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Course Outline

1: Variable selection and cross validation
2. Shrinkage methods

I ridge, lasso, elastic net

Part 3: ML for causal inference using lasso
I OLS with many controls, IV with many instruments

4. Other methods for prediction
I nonparametric regression, principal components, splines
I neural networks
I regression trees, random forests, bagging, boosting

5. More ML for causal inference
I ATE with heterogeneous e¤ects and many controls.

6. Classi�cation and unsupervised learning
I classi�cation (categorical y) and unsupervised learning (no y).

A. Colin Cameron Univ.of California - Davis . ()ML Part 3: Causal Inference with Lasso April 2024 2 / 59



Introduction

Introduction

Consider the leading �rst work on inference with machine learning.

This focuses on OLS and IV estimation of the partial linear model
I using LASSO to select among potential controls and/or instruments
I make assumption of sparsity.

Work from 2010 on by Belloni, Chernozhukov and Hansen and their
coauthors.

This has been implemented in Stata version 16.
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Introduction

Overview

1 Partial linear model
2 Partialling-out estimator
3 Orthogonalization
4 Cross-�t Partialling-out Estimator
5 Double Selection Estimator
6 Other Models
7 Double/debiased machine learning
8 References
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1. Partial Linear Model 1.1 Partial Linear Model

1.1 Partial Linear Model

A partial linear control function model speci�es

y = d0α+ g(xc ) + u where g(�) is unknown.

Interest lies in estimating α

I d are policy or treatment variables of interest
F for simplicity we will later focus on the scalar case

I xc are "nuisance" control variables
I g(�) is an unknown function

Selection on observables assumption is made
I consistent OLS estimation of α requires E [ujd, xc ] = 0
I this is more plausible the better is g(xc ).
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1. Partial Linear Model 1.2 Robinson (1988) Semiparametric Estimator

1.2 Robinson (1988) Semiparametric Estimator
Robinson (1988) proposed semiparametric estimation

y = d0α+ g(xc ) + u, E [ujxc ] = 0
where g(�) is unknown.

Then

E [y jxc ] = E [djxc ]0α+ g(xc ) + 0
y � E [y jxc ] = (d � E [djxc ])0α+ u

Estimate by OLS regression of kernel residuals on kernel residuals

uy jxc = u
0
djxcα+ v

I Kernel regression of y on xc gives residual uy jxc
I Kernel regression of d on xc gives residuals udjxc

OLS of uy jxc on udjxc gives root-N consistent asymptotically normal bα.
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1. Partial Linear Model 1.2 Robinson (1988) Semiparametric Estimator

Curse of Dimensionality

The Robinson method entails kernel regression on a vector xc .
So only works if xc is of low dimension

I e.g. y = energy consumption; d = usual demand determinants;
xc is time of day (scalar).

Instead we are interested in a high-dimensional set of controls xc
I kernel regression fails due to the curse of dimensionality

F the sample size required for adequate local regression grows
exponentially with the dimension of xc .

Solution: use a machine learner rather than kernel regression
I here use the LASSO instead of kernel regression

F requires a sparsity assumption
F and use of clever methods.
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2. Partialling-out Estimator 2.1 Partialling-out Estimator

2.1 Partialling-out estimator

Allow for complexity by assuming

g(xc ) ' x0γ+ r

where x consists of �exible transformations of xc such as polynomials,
interactions, splines, ... and r is an approximation error that
disappears at appropriate rate.

Then
y = d0α+ x0γ+ r + u.

Belloni, Chernozhukov and coauthors have suggested several
LASSO-based methods that yield root-N consistent and
asymptotically normal estimates of α

I we start with the partialling-out estimator
I consider scalar d for simplicity.
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2. Partialling-out Estimator 2.1 Partialling-out Estimator

2.1 Partialling-out Estimator

Recall y = α� d + x0γ+ r + u.
Method is similar to Robinson except use LASSO not kernel regression

I 1. Perform LASSO of d on x and obtain residual bud from OLS
regression of d on the selected variables.

I 2. Perform LASSO of y on x and obtain residual buy from OLS
regression of y on the selected variables.

I 3. Obtain bα from OLS regression of buy on bud .
A key assumption is the sparsity assumption that the true model
is small relative to the sample size N and grows at rate no more thanp
N.
I s/(

p
N/ ln p) should be small

I p = dim(x) is the number of potential regressors
I s is the number of variables in the true model.

Wüthrich and Zhu (2023) �nd in �nite samples Lasso can omit
relevant controls leading to omitted variables bias.
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2. Partialling-out Estimator 2.2 Stata xporegress command

2.2 Stata poregress command

poregress depvar varso�nterest, options
I varso�nterest is d
I option controls([alwaysvars)] othervars splits x into controls to
always include and controls to be selected by Stata

I default option plugin determines the penalty λ by plug-in formula
rather than by CV or adaptive CV.

For independent heteroskedastic errors use the following.

The plug-in penalty is λ = c
p
NΦ(1� γ

2p )

where c = 1.1 and γ = 0.1/ lnfmax(p,N)g.
LASSO has individual loadings for each regressor

I κj =
q

1
N ∑Ni=1(xijbεi )2 for normalized xij

and bεi is a residual from a sequence of �rst-stage LASSOs.
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2. Partialling-out Estimator 2.3 Application of Partialling-out Estimator

2.3. Application of Partialling-out Estimator

Data is 2003 data from the U.S. Medical Expenditure Panel Survey
I people aged 65-90 years.

Dependent variable ltotexp is log total medical expenditures.

Regressor of interest is suppins
I indicator variable for supplemental insurance beyond Medicare.

Add many control variables to hopefully control for endogeneity of
suppins

I use LASSO to reduce number of control variables.

In example here all control variables are chosen by lasso
I in practice I would include some variables always such as totchr.
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2. Partialling-out Estimator 2.3 Application of Partialling-out Estimator

Data and key variables

     suppins       2,955    .5915398    .4916322          0          1
     ltotexp       2,955    8.059866    1.367592   1.098612   11.74094

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize ltotexp suppins

suppins  float   %9.0g =1 if has supp priv insurance
ltotexp  float   %9.0g ln(totexp) if totexp > 0

variable name   type    format     label      variable label
storage   display    value

. describe ltotexp suppins

(109 observations deleted)
. keep if ltotexp != .

(A.C.Cameron & P.K.Trivedi (2021): Microeconometrics using Stata, 2e)
. use mus203mepsmedexp.dta, clear
. * Data for inference on suppins example: 5 continuous and 13 binary variables
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2. Partialling-out Estimator 2.3 Application of Partialling-out Estimator

Continuous regressors

      totchr       2,955    1.808799    1.294613          0          7
      famsze       2,955    1.890694    .9644483          1         13
         age       2,955    74.24535    6.375975         65         90
      educyr       2,955    11.82809    3.405095          0         17
      income       2,955    22.68353    22.60988         ­1     312.46

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize $xlist2

totchr  double  %12.0g # of chronic problems
famsze  double  %12.0g Size of the family
age  double  %12.0g Age
educyr  double  %12.0g Years of education
income  double  %12.0g annual household income/1000

variable name   type    format     label      variable label
storage   display    value

. describe $xlist2

. global xlist2 income educyr age famsze totchr

. * Continuous variables
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2. Partialling-out Estimator 2.3 Application of Partialling-out Estimator

Binary regressors

hvgg  float   %9.0g =1 if health status is excellent, good or very good
priolist  double  %12.0g =1 if has medical conditions that are on the priority list
injury  double  %12.0g =1 if condition is caused by an accident/injury
actlim  double  %12.0g =1 if has activity limitation
phylim  double  %12.0g =1 if has functional limitation
msa  double  %12.0g =1 if metropolitan statistical area
south  double  %12.0g =1 if south area (West is excluded)
mwest  double  %12.0g =1 if Midwest area
northe  double  %12.0g =1 if northeast area
marry  double  %12.0g =1 if married
hisp  double  %12.0g =1 if Hispanic
white  double  %12.0g =1 if white
female  double  %12.0g =1 if female

variable name   type    format     label      variable label
storage   display    value

. describe $dlist2

>     msa phylim actlim injury priolist hvgg
. global dlist2 female white hisp marry northe mwest south ///
. * Discrete binary variables
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2. Partialling-out Estimator 2.3 Application of Partialling-out Estimator

OLS without & with products & cross products of controls
Little change when add all the interactions

          r2     0.2682     0.3028
        df_m    19.0000    99.0000
           N       2955       2955

    0.0469     0.0478
     suppins     0.1706     0.1868

    Variable  OLSSMALL     OLSFULL

. estimates table OLSSMALL OLSFULL, keep(suppins) b(%9.4f) se stats(N df_m r2)

. estimates store OLSFULL

. qui regress ltotexp suppins $rlist2, vce(robust)

. estimates store OLSSMALL

. qui regress ltotexp suppins $xlist2 $dlist2, vce(robust)

. global rlist2 c.($xlist2)##c.($xlist2) i.($dlist2) c.($xlist2)#i.($dlist2)

. * OLS on small model and full model
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2. Partialling-out Estimator 2.3 Application of Partialling-out Estimator

Partialling-out Lasso with plug-in lambda

Estimate between preceding OLS estimates with similar standard error

      lasso.
      estimation. Type lassoinfo to see number of selected variables in each
      of interest jointly equal to zero. Lassos select controls for model
Note: Chi­squared test is a Wald test of the coefficients of the variables

     suppins    .1839193   .0468223     3.93   0.000     .0921493    .2756892

     ltotexp       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
               Robust

Prob > chi2                  =     0.0001
Wald chi2(1)                 =      15.43
Number of selected controls  =         21
Number of controls           =        176

Partialing­out linear model          Number of obs                =      2,955

Estimating lasso for suppins using plugin
Estimating lasso for ltotexp using plugin

. poregress ltotexp suppins, controls($rlist2)

. * Partialing­out partial linear model using default plugin lambda
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2. Partialling-out Estimator 2.3 Application of Partialling-out Estimator

Lassoinfo

21 overall, 12 for y and 9 for d
I so distinct variables chosen for y and d

    suppins    linear     plugin   .080387          9
    ltotexp    linear     plugin   .080387         12

   Variable     Model     method    lambda  variables
           Selection             selected
                                   No. of

     Command: poregress
    Estimate: active

. lassoinfo

. * Lasso information
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2. Partialling-out Estimator 2.3 Application of Partialling-out Estimator

lassoknots gives the variables chosen
For y (ltotexp) totchr, actlim, phylim especially important.
For d (suppins) income especially important.

* lambda selected by plugin assuming heteroskedastic errors.

   0.marry#c.famsze      c.income#c.totchr     0.northe#c.income
   0.hisp#c.educyr       1.marry#c.income      1.white#c.educyr

   * 1   .080387          9    0.0809  A age                   income                1.hvgg#c.income

    ID    lambda      coef. R­squared                                       or left (U)nchanged
             nonzero In­sample                                  Variables (A)dded, (R)emoved,
              No. of

. lassoknots, for(suppins)

* lambda selected by plugin assuming heteroskedastic errors.

   0.actlim#c.famsze     0.female#c.totchr     1.priolist#c.educyr
   c.educyr#c.totchr     1.phylim#c.educyr     0.phylim#c.famsze
   0.hisp#c.totchr       0.hvgg#c.totchr       1.white#c.totchr

   * 1   .080387         12    0.2390  A totchr                0.actlim              c.age#c.totchr

    ID    lambda      coef. R­squared                                       or left (U)nchanged
             nonzero In­sample                                  Variables (A)dded, (R)emoved,
              No. of

. lassoknots, for(ltotexp)
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2. Partialling-out Estimator 2.3 Application of Partialling-out Estimator

Partialling out done manually

The following gives same results as earlier poregress

   u_suppins    .1839193   .0468223     3.93   0.000     .0921117    .2757268

   u_ltotexp       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
               Robust

. regress u_ltotexp u_suppins, vce(robust) noconstant noheader

. qui generate u_ltotexp = ltotexp ­ ltotexp_lasso

. qui predict ltotexp_lasso, postselection

. qui lasso linear ltotexp $rlist2, selection(plugin)

. qui generate u_suppins = suppins ­ suppins_lasso

. qui predict suppins_lasso, postselection

. qui lasso linear suppins $rlist2, selection(plugin)

. * Partialing out done manually

A. Colin Cameron Univ.of California - Davis . ()ML Part 3: Causal Inference with Lasso April 2024 19 / 59



2. Partialling-out Estimator 2.3 Application of Partialling-out Estimator

Cross validation instead of plugin lambda

Cross validation selects 73 controls (40 for y and 50 for d).

      lasso.
      estimation. Type lassoinfo to see number of selected variables in each
      of interest jointly equal to zero. Lassos select controls for model
Note: Chi­squared test is a Wald test of the coefficients of the variables

     suppins    .1852675   .0469368     3.95   0.000     .0932731    .2772619

     ltotexp       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
               Robust

Prob > chi2                  =     0.0001
Wald chi2(1)                 =      15.58
Number of selected controls  =         73
Number of controls           =        176

Partialing­out linear model          Number of obs                =      2,955

Estimating lasso for suppins using cv
Estimating lasso for ltotexp using cv

. poregress ltotexp suppins, controls($rlist2) selection(cv) rseed(10101)

. * Cross validation instead
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2. Partialling-out Estimator 2.4 Clustered Data

2.4 Clustered Data

Data are grouped with correlated observations within group and
uncorrelated across groups

I yig is outcome for individual i in cluster g , i = 1, ...,Ng , g = 1, ...,G .

Two methods for the LASSO have objective function

Method 1 : Qλ(β) =
1
G ∑G

g=1 ∑Ng
i=1(yig � x

0
ig β)2 + λ ∑p

j=1 jβj j

Method 2 : Qλ(β) =
1
G ∑G

g=1
1
Ng ∑Ng

i=1(yig � x
0
ig β)2 + λ ∑p

j=1 jβj j

Stata uses method 2.
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2. Partialling-out Estimator 2.4 Clustered Data

Clustered Data (continued)

Belloni, Chernozhukov, Hansen and Kozbur (2016), �Inference in
High-Dimensional Panel Models with an Application to Gun Control�,
JBES, 590-606.

Consider balanced panel model with �xed e¤ects and endogenous
regressor

I uses partialling out IV given in section 6.2 below
I mean di¤erence data (y and x and possibly z) to get rid of �xed e¤ects
I so now clustered data with �xed e¤ects now eliminated.

Then consider two uses of machine learning in the partial linear model
I section 4.1: select subset of many potential instruments
I section 4.2: select subset of many controls.

They use as method 1. giving equal weight to all mean-di¤erenced
observations.
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3. Orthogonalization 3.1 Orthogonalization De�ned

3.1. Orthogonalization de�ned
De�ne α as parameters of interest and η as nuisance parameters.
Estimate bα is obtained following �rst step estimate bη of η

I First stage: bη solves ∑ni=1 ω(wi , η) = 0
I Second stage: bα solves ∑ni=1 ψ(wi , α,bη) = 0.

Noise in bη usually a¤ects the distribution bα
I e.g. Heckman�s two-step estimator in selection models.

But this is not always the case
I e.g. Frisch-Waugh such as mean-di¤erencing out �xed e¤ects.
I e.g. the asymptotic distribution of feasible GLS is not a¤ected by
�rst-stage estimation of variance model parameters to get bΩ.

Result: The distribution of bα is una¤ected by �rst-step estimation of
η if the function ψ(�) satis�es

I E [∂ψ(wi , α, η)/∂η] = 0; see next slide.

So choose functions ψ(�) that satisfy the orthogonalization condition
E [∂ψ(wi , α, η)/∂η] = 0.
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3. Orthogonalization 3.1 Orthogonalization De�ned

Orthogonalization (continued)

Why does this work? By Taylor series expansion

1p
n

n
∑
i=1

ψ(wi , bα,bη)
=

1p
n

n
∑
i=1

ψ(wi , α0, η0) +
1
n

n
∑
i=1

∂ψ(wi , α, η)
∂α0

����
α0,η0

�
p
n(bα� α0)

+
1
n

n
∑
i=1

∂ψ(wi , α, η)
∂η0

����
α0,η0

�
p
n(bη� η0)

By a law of large numbers 1n ∑n
i=1

∂ψ(wi ,α,η)
∂η

���
α0,η0

converges to its

expected value which is zero if E [∂ψ(wi , α, η)/∂η] = 0.
So the term involving bη drops out.
For more detail see Cameron and Trivedi (2005, p.201).
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3. Orthogonalization 3.2 Orthogonalization for partialling-out estimator

3.2 Orthogonalization for partialling-out estimator
Consider the partially linear model with scalar d and manipulate

y = αd + g(x) + u where E [ujd , x] = 0
) E [y jx] = αE [d jx] + g(x) as E [ujx] = 0

y � E [y jx] = α(d � E [d jx]) + u subtracting

Robinson (1988) di¤erencing estimator

I use kernel methods to get bE [y jx] and bE [d jx]
I bα from OLS regress (y � bE [y jx]) on (d � bE [d jx])

Instead here use machine learning methods for bE [y jx] and bE [d jx].
Recall that OLS of y on x has f.o.c. ∑i xiui = 0

I so is sample analog of population moment condition E [xu] = 0.

So partialling-out estimator therefore solves population moment
condition

I E [(d � E [d jx])fy � E [y jx]� (d � E [d jx])αg] = 0.
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3. Orthogonalization 3.2 Orthogonalization for partialling-out estimator

Orthogonalization for partialling-out estimator (continued)
Partialling-out solves population condition E [ψ(�)] = 0 where

ψ(�) = (d � E [d jx])fy � E [y jx]� (d � E [d jx])α.
De�ne η1 = E [d jx] and η2 = E [y jx] , so

ψ(w , α, η) = (d � η1)fy � η2 � (d � η1)αg
= (d � η1)(y � η2)� α(d � η1)

2g.
Then di¤erentiating

∂ψ(w, α, η)/∂η1 = �(y � η2) + 2α(d � η1)

∂ψ(w, α, η)/∂η2 = �(d � η1)

The orthogonalization condition E [∂ψ(w, α, η)/∂η] = 0 holds as

E [�(y � η2) + 2(d � η1)αjx] = �(E [y jx]� η2) + 2α(E [d jx]� η1)

= �(η2 � η2) + 2α(η1 � η1) = 0

and E [�(d � η1)jx] = �(E [d jx]� η1) = 0.
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3. Orthogonalization 3.2 Orthogonalization for partialling-out estimator

Orthogonalization for partialling-out estimator (continued)

More formally η1i = E [d1i jx1i ] and η2i = E [d1i jx1i ] vary with i .
A formal treatment deals with functionals η1i = η1(xi ), η2i = η2(x2i )

I this allows a range of machine learners for di and yi - not just lasso.

For simplicity consider the linear case where

η1i = E [di jx] = x0iπ1 and η2i = E [yi jx] = x0iπ2

Then

ψ(wi , α,π) = (di � x0iπ1)fyi � x0iπ2 � (di � x0iπ1)αg
∂ψ(wi , α,π)/∂π2 = �(di � x0iπ1)xi

E [∂ψ(wi , α,π)/∂π2jxi ] = E [�(di � x0iπ1)xi jxi ]
= �(x0iπ1 � x0iπ1)xi = 0

Similarly E [∂ψ(wi , α,π)/∂π1] = 0.

A. Colin Cameron Univ.of California - Davis . ()ML Part 3: Causal Inference with Lasso April 2024 27 / 59



4. Cross-Fit Partialling-out Estimator 4.1 Cross-Fit Partialling-Out Estimator

4.1 Cross-Fit Partialling-Out Estimator

The preceding partialling out used the same data at the �rst stage as
at the second stage.

A better procedure uses di¤erent data in the �rst stage lassos to that
used for the second stage estimation of α.

Super�cially this leads to a loss of precision in estimating α due to a
smaller sample size

I this is avoided by the following method.

Split the sample into K folds and for fold k = 1, ...,K
I use most data for LASSO estimation of nuisance part

F yields model for prediction bd = x0 bπ(k )
d and by = x0 bπ(k )

y

I use remaining smaller data to get predicted residuals in fold k

F compute residuals eu(k )d = d (k ) � x(k )0 bπ(k )
d and eu(k )y = y (k ) � x(k )0 bπ(k )

y .
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4. Cross-Fit Partialling-out Estimator 4.1 Cross-Fit Partialling-Out Estimator

Cross-Fit Partialling-Out Estimator (continued)

Given vectors of residuals eu(k )d and eu(k )y in each of the K folds ,
k = 1, ..,K there are two ways to estimate α.

1. Combine all residuals into N residuals euy and eud , regress and get bα
I Stata default

2. For each k = 1, ...,K obtain bα(k ) from OLS of eu(k )y on eu(k )d
I then form the average bα = 1

K ∑Kk=1 bα(k )
I there is little loss in e¢ ciency as we average over K independent
samples

Cross-�t partialling out under either method 1. or 2. reduces the
complications of data mining

I it allows s to grow at rate N and not
p
N.
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4. Cross-Fit Partialling-out Estimator 4.3 Stata xporegress command

4.3 Stata xporegress command

xporegress depvar varso�nterest, options
I varso�nterest is d

Option controls([alwaysvars)] othervars splits x into controls to
always include and controls to be selected by Stata.

Default option plugin determines the penalty λ by plug-in formula
rather than by CV or adaptive CV.

I default forms N residuals.

Option technique(dml1) computes K estimates bα(k )0 and averages.
Option resample(#) of xporegress uses more than one K -fold split
so results not dependent on the random split

I should use in �nal results.
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4. Cross-Fit Partialling-out Estimator 4.4 Cross-�t Partialling-Out Application

4.4 Cross-�tting partialling-out Application
Leads to similar results.

      lasso.
      estimation. Type lassoinfo to see number of selected variables in each
      of interest jointly equal to zero. Lassos select controls for model
Note: Chi­squared test is a Wald test of the coefficients of the variables

     suppins    .1856171   .0469096     3.96   0.000      .093676    .2775582

     ltotexp       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
               Robust

Prob > chi2                  =     0.0001
Wald chi2(1)                 =      15.66
Number of resamples          =          1
Number of folds in cross­fit =         10
Number of selected controls  =         31

linear model                         Number of controls           =        176
Cross­fit partialing­out             Number of obs                =      2,955

. xporegress ltotexp suppins, controls($rlist2) rseed(10101) nolog

. * Crossfit partialing out (double/debiased) using default plugin
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4. Cross-Fit Partialling-out Estimator 4.4 Cross-�t Partialling-Out Application

Selected variables across the folds

Number of selected variables across the ten folds

    suppins    linear     plugin        7        9       11
    ltotexp    linear     plugin       11       13       14

   Variable     Model     method      min   median      max
           Selection
                      No. of selected variables

     Command: xporegress
    Estimate: active

. lassoinfo

. * Summarize the number of selected variables across the ten folds
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4. Cross-Fit Partialling-out Estimator 4.5 Multiple Sample Spits

4.5 Multiple Sample Splits

The sample-splitting adds noise.

To control for this can do the following
I S times repeat the sample splitting method (e.g. S = 500)
I each time get a bαs (from averaging the K bα0ks ) and bσ2s = Var [bαs ]

Then bα = 1
S ∑S

s=1 bαs
And Var [bα] = 1

S ∑S
s=1 bσ2s + 1

S ∑S
s=1(bαs � bα)2.

This is option resample(#) of xporegress
I should use in �nal results.
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4. Cross-Fit Partialling-out Estimator 4.5 Multiple Sample Spits

Multiple Splits Application

This took a long time and the standard error is larger.

      lasso.
      estimation. Type lassoinfo to see number of selected variables in each
      of interest jointly equal to zero. Lassos select controls for model
Note: Chi­squared test is a Wald test of the coefficients of the variables

     suppins    .1814719   .0470151     3.86   0.000     .0893239    .2736199

     ltotexp       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
               Robust

Prob > chi2                  =     0.0001
Wald chi2(1)                 =      14.90
Number of resamples          =         10
Number of folds in cross­fit =         10
Number of selected controls  =         40

linear model                         Number of controls           =        176
Cross­fit partialing­out             Number of obs                =      2,955

. xporegress ltotexp suppins, controls($rlist2) rseed(10101) nolog resample(10)
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5. Double Selection Estimator

5. Double Selection Estimator

A third method for estimating the partial linear model
I used and explained in the Belloni et al 2014 JEP article.

Recall y = α� d + x0γ+ r + u (where r is approximation error).
The method is

I 1. Perform LASSO of y on x and denote selected regressor xy
I 2. Perform LASSO of d on x and denote selected regressor xd .
I 3. Obtain bα from OLS regression of y on d and the union of xy and xd .

Use Stata command dsregress.
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5. Double Selection Estimator

Double Selection Estimator Motivation
y = α� d + x0γ+ r + u
Naive method 1: LASSO of y on x where d is always included.

I fails as LASSO will not choose variables highly correlated with d since
d is already included.

Naive method 2: LASSO of y on x and then OLS of y on d and
subset of x chosen by LASSO.

I fails as variables omitted by the y on x LASSO may be ones that are
highly correlated with the OLS regressor d .

Naive method 3: LASSO of d on x and then OLS of y on d and
subset of x chosen by LASSO.

I fails as variables omitted by the d on x LASSO may be ones that have
a large e¤ects in the OLS regression for y .

There are omitted bias problems.
The solution is to do naive method 2 and 3 lasso and do OLS on d
and the union of the x�s chosen.
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5. Double Selection Estimator

Double Selection Estimator

Bring in a model for d = x0θ+ s + v where s is approximation error
Then y = α� (x0θ+ s + v) + x0γ+ r + u =
x0(αθ+ γ) + (αs + r) + (u + v) = x0(αθ+ γ) + t + w

We have

yi = x0iθ+ ti + wi
di = x0iθ+ si + vi

The double selection procedure implicitly obtains estimates of wi and
vi and obtains bα by regression the estimates of wi on the estimates of
vi .

I this is implicitly Robinson (1988).
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5. Double Selection Estimator

Double Selection Estimator Application

Double selection yields similar results to before.

      lasso.
      estimation. Type lassoinfo to see number of selected variables in each
      of interest jointly equal to zero. Lassos select controls for model
Note: Chi­squared test is a Wald test of the coefficients of the variables

     suppins    .1836224   .0469429     3.91   0.000      .091616    .2756289

     ltotexp       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
               Robust

Prob > chi2                 =     0.0001
Wald chi2(1)                =      15.30
Number of selected controls =         21
Number of controls          =        176

Double­selection linear model         Number of obs               =      2,955

Estimating lasso for suppins using plugin
Estimating lasso for ltotexp using plugin

. dsregress ltotexp suppins, controls($rlist2)

. * Double selection partial linear model using default plugin lambda

A. Colin Cameron Univ.of California - Davis . ()ML Part 3: Causal Inference with Lasso April 2024 38 / 59



6. Other Models 6.1 Generalized Linear Models

6.1 Generalized Linear Models

In economics we extend from OLS using the GMM framework
I this handles both nonlinearity and endogeneity.

In statistics the main extension is to commonly-used nonlinear models
I generalized linear models (GLM) for independent data
I generalized estimating equations (GEE) for clustered and panel data.

A generalized linear model speci�es E [y jx] = G (x0β) for speci�ed
G (�)
The GLM literature calls the G�1(�) the link function

I G (a) = a for linear model uses the identity or linear link
I G (a) = exp(a) for Poisson for count y uses the log link since
G�1(a) = ln a.

I G (a) = Λ(a) = ea
1+ea for logit for binary y .
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6. Other Models 6.1 Generalized Linear Models

Generalized Linear Models (continued)
Estimators for GLMs are quasi-MLEs based on the linear exponential
family which includes

I normal distribution (with σ2 known)
I Bernoulli and binomial (with number of trials known)
I Poisson
I exponential.

For these models when the "canonical" link is used (which is
G (a) = a for normal, G (a) = exp(a) for Poisson and

I G (a) = Λ(a) = ea
1+ea for Bernoulli the resulting estimating equations

are

∑ni=1fyi � G (x0i β)gxi = 0

∑ni=1 residuali � regressorsi = 0.

Then consistency of bβ only requires correct speci�cation of the mean,
since E [yi � G (x0iβ)gxi = 0 if E [yi jxi ] = G (x0iβ).

I The GLM quasi-MLEs have similar robustness properties to OLS.

A. Colin Cameron Univ.of California - Davis . ()ML Part 3: Causal Inference with Lasso April 2024 40 / 59



6. Other Models 6.1 Generalized Linear Models

Causal Inference for Partial Linear GLM

Now consider a partial linear GLM
I a generalization of partial linear E [y jx] = αd + g(xc ).

The problem is that the function g(�) is unspeci�ed in

E [y jx] = G (αd + g(xc )) for speci�ed G (�).

We will again want to approximate g(xc ) ' x0β.
The paper Belloni, Chernozhukov and Wei (2016), JBES, 606-609,
proposes two methods

I 1. Estimator based on optimal instrument (Table 1)

F Stata perhaps misleadingly calls this "partialling-out"

I 2. Estimator based on double selection (Table 2).

Both estimators are complicated - see the paper or Stata
documentation.
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6. Other Models 6.1 Generalized Linear Models

Optimal instrument approach

We have the unconditional moment condition (given g(xc ) ' x0β)

E [fyi � G (αdi + x0iβ)gjdi , xi ] = 0

It follows that for any function f (di , xi ) unconditionally

E [fyi � G (αdi + x0iβ)g � f (di , xi )] = 0.

If β were known then we could estimate the scalar α as solving the
single equation

∑n
i=1fyi � G (αdi + x0iβ)gzi = 0

for some scalar �instrument� zi = f (di , xi ).
We instead �rst estimate eβ, so the estimating equation for α is then

∑n
i=1 ψ(wi , α, eβ) = ∑n

i=1fyi � G (αdi + x0i eβ)gzi = 0.
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6. Other Models 6.1 Generalized Linear Models

Causal Inference for Partial Linear GLM (continued)

The estimating equation for α is

∑n
i=1 ψ(wi , α, eβ) = ∑n

i=1fyi � G (αdi + x0i eβ)gzi = 0.
The partialling-out GLM estimator does the following

I 1. Post-lasso logit or Poisson of yi on di and xi gives �rst-stage eα andeβ.
I 2. Construct an �instrument� zi for di based on eα and eβ

F this is the tricky bit - see next slide

I 3. Estimator α solves the preceding sample moment condition.
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6. Other Models 6.1 Generalized Linear Models

Causal Inference for Partial Linear GLM (continued)
The population moment condition is

E [ψ(w, α, β)] = E [fy � G (αd + x0β)g � z ] = 0.

The hard part is constructing the �instrument� z from the x0s and eα
and eβ

I (1) the instrument is relevant

E
�

ψ(w, α, β)
∂α

�
= E [fy � G (αd + x0β)g � G 0(αd + x0β)� d�z ] 6= 0

I (2) the instrument is such that the orthogonalization condition holds

E
�

ψ(w, α, β)
∂β

�
= E [fy �G (αd + x0β)g �G 0(αd + x0β)� x�z ] = 0.

I (3) For more precise estimation an �e¢ cient� instrument is chosen.

For details see Stata documentation and Belloni, Chernozhukov and
Wei (2016), JBES, 606-609.
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6. Other Models 6.1 Generalized Linear Models

Partial Linear Logit Model

Here Pr[y = 1jd , x] = Λ(α� d + x0β) and we want to select x.
Logit commands are pologit, xpologit and dslogit.

Marginal e¤ects are not identi�ed as they depend on β and here we
have only consistently estimated α

∂
∂d Λ(α� d + x0β) = α�Λ0(α� d + x0β).

But logit coe¢ cients have an odds ratio interpretation, since

for logit model p
1�p = exp(α� d + x0β)

and ∂
∂d exp(α� d + x0β) = α� exp(α� d + x0β).

Example: α = 0.2 then a one unit change in d increases the odds
ratio by a multiple e0.2 = 1.22.
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6. Other Models 6.1 Generalized Linear Models

Logit Model Application

De�ne a binary outcome dy for whether or not totexp > 4000

I then dy=1 for 42% of sample and dy=0 for 58%
I so odds at y is y/(1� y) = 0.72.
I here do both partialling-out and double selection

                                      legend: b/se

k_controls~l    19.0000    19.0000
        df_m    99.0000
           N       2955       2955       2955

    0.0936     0.0892     0.0892
     suppins     0.2792     0.2632     0.2680

    Variable    FULL      PARTIAL~T    DOUBSEL

>     stats(N df_m k_controls_sel)
. estimates table FULL PARTIALOUT DOUBSEL, keep(suppins) b(%9.4f) se ///

. estimates store DOUBSEL

. qui dslogit dy suppins, controls($rlist2) coef

. estimates store PARTIALOUT

. qui pologit dy suppins, controls($rlist2) selection(plugin) coef

. estimates store FULL

. qui logit dy suppins $rlist2, or vce(robust)

. generate dy = totexp > 4000

. * Logit variant of partial linear model and partialing­out estimator
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6. Other Models 6.1 Generalized Linear Models

Exponential Conditional Mean Partial Linear Model
(Poisson)

Note that Poisson regression is applicable to any model with
exponential conditional mean

I it is not restricted to counts or Poisson
I but do be sure to use robust standard errors.

Here E [y jd , x] = exp(α� d + x0β) and we want to select x.
Poisson commands are popoisson, xpopoisson and dspoisson.
Marginal e¤ects are not identi�ed as they depend on β and here we
have only estimated α

∂
∂d exp(α� d + x0β) = α� exp(α� d + x0β).

But exponential coe¢ cients have a semi-elasticity or multiplicative
interpretation.
Example: α = 0.2 then a one unit change in d increases the
conditional mean by a multiple 0.2.
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6. Other Models 6.2 Instrumental Variables

6.2 Linear Instrumental Variables

Consider a partial linear model with a single endogenous regressor
I estimation is by instrumental variables (IV).

Problem 1: If we have hat if we add too many controls then we are
more likely to have a weak instrument as the instrument has less
incremental contribution after controlling for the exogenous variables.

Problem 2: If we have too many instruments we again run into weak
instrument problem.

Solution is to extend earlier partialling-out to restrict number of
controls and/or number of controls.

The poivregress command applies to multiple endogenous
regressors (d), regressors to always include (w) and controls to reduce
(x). There are instruments z with dim[z] � dim[x].

y = d0α+w0δ+ x0γ+ u.
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6. Other Models 6.2 Instrumental Variables

Partialling-out for Linear Instrumental Variables
Consider scalar endogenous regressor d , potential exogenous
regressors x, additional instruments z, and, for simplicity, no
exogenous variables to de�nitely include (δ = 0):

y = α� d + x0γ+ u.
The partialling-out method is

I 1. Calculate a partial-out independent variable buy
F perform LASSO of y on x and obtain residual buy from OLS regression
of y on the selected variables.

I 2. Calculate a scalar instrument eud as follows
F perform LASSO of d on x and z obtain prediction bd from OLS of d on
the selected variables

F perform LASSO of bd on x and obtain prediction ed and residual eud from
OLS of bd on the selected variables

I 3. Calculate a partialed-out endogenous regressor
F bud = d � ed which has purged out the role of x.

I 4. Obtain bα from IV regression of buy on bud with instrument eud .
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6. Other Models 6.2 Instrumental Variables

Partialling-out IV Application

Just-identi�ed example from Acemoglu, Johnson and Robinson
(2001), AER, 1369-1401

Consider country GDP and role of secure institutions
I y : loggdp ( log PPP GDP per capita in 1995, World Bank)
I d : avexpr (average protection against expropriation risk)
I z : logem4 (log settler mortality - a long time ago)
I x : measures of country latitude, temperature, humidity, soil types and
natural resources.

Problem: 24 potential controls and n = 64.
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6. Other Models 6.2 Instrumental Variables

Data summary

From output not given Cor(d , z) = Cor[avexpr,logem4)= �0.52.

      logem4          64    4.657031    1.257984   2.145931   7.986165
      avexpr          64    6.515625    1.468647        3.5         10
    logpgp95          64    8.062237    1.043359   6.109248   10.21574

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize logpgp95 avexpr logem4, sep(0)

logem4  float   %9.0g log settler mortality
avexpr  float   %9.0g average protection against expropriation risk
logpgp95  float   %9.0g log PPP GDP pc in 1995, World Bank

variable name   type    format     label      variable label
storage   display    value

. describe logpgp95 avexpr logem4

>     stepmid desmid drystep  drywint goldm iron silv zinc oilres landlock
. global xlist lat_abst edes1975 avelf temp* humid* steplow deslow ///

. qui use mus228ajr.dta, clear

. * Read in Acemoglu­Johnson­Robinson data and define globals
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6. Other Models 6.2 Instrumental Variables

poivregress results
Across the various Lassos �ve control variables are selected.

      lasso.
      estimation. Type lassoinfo to see number of selected variables in each
      of interest jointly equal to zero. Lassos select controls for model
Note: Chi­squared test is a Wald test of the coefficients of the variables
Endogenous:   avexpr

      avexpr    .8798503   .2976286     2.96   0.003      .296509    1.463192

    logpgp95       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
               Robust

Prob > chi2                    =     0.0031
Wald chi2(1)                   =       8.74
Number of selected instruments =          1
Number of selected controls    =          5
Number of instruments          =          1
Number of controls             =         24

Partialing­out IV linear model     Number of obs                  =         64

Estimating lasso for pred(avexpr) using plugin
Estimating lasso for avexpr using plugin
Estimating lasso for logpgp95 using plugin

. poivregress logpgp95 (avexpr=logem4), controls($xlist) selection(plugin, hom)

. * Partialling­out IV using plugin for lambda
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6. Other Models 6.3 Belloni, Chernozhukov and Hansen (JEP, 2014)

6.3 Belloni, Chernozhukov and Hansen (JEP, 2014)
Belloni, Chernozhukov and Hansen (2014), �High-dimensional
methods and inference on structural and treatment e¤ects,� Journal
of Economic Perspectives, Spring, 29-50
Accessible paper. Three applications using LASSO.
1. IV with excess of instruments and use LASSO to select subset.

I Application to house prices (y) a¤ected by takings law (d) with 147
potential instruments and n = 184. Lasso picked just one instrument.

2. OLS with excess of controls and use double selection method.
I Application to crime rate (y) a¤ected by abortion rate (d) with 284
controls and n = 550. Around 10 controls are selected.

3. Just-identi�ed IV with single y , d and z . Three LASSOs of y , x
and z on x and then use the union of the chosen x�s as controls in IV
of y on d with instrument d .

I so like double selection rather than partialling-out IV of poivregress.
I Application same as the Acemoglu et al. example in these slides.
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7. Double or Debiased Machine Learning 7.1 Double or Debiased Machine Learning

7.1 Double or Debiased Machine Learning
Chernozhukov, Chetverikov, Demirer, Du�o, Hansen, Newey and
Robins (2018), �Double/debiased machine learning for treatment and
structural parameters,�The Econometrics Journal.
Interest lies in estimation of key parameter(s) controlling for
high-dimensional nuisance parameters.
Two components to double ML or debiased ML and subsequent
inference

I Work with orthogonalized moment conditions to allow consistent
estimation of parameter(s) of interest

F Chernozhukov et al. call this Neyman orthogonalization as the Neyman
(1959, 1979) c-alpha test in the likelihood framework uses
orthogonalization

F see section 3 of Chernozhukov, Hansen and Martin Spindler (2015),
Annual Review of Economics for details and how to obtain an
orthogonalized moment condition.

I Use sample splitting (cross �tting) to remove bias induced by
over�tting.

A. Colin Cameron Univ.of California - Davis . ()ML Part 3: Causal Inference with Lasso April 2024 54 / 59



7. Double or Debiased Machine Learning 7.1 Double or Debiased Machine Learning

Double or Debiased Machine Learning (continued)
Then get asymptotic normal con�dence intervals for parameters of
interest

I where a variety of ML methods can be used
F random forests, lasso, ridge, deep neural nets, boosted trees, ensembles

I that don�t necessarily need sparsity
I and theory does not require Donsker properties.

Can apply to
I partial linear model (with exogenous or endogenous regressor)

F done in these slides using LASSO

I ATE and ATET under unconfoundedness
F will be covered in part 5

I LATE in an IV setting.

Stata addon and R package ddml due to Ahrens, Hansen, Scha¤er
and Wiemann (2024) covers a range of models and machine learners.
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7. Double or Debiased Machine Learning Caution

7.2 Caution

The LASSO methods are easy to estimate using Stata 16
I they�ll be (blindly) used a lot.

However in any application
I is the underlying assumption of sparsity reasonable?
I has the asymptotic theory kicked in?
I are the default values of c and γ reasonable?
I are model assumptions such as instrument validity reasonable?

Wüthrich and Zhu (2021) �nd that the lasso methods can fail to pick
up all relevant control variables leading to considerable omitted
variables bias

I an alternative is to include all potential regressors directly and use
recently developed methods for inference with many controls.
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8. References

8. References
Chapter 28.8 �Machine Learning for prediction and inference� in A. Colin Cameron

and Pravin K. Trivedi (2022), Microeconometrics using Stata, Second edition,

forthcoming.

Belloni, Chernozhukov and Hansen and coauthors have many papers

I focus on the following papers.

Belloni, Chernozhukov and Hansen (2014), �High-dimensional methods and

inference on structural and treatment e¤ects,� Journal of Economic Perspectives,

Spring, 29-50

I accessible paper with three applications.

Ahrens, Hansen and Scha¤er (2020), �lassopack: Model selection and prediction

with regularized regression in Stata,� Stata Journal, 176-235 (also

ArXiv:1901.05397).

I more detail on LASSO methods as well as on Stata add-on commands
I generally supplanted by Stata version 16 commands but does some things
not in Stata 16.
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8. References

References (continued)
Belloni, Chernozhukov and Hansen (2011), �Inference Methods for

High-Dimensional Sparse Econometric Models,� Advances in Economics and

Econometrics, ES World Congress 2010, ArXiv 2011
I even more detail and summarizes several of their subsequently published
papers.

Alex Belloni, D. Chen, Victor Chernozhukov and Ying Wei (2016), �Post-Selection

Inference for Generalized Linear Models With Many Controls,� JBES, 34(4),

606-619.

Alex Belloni, D. Chen, Victor Chernozhukov and Christian Hansen (2012), �Sparse

Models and Methods for Optimal Instruments with an Application to Eminent

Domain�, Econometrica, Vol. 80, 2369-2429.
I IV application.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Du�o, Christian

Hansen, Whitney Newey and James Robins (2018), �Double/debiased machine

learning for treatment and structural parameters,�The Econometrics Journal, 21,

C1-C68.
I essential reading that summarizes orthogonalization and sample splitting.A. Colin Cameron Univ.of California - Davis . ()ML Part 3: Causal Inference with Lasso April 2024 58 / 59
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References (continued)

Ahrens, Hansen, Scha¤er and Wiemann (2024), �ddml: Double/debiased Machine

Learning in Stata,� Stata Journal, 3-45.

Victor Chernozhukov, Christian Hansen, and Martin Spindler (2015), �Valid

Post-Selection and Post-Regularization Inference: An Elementary, General

Approach," Annual Review of Economics, 649-688.

Kaspar Wüthrich and Ying Zhu (2023), �Omitted variable bias of Lasso-based

Inference Methods: A �nite sample analysis,� Review of Econ and Stat, 982-997.

Matias Cattaneo, Michael Jannson and Whitney Newey (2018), �Inference in

Linear Regression Models with Many Covariates and Heteroskedasticity,� JASA,

113(523), 1350-1361.

Maryam Feyzollahi and Nima Ra�zadeh (2024), �Double/Debiased Machine

Learning for Economists: Practical Guidelines, Best Practices, and Common

Pitfalls," https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4703243
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