuisance parameters.

@ Two components to double ML or debiased ML and subsequent
inference

» Work with orthogonalized moment conditions to allow consistent
estimation of parameter(s) of interest

* Chernozhukov et al. call this Neyman orthogonalization as the Neyman
(1959, 1979) c-alpha test in the likelihood framework uses
orthogonalization

* see section 3 of Chernozhukov, Hansen and Martin Spindler (2015),
Annual Review of Economics for details and how to obtain an
orthogonalized moment condition.

» Use sample splitting (cross fitting) to remove bias induced by
overfitting.
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7.1 Double or Debiased Machine Learning
Double or Debiased Machine Learning (continued)
@ Then get asymptotic normal confidence intervals for parameters of
interest
» where a variety of ML methods can be used

* random forests, lasso, ridge, deep neural nets, boosted trees, ensembles

» that don’t necessarily need sparsity
> and theory does not require Donsker properties.

o Can apply to
> partial linear model (with exogenous or endogenous regressor)
* done in these slides using LASSO
» ATE and ATET under unconfoundedness
* will be covered in part 5
» LATE in an IV setting.

@ Stata addon and R package ddml due to Ahrens, Hansen, Schaffer
and Wiemann (2024) covers a range of models and machine learners.
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7. Double or Debiased Machine Learning Caution

7.2 Caution

@ The LASSO methods are easy to estimate using Stata 16
> they'll be (blindly) used a lot.

@ However in any application

» is the underlying assumption of sparsity reasonable?

» has the asymptotic theory kicked in?

> are the default values of ¢ and <y reasonable?

» are model assumptions such as instrument validity reasonable?

e Wiithrich and Zhu (2021) find that the lasso methods can fail to pick
up all relevant control variables leading to considerable omitted
variables bias

> an alternative is to include all potential regressors directly and use
recently developed methods for inference with many controls.
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8. References

Chapter 28.8 “Machine Learning for prediction and inference” in A. Colin Cameron
and Pravin K. Trivedi (2022), Microeconometrics using Stata, Second edition,
forthcoming.

Belloni, Chernozhukov and Hansen and coauthors have many papers

> focus on the following papers.
Belloni, Chernozhukov and Hansen (2014), “High-dimensional methods and
inference on structural and treatment effects,” Journal of Economic Perspectives,
Spring, 29-50

> accessible paper with three applications.
Ahrens, Hansen and Schaffer (2020), “lassopack: Model selection and prediction

with regularized regression in Stata,” Stata Journal, 176-235 (also
ArXiv:1901.05397).

> more detail on LASSO methods as well as on Stata add-on commands
> generally supplanted by Stata version 16 commands but does some things
not in Stata 16.
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