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Course Outline

@ 1. Variable selection and cross validation
@ 2. Shrinkage methods
> ridge, lasso, elastic net
@ 3. ML for causal inference using lasso
» OLS with many controls, IV with many instruments
o Part 4: Other methods for prediction

» nonparametric regression, principal components, splines
> neural networks
> regression trees, random forests, bagging, boosting

B. More ML for causal inference

» ATE with heterogeneous effects and many controls.

@ 6. Classification and unsupervised learning

> classification (categorical y) and unsupervised learning (no y).
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Introduction

Introduction

@ Basics used OLS regression

> though with potentially rich set of regressors with interactions
» and regularized OLS using lasso, ridge and elastic net.

@ Now consider various other flexible methods for regress y on x
» some existed before ML became popular

* nonparametric and semiparametric regression
* principal components
* basis functions: polynomials, splines, sieves

> some are more recent

* neural networks
* regression trees and random forests

> in this part consider supervised learning (y and x) for continuous y.

@ Based on the two books by Hastie and Tibshirani and coauthors and
Geron (2022).
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Introduction

Flexible methods

@ These slides present many methods
@ Which method is best (or close to best) varies with the application

> e.g. deep learning (neural nets) works very well for Google Translate
> all require setting tuning parameters which may not be straightforward.

@ In forecasting competitions the best forecasts are ensembles

> a weighted average of the forecasts obtained by several different
methods
> the weights can be obtained by OLS regression in a test sample
* e.g. given three forecast methods minimize w.r.t. 71 and Tp
~(1 ~(2 ~(3
i -y - (- n -
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Introduction

Implementation

@ Stata has built-in commands for

> lasso and ridge (already covered)
> nonparametric regression, principal components and basis functions.

@ For other models (neural network, random forests, ...)

> R has many commands

> Python is viewed as best

» Stata has add-ons that often are front-ends to R or Python so require
also installing R or Python

* crtrees does trees and random forests directly in Stata

* srtree is a wrapper for R functions tree(), randomForest (), and
gbm()

* pylearn does trees, random forests and neural nets directly in Stata
and requires installation of Python and the Python scikit-learn library.
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Introduction

Overview

Nonparametric and semiparametric regression
Dimension reduction (principal components)
Flexible regression (polynomials, splines, sieves)

Neural networks

00000

Regression trees and random forests

@ Regression trees
@ Bagging
© Random forests
O Boosting

© Prediction Example

@ Prediction for Economics

A. Colin Cameron Univ.of California - Davis ML Part 4: More Prediction methods April 2024 6 /90



Introduction 1. Nonparametric and Semiparametric Regression

1. Nonparametric and Semiparametric Regression

e We want a flexible model for
f(xg) = Ely|x = x¢] evaluated at a range of values xo.

@ Use y|x = xq if there are many observations of y at each value of xg.
@ In practice there are few values of y at each value of xq,
so bring into the average values of y at values of x near to xq
> local constant kernel-weighted regression
> local linear kernel-weighted regression
> k-nearest neighbors
> lowess.
@ All depend on a tuning parameter that trades off bias and variance
> like choice of bin width for a histogram
» usually minimize MSE using leave-one-out cross validation.
@ Problem: curse of dimensionality if many x
@ Solutions: semiparametric (old school) or ML methods (new school).
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1.1 Nonparametric kernel-weighted regression

Start with scalar x.

Local-weighted average
~ N N
f(x) = Zi:l w(xi, x0, h)yi, Zi:l w; = 1.
Kernel-weighted average uses kernel weights
wlxixo,h) = K (352) / (£l K (252))

K (z) is a kernel function with [ K(z)dz =1, K(—z) = K(z),
K(z) — 0as z — .

> Most kernels have K(z) = 0 for |z| > 1 (epanechnikov, uniform,
triangular)
» Others are continuous on (—o0, 00) (gaussian).

Key is the bandwidth h (the tuning parameter)

> chosen by leave-one-out cross validation (minimizes MSE).
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Local constant regression

@ Recall: a sample mean of y = OLS of y on an intercept.

@ Similarly: a weighted sample mean of y = weighted OLS of y on an
intercept.

@ Weighted regression on a constant is the estimator that minimizes the
weighted sum of squared residuals

YLy w(xi, xo0, h) (yi — a0)®
» which yields % = Y™, w(x;, xo, h)y; which is the estimator in the

previous slide.
> so called (kernel-weighted) local constant regression.
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Local linear regression

@ The local linear estimator generalizes to linear regression in the
neighborhood of xp.

e Then f(xo) = & where minimize w.r.t. ay and By
Eits wxi, x0, ) {yi — a0 — By (xi — x0)}2.

» so called (kernel-weighted) local linear regression.

@ Advantages

> better estimates at endpoints of the data

» By = f'(x0) provides an estimate of the gradient OE[y|x]/dx|,,-

@ Stata commands

» 1lpoly y x, degree(1)
> or npregress kernel y x, estimator(linear)
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Introduction 1.1 Nonparametric Regression

Other nonparametric methods

o Lowess (locally weighted scatterplot smoothing)

> 3 variation of local linear with variable bandwidth, tricubic kernel and
downweighting of outliers
> lowess y X.

@ k-nearest neighbors

> use an equal-weighted average of y values for the k observations with
x; closest to xp

> F(x0) = £ i1 1x; € N(xo)] x y;

» Stata user-written command knnreg

> not used much in economics aside from matching estimates of ATE.
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1.2 Curse of Dimensionality

@ Nonparametric methods do not extend well to multiple regressors.

Consider p-dimensional x broken into bins

» for p =1 we might average y in each of 10 bins of x
» for p =2 we may need to average over 10? bins of (x1, x»)
> and so on.

@ On average there may be few to no points with high-dimensional x;
close to xq

» called the curse of dimensionality.

Formally for local constant kernel regression with bandwidth h

» bias is O(h?) and variance is O(nhP)
> optimal bandwidth is O(n™1/(PF4))

* gives asymptotic bias so standard conf. intervals not properly centered

> convergence rate is then n=2/(p+4) << p=05
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1.3 Kernel Regression in Higher Dimensions
1.3 Kernel Regression in Higher Dimensions

o Kernel regression extends to higher dimensions.

e For dim(x) = k local linear regression ag and B, minimize
N Ip 12
Yi—1 w(xi, %0, h){yi — o — (x; —x0)'By }
where w(x;, xo, h) = Hj-‘zl w(xji, Xjo, h;) is a product kernel.
o Then @y = f(xo) can predict f(xo) poorly due to curse of
dimensionality.
@ But when we average we may predict better.
@ In particular can compute quantities such as
> average marginal effect for the jt" regressor
» marginal effect for the jt regressor with other regressors set at their
mean values or a prespecified value
e Stata's npregress kernel command does this

» use bootstrap to get confidence intervals.
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1.4 Semiparametric Models

@ Semiparametric methods place some structure on the problem

> parametric component (B) for part of the model
» nonparametric component (function(s) f) that is often one dimensional

o Ideally vN(B — B) 9, N0, V] despite the nonparametric component.

@ Leading examples

partial linear (used in economics)
single-index (used in economics)

generalized additive model (used in statistics)
project pursuit (used in statistics).

v v vy
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114 Serniprramaiie (e
Leading semiparametric models
o Partial linear model: E[y;|x;, z;| = x! + g(z;) where g(-) not
specified.
» use Robinson differencing estimator.
o Single index model: E[y;|x;] = g(x!B) where g(-) not specified
> Ichimura semiparametric least squares

* B and g minimize Y, w(x;){y; — 8(x/8)}?
* where w(x;) is a trimming function that drops outlying x values.

> can only estimate B up to scale in this model
* still useful as ratio of coefficients equals ratio of marginal effects in a
single-index models.
e Generalized additive model: E[y;|x;| = g1(x1;) + - - - + gk (xk/)
where the gj(-) are unspecified.

» estimate by backfitting
» can make more complex by e.g. x3; = xq; X Xp;.
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1.5 How can ML methods do better?

@ Machine learning methods can outperform nonparametric and
semiparametric methods

» so wherever econometricians use nonparametric and semiparametric
regression in higher-dimensional models it may be useful to use ML
methods.

> In theory there is scope for improving nonparametric methods.

@ k-nearest neighbors usually has a fixed number of neighbors
» but it may be better to vary the number of neighbors with data sparsity

@ Kernel-weighted local regression methods usually use a fixed
bandwidth

> but it may be better to vary the bandwidth with data sparsity.

@ There may be advantage to basing neighbors in part on relationship
with y.
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2. Dimension Reduction

2. Dimension Reduction

Reduce from p regressors to M < p linear combinations of regressors.

@ So form

X* = X x A where M <p.
(Nxm) — (Nxp)  (pxM)

Then after dimension reduction

y = ﬁ0+x*5+u
= By + XB+uwhere g =AJ.

Aside: in ML high-dimensional simply means p is large relative to n

» some methods (not PCA) even allow p > n
> n could be large or small.
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2. Dimension Reduction

Dimension Reduction (continued)

@ Two methods are covered in ISL
> 1. Principal components (PCA)
* use only X to form A (unsupervised)
> 2. Partial least squares (PLS)
* also use relationship between y and X to form A (supervised).
@ PCA is widely used in other social sciences

» and is related to factor analysis.

@ PCA using just the first few predict y almost as well as using all the
predictors, with less risk of overfitting.

@ For PCA standardize regressors as the method is not scale invariant

» and can use cross-validation to determine the number of component M.

@ PLS is really not used in practice.
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2.1 itz Comperens Ao b
2.1 Principal Components Analysis (PCA)

Suppose X is normalized to have zero means so ij" entry is Xji — X;.

The first principal component has the largest sample variance among
all normalized linear combinations of the columns of n X p matrix X.

How is this calculated?

the first component is Xhy where hy is p X 1

normalize hy so that hih; =1

then h; max Var(Xh;) = hiX’Xh; subject to hjh; =1
the maximum is the largest eigenvalue of X’X and hy is the
corresponding eigenvector.

vy VvV VY

@ The second principal component has the largest variance subject to
being orthogonal to the first

» and so on.
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2.1 Priieipel Compaiens Al
Formulas for PCA

e Eigenvalues and eigenvectors of X’'X

> Let A = Diag[A;] be p x p vector of eigenvalues of X’'X
» Orderso Ay > Ap > - > A4
> Let H= [h; --- hp] be p X p vector of corresponding eigenvectors
» X’Xh; = A1h; and X’XH = AH and H'H
@ Then

» the j principal component is Xh;
» M—principal components regression uses X* = XA
where A = [hl s hM].

o ASIDE: PCA is related to, but not exactly the same as factor analysis

» factor analysis decomposes observed p—dimensional x into a linear
combination of M unobserved factor loadings and p i.i.d. errors

» often M =1 so x;; = a multiple of the one common factor plus i.i.d.
noise.
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Principal Components Analysis Example

@ Stata command pca by default standardizes the data.

@ For the d.g.p. for x1, x2, x3 (the d.g.p. in part 1 of these slides) we
expect eigenvalues 2, 0.5 and 0.5 as n — 0.

.0*0Principalicomponentsiwithidefaulticorrelationioptionithatistandardizesidata

.Opcalx10x20x3

Principalocomponents/correlation00000000000000000Numberdofiobso000= 0000000040
Numberdoficomp.00= 0000000003
Trace000000000000= 000000003
Rotation:0(unrotatedi=0principal)000000000000Rho00000000000000= 00001.0000

ooopoooComponent

D00EigenvaluennodifferencennnonooooProportioniooCumulative

00000000000Compl
00000000000Comp2
00000000000Comp3

0000001.816680000001.0891900000000000000.605600000000.6056
000000.7274860000000.2716500000000000000.242500000000.8481
000000.455836000000000000.00000000000000.151900000001.0000

Principalicomponentsi(eigenvectors)

gooooooovariable

0000ComplonoooComp200000Comp3 | OUnexplained

00000000000000x1
00000000000000x2
00000000000000x3

000.6306 000.1063 1000.7688 00000000000
000.5712 000.6070 000.5525 00000000000
000.5254 000.7876 1000.3220 00000000000
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Principal Components Analysis Example (continued)
@ First principal component is 0.6306zx; + 0.5712zx; 4 0.52542x3

» where zx; are the standardized X;
» and has variance 1.8618 that explains 1.8618/3 = 62.56% of the
variance.

@ The principal components have means 0, variances equal to the
eigenvalue, and are uncorrelated.
.0*0Generatedthen30principalicomponentsfanddtheirimeans,Ost.devs.,0correlations
.OquietlyOpredictipcliopc2ipc3
.OsummarizeOpclipc20pc3

oooovariable |000000000bsO000000OMeani000Std. ODev.0000000Min00000000OMax

000000000pcl |0000000004000003.35e00900001.34784200002.529270002.925341
000000000pc2 |0000000004000003.63e0090000.85292810001.85447500001.98207
000000000pc3 |0000000004000002.08e0090000.67515640001.5042790001.520466

.Ocorrelatedpclipc2ipc3
(obs=40)

000000pclinnonopc2000000pc3

000000000pcl |0001.0000
pc2 [0000.00000001.0000
pc3 [0000.00000000.00000001.0000
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2.1 itz Comperens Ao b
Principal Components Analysis Example (continued)

@ In-sample correlation coefficient of y with y
» r = 0.4871 from OLS on all three regressors
> r = 0.4444 from OLS on first principal component
> r =0.4740 on just x1 (the d.g.p. was y; =2+ xy; + u;) .

.B*FICompareBREfromEOLSEonBalllthreelregressors,Bonkpcl, BonkBx1, BlonBx2, BonBix3
.BquiliregressByBIx1Bx2Ex3

.Bpredictlyhat
(option xbBassumed;BfittedBvalues)

.BcorrelateByByhatBpclEx1Bx2BEIx3
(obs=40)

1

yhat 2]
pcl (2]
x1 0.
X2 2]
x3 (2]
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2.1 Priieipel Compaiens Al
Principal Components Analysis (continued)

@ PCA is unsupervised so seems unrelated to y but

» Elements of Statistical Learning says does well in practice.

» PCA has the smallest variance of any estimator that estimates the
model y = X8 + u with i.i.d. errors subject to constraint C8 = c
where dim[C] < dim[X].

» PCA discards the p — M smallest eigenvalue components whereas ridge
does not, though ridge does shrink towards zero the most for the
smallest eigenvalue components (ESL p.79).

@ For machine learning the tuning parameter is the number of
components and use e.g. K-fold class validation to determine this.

@ For completeness next give partial least squares which is supervised.
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22 [PEriE| s STETes
2.2 Partial Least Squares

Partial least squares produces a sequence of orthogonal linear
combinations of the regressors.

1. Standardize each regressor to have mean 0 and variance 1.
2. Regress y individually on each x; and let z; = Zle §1jxj

3. Regress y on z; and let ?(1) be prediction of y.
(1)

4. Orthogonalize each x; by regress on z; to give X, =X — 717
—1_s (1)

where T; = (zyz1) ' Z{x;

(1)

5. Go back to step 1 with x; now x;, etc.
» When done y =y 43 4 ...
Partial least squares turns out to be similar to PCA

> especially if R? is low
» in practice PCA is used rather than partial least squares.
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3. Flexible Regression using Basis Functions

3. Flexible Regression using Basis Functions

@ Basis function models (or sieves) include

» global polynomial regression
> splines: step functions, regression splines, smoothing splines, b-splines
» polynomial is global while the others break range of x into pieces.

@ Can make nonparametric

> increase order of polynomial or number of knots (split points) in splines
> select model using leave-one-out cross validation, generalized cross
validation, Mallows CP, AIC or BIC

@ Stata npregress series command implements these methods

» options polynomial, spline, bspline

> nonparametric tuning use option criterion()

> or parametric tuning use options polynomial (#), spline(#),
knots (#).
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3. Flexible Regression using Basis Functions BN EESENET G

3.1 Basis Functions

Also called series expansions and sieves.

General approach (scalar x for simplicity)
Yi =Byt Bibr(xi) + - - + Bycbi (xi) + &

> where by (+), ..., bk (-) are basis functions that are fixed and known.
Global polynomial regression sets b;(x;) = x!

1
> typically K <3 or K < 4.
» fits globally and can overfit at boundaries.

Step functions: separately fit y in each interval x € (¢}, ¢j4+1)

> could be piecewise constant or piecewise linear.

Splines smooth so that not discontinuous at the cut points.

Wavelets are also basis functions, richer than Fourier series.
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3. Flexible Regression using Basis Functions BN EESENET G

Global Polynomials Example

o Generated data:
yi =1+ x1; +x0i + f(z;) + u; where f(z) = z + Z2.

.0*0GeneratedOdata: 0y0=010+01*x10+01*x20+0F(2) 0+0ulwherenf(z) 0=0z0+0zA2
.Oclear

.Oset0obs0200
numberndofiobservationsi(_N)Owas00, Inowl200

.Oset0seedn10101

.0generatenxl0=0rnormal ()
.0generatenx20=0rnormal () 0+00.5%x1
.0generatenzi=0rnormal () 0+00.5%x1
.0generatelzsql=0zA2
.0generatelyl=010+0x10+0x20+0z0+0zsq0+02*rnormal ()
.Osummarize

0o00variable |000000000bs00000000Mean0000Std.0Dev.0000000Min00000000Max

0000000000x1 | 000000002000000.030121100001.0141720003.1706360003.093716
0000000000x2 | 000000002000000.022627400001.1582160004.0011050003.049917
00000000000z |000000002000000.066453900001.1464290003.38670400002.77135
000000000zsq |0000000020000001.31214500001.658477000.000018300011.46977
00000000000y |0000000020000002.16440100003.6040610005.46872100014.83116
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3. Flexible Regression using Basis Functions BN EESENET G

Global Polynomials Example (continued)

e Fit quartic in z (with x; and x; omitted)
and compare to quadratic in z

» regress y c.z#ifc.z#i#tc.z##tc.z, vce(robust)
> quartic chases endpoints.

Te}
—

B .

© Actual datg
—————— Quadratic ,
Quartic .o /
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32 Reggression Splines
3.2 Regression Splines

Begin with step functions: separate fits in each interval (cj, ¢j+1)

Piecewise constant

> bi(x;) = 1[g < x < ¢jp1]
@ Piecewise linear

> intercept is 1|¢; < x; < ¢; and slope is x; X 1|¢; < x; < ¢
p j i j+1 i - i j+1

Problem is that discontinuous at the cut points (does not connect)

» solution is splines.
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22 [RereEgen Splines
Piecewise linear spline
@ Begin with piecewise linear with two knots at ¢ and d

f(x) =wallx < c]+arl[x < ¢|x+aszlfc < x < d]
+aglfc < x < d]x +asl[x > d] +agl{x > d]x.

@ To make continuous at ¢ (so f(c—) = f(c)) and d (so
f(d—) = f(d)) we need two constraints

atc: war+arc = a3+ wgc
at d: w3+ asd = a5 + apd.

o Alternatively introduce the Heaviside step function
hi(x) = x4 = {

@ Then the following imposes the two constraints (so have 6 —2 = 4
regressors)

f(x) =Byt Byx+By(x—c)+ +Bs(x—d)+
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22 [RereEgen Splines
Spline Example

@ Piecewise linear spline with two knots done manually.

.0*0Createlthe0basisifunctionimanuallylwithOthreeisegmentsiandiknotsiatinloandil

.0generatelzsegli=0z

.0generatelzseg20=00

.Oreplacedzseg20=0z000(01) 0ifozo>001
(1630realdchangesimade)

.0generatelizseg30=00

.Oreplacedzseg30=0z000104f0z0>01
(470realichangesimade)

.0*0Piecewisellineardregressioniowithithreedsections
.Oregressiylzseglizseg20zseg3

opoooosource

0000000SS00000000000df0000000MSO00000NUmbertofiobsi00=0000000200

0ooooooModel
ooooResidual

000F(3,0196)0000000= 000061.50
001253.365800000000030000417.7886 Prob0>0F00000000=00000.0000
01331.496240000000196006.79334818 ROsquaredd000000=00000.4849

0ooooooTotal

000AdjOROsquareddn0=00000.4770
02584.8620400000001990012.9892565 ROOtOMSENDOOOOODO= 02.6064

0pooooooooony

npoooocoef.000Std. 0Err.000000t0000P>|t|00000[95%0Conf.0Interval]l

0pooooozsegl
opooooozseg2
opopooozseg3
opopooo—cons

0001.629491000.6630041000002.460000.015000002.9370290000.3219535
0002.977586000.8530561000003.490000.001000001.29523900004.659933
0004.594974000.9164353000005.010000.000000002.78763400006.402314
0001.850531000.9204839000002.010000.046000003.6658550000.0352065
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3. Flexible Regression using Basis Functions BN REACEHTTRST S

Spline Example (continued)

@ Plot of fitted values from piecewise linear spline has three connected
line segments.

Piecew ise linear: y=a+f(z)+u

y and f(z)
5
1
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3. Flexible Regression using Basis Functions BN REACEHTTRST S

Spline Example (continued)

@ The mkspline command creates the same spline variables.

.0*0Repeatlpiecewisellineariusingicommandimksplinedtolcreatedthendbasisifunctions
.Omksplinenzmk10010zmk2010zmk30=0z,0marginal

.OsummarizelzseglOzmklOzseg20zmk20zseg30zmk3,0sepd(8)

pooovariable |000000000bsO0000000Mean0000Std. 0Dev.0000000Min00000000Max

0000000zsegl |000000002000000.066453900001.1464290003.38670400002.77135
00000000zmkl |000000002000000.066453900001.1464290003.38670400002.77135
0000000zseg2 |0000000020000001.17111100000.9844930000000000000003.77135
00000000zmk2 |0000DDD020000001.17111100000.9844930000000000000003.77135
0000000zseg3 |0000000020000000.1384410000.31699730000000000000001.77135
00000000zmk3 | 0000000020000000.1384410000.31699730000000000000001.77135

o To repeat earlier results: regress y zmkl zmk2 zmk3

@ And to add regressors: regress y x1 x2 zmkl zmk2 zmk3
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32 Reggression Splines
Cubic Regression Splines

This is the standard.
@ Piecewise cubic spline with K knots

» require f(x), f'(x) and f”(x) to be continuous at the K knots
Then can do OLS with

F(x) = B+ Brx+ Box* + B3x’ + By (x — 1)’ + - '+ﬁ(3+K)(X_CK)1

» for proof when K = 1 see ISL exercise 7.1.

This is the lowest degree regression spline where the graph of ?(x) on
x seems smooth and continuous to the naked eye.

There is no real benefit to a higher-order spline.

Regression splines overfit at boundaries.

A natural (or restricted) cubic spline is an adaptation that restricts
the relationship to be linear past the lower and upper knots.
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3. Flexible Regression using Basis Functions BN REACEHTTRST S

Spline Example

@ Natural or restricted cubic spline with five knots at the 5, 27.5, 50,
72.5 and 95 percentiles
» mkspline zspline = z, cubic nknots(5) displayknots
> regress y zsplinex

Natural cubic spline: y=a+f (2)+u
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22 [RereEgen Splines
Other Splines

@ Regression splines and natural splines require choosing the cut points

> e.g. use quintiles of x.

@ Smoothing splines avoid this

» use all distinct values of x as knots
> but then add a smoothness penalty that penalizes curvature.

@ The function g(-) minimizes
Z;’:l(y g(x)) —i—)x/ t)dt where a < all x; < b.

» A = 0 connects the data points and A — oo gives OLS.

@ For multivariate splines use multivariate adaptive regression splines
(MARS).
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3. Flexible Regression using Basis Functions BN REACEHTTRST S

Stata Commands

The preceding examples were done manually for pedagogical reasons.

Stata’s npregress series command has options

» polynomial (#) for a global polynomial of order #
» spline(#) for a natural spline of order #
» bspline(#) for a b-spline of order #

@ For splines and B-splines the number of knots can be determined

> by CV (the default), generalized CV, AIC, BIC or Cp
> option knots (#) where # is the number of knots
> option knotsmat (matname) specifies the values of the knots.

If there is more than one regressor then the basis functions for each
regressor may be interacted or not interacted.

Stata user-written add-on commands

» gam (Royston and Ambler) for smoothing splines
> bspline command (Newson 2012) for a range of bases.
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3. Flexible Regression using Basis Functions

3.3 Wavelets

3.3 Wavelets

@ Wavelets are used especially for signal processing and extraction.
> they are richer than a Fourier series basis.

> they can handle both smooth sections and bumpy sections of a series.
@ Wavelets are not used in cross-section econometrics

» they may be useful for some time series.

@ Start with a mother or father wavelet function (x)

1 0<x<}i
» example is the Haar function ¢(x) =< —1 % <x<1

0 otherwise
@ Then both translate by b and scale by a to give basis functions
PP(x) = [a] " 2p(33P).

a
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4. Neural Networks (and Deep Learning)

@ A neural network is a model with one or more hidden layers with
multiple units in each layer

@ The term neural arises as initial models were based on mimicking
how the brain works

> a more complete name is artificial neural network.

@ Neural networks have been around for a long time

> but to work well they need to be complex with many parameters
» this requires a lot of data and good computational techniques.

@ Their use has exploded in the past fifteen years

» due to more computer power, more data, better algorithms, newer
models

» they work especially well for image recognition and language
translation (Google Translate)

» and are the basis for generative Al.

@ Deep learning is learning that occurs in a series of levels or layers
that goes to considerable depth.
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4.1 Multilayer Perceptron (MLP) Neural Network
4.1 Multilayer Perceptron (MLP) Neural Network

@ Like many neural net models originally proposed for classification
> we consider use for regression (see part 6 for classification).
@ Also called a sequential neural net.
@ A single hidden layer network explaining y by x has
> y depends linearly on 2’s (hidden units)
» Z's are a nonlinear transformation of linear combinations of x’s (input
units).
@ History

> proposed in 1943 to model how the brain processes vision
Rosenblatt in 1958 developed a physical machine

> better computational algorithms developed in the late 1960’s
> but not widely used until 2000's.

v
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ISRV RN VTN ENC R R RET G 4.1 Multilayer Perceptron (MLP) Neural Network

One hidden layer neural network (single layer perceptron)

@ y depends on p x's
@ Introduce an intermediate hidden layer of M z's

> y is a linear combination of M 2's

» the z’s are each a nonlinear transformation of a linear combination of
the p x's

>y zZ— X

@ Then y = f(x) with hidden units z (x), ..., zm(x)

f(x) =B, +2'B
= Bo + L1 Bzm(x)

zm(x) = g(aom +xam) for specified function g(-)
g(“Om—i_Z 1“mjxj) m=1,.. M.
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ISRV RN VTN ENC R R RET G 4.1 Multilayer Perceptron (MLP) Neural Network

One hidden layer neural network (continued)

@ We have

f(x) = .BO+Z 1;5 Zm

Zm(x) = glagm+ i 1zxmjxj),mzl,...,M.

@ The specified nonlinear function g(-) is called an activation function

» g(v) = max(0, v) is the rectified linear unit (ReLU) activation

* computationally quick to compute

> g(v) = H% is the sigmoid activation (logit)

» g(v) = exp(vc)/ LK | exp(v;) is the softmax activation (MNL).

* softmax is used for classification with outcomes y1, ..., yk.

@ The agm, m=1,..., M, are called biases.

@ Theap;,j=1,...,p,m=1,..., M, are called weights.
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ISRV RN VTN ENC R R RET G 4.1 Multilayer Perceptron (MLP) Neural Network

Two hidden layer sequential neural network (perceptron)

@ Outcome y depends on w's (hidden units), w’s depend on z's
(hidden units) and z's depend on x’s (input units).

@ Input x — z — w — y output

> a variation is classification with more than one output y.

*\
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hidden layer 1 hidden layer 2
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4.2 Computation

@ A neural network model has a highly nonlinear and nonconvex
objective function

> Using squared error loss we minimize Y., (y; — f(x;, 6))2'.
> With one hidden layer 8 = [B, ..., B,,,, X10, -, X1p, ... X0, ...,och]
minimizes

Q6) = X7y {1~ o~ Enes B [ (0 + 01 )|}

@ Optimization is speeded up by innovations in the 1960’s

» stochastic gradient descent
» back propagation.

@ Note that here we are only wanting to get a good y

> we are not interested in the parameter estimates per se.
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4. Neural Networks (and Deep Learning) 4.2 Computation

Computation: Stochastic Gradient Descent
e (Mini-batch) stochastic gradient descent (SGD) uses update rule

S 9Qs(6)
01 = 0. — A —5o "

@ Computation at each step is fast for two reasons.
@ (1) Qs(+) is just a small randomly-chosen subsample of the data
» so the gradient is computed using only a subsample of the data
» pure SGD uses just one randomly chosen observation
» mini-batch SGD uses a subsample
* the Keras model.fit function has a default of 32 observations
> an epoch is a complete pass through all the data
* e.g. approximately N /32 iterations with mini-batch size 32.
e (2) We simply multiply by a scalar A¢ (rather than e.g. H;1).
> As is called the learning rate and is small e.g. As = 0.01
> it is best to let Ag decline with s.

@ Aside: In econometrics we instead use 0511 = 05 — Hs_1 X

9Q(6)
2(0) |p,
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4. Neural Networks (and Deep Learning) 4.2 Computation

Computation: Stochastic Gradient Descent
@ SGD requires many iterations e.g. 1,000

> recall there are many iterations per epoch.

@ Due to the sample used for the gradient changing at each iteration
there is chatter in the gradient and the loss function
> so stop when on average there is little change in validation loss.
@ The use of different subsamples at each iteration makes it less likely
to reach only a local minimum.
@ And it helps with regularization (reducing overfitting).
@ To further avoid overfitting use a Ridge or Lasso penalty in Q(0)
» or dropout regularization that randomly drops some of the hidden units.
@ Nowadays better variants of SGD are used
> Especially Adam (Adaptive Moment) which is a variation of Momentum
» Momentum uses A@Hl = asABS As M 5
* rather than A@sﬂ = —As %9(0) 3.
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Computation: Rescaling Data

@ For neural nets(and machine learners in general) it is best to have
inputs on a similar scale.

» Standardization converts the training data inputs to have mean 0 and
variance 1: z* = (z; — z)/s;.
» Normalization converts the training data inputs to the 0-1 scale:

z = (z —min(z)}/{max(z) — min(z)}

I
* not as robust as outlying min(z;) or max(z;) has a big effect.

@ For a single target y there is usually no rescaling

> eg. for Q) =Y7 {(yi — x;-f))2 if y is 1,000 times larger
then 0 is 1,000 times larger
and 0Q(0) /06 = Y. —2(y; — x/0)x; is 1,000 times larger

) ) 0Qs(6
> SO 65+1:95_)\5 70(99()

5 leads to 1,000 times larger change in

s

§5+1 (for unchanged learning rate As).

@ For multiple targets y need to scale appropriately the individual
components of y to ensure a sensible overall loss function.
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Back Propagation

o Back propagation computes gradients using the chain rule

%‘:jﬁ) = —2(yi — f(x;)) x B, X

9qi(w,
20B) oy~ ()  B(xan)
P
@ This saves computation time as e.g. —2(y; — f(x;)) X B,, is the
same for all a1, ..., &mp.

dg (X
g(xlam) X Xij
al)cmj

» “Forward propagation” goes from inputs to output: x — z — ¥
» Called back propagation as gradient computation order is y — z — x.
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Computation (continued)

@ Neural nets require a lot of fine tuning - not off-the-shelf.

e For a multilayer perceptron (a sequential NN) we need to do a grid
search over a range of possible values to choose

the number of hidden layers

the number M of hidden units within each layer
the activation function

a penalty to limit overfitting.

vV Vv VvV VY

o If it is computationally burdensome we need at least to

choose the optimization algorithm (SGD, ADAM, ...)
choose the mini-batch size for stochastic gradient descent
choose step size As (which should decrease with s)
possibly starting values for the a’s, ,B’s,

further refinements - see Geron book.

Yy VvV VvV VY

@ An example from Geron book using keras and tensorflow is at

> https://cameron.econ.ucdavis.edu/python/python neural net.py
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(8 SlEplay Vel
4.3 Shapley Value

Motivation: how to explain relative importance of each feature.

For a linear regression model with K regressors

> rank regressors in terms of reduction in MSE

» depends on ordering of the regressors

» so consider marginal contribution of a regressors over all K! unique
regressions (including those with some regressors omitted)

» computationally burdensome if K is large.

Recently extended to ML methods such as neural nets
Python package SHAP

» Shapley Additive exPlanations
> https://shap.readthedocs.io/en/latest/index.html
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Ca el iets BempE
4.4 Neural Networks Example

@ This example uses user-written Stata command brain (Doherr)

> regression example with one hidden layer with 20 units

.0*0examplenfromihelpofiledforiuseriwrittenibrainicommand
.0clear

.OsetOobs0200
numberCdofiobservationst(_N)Owas00, Inowd200

.0genOx0=04%_pi/2000%_n
.0gendy0=0sin(x)

.Obrainodefine, 0input(x)Doutput(y)Uhidden(20)
Definedimatrices:

0o00input[4,1]

OOoutput[4,1]

O0neuron[1,22]

ooolayer[1,3]

0oobrain[1,61]
.OquietlyObraindtrain,oiter(500)0eta(2)
.ObrainothinkOybrain

.Osortix

.OtwowayO(scatteroyiox)0(1fit0yox)0(1inedybrainox)

A. Colin Cameron Univ.of California - Davis ML Part 4: More Prediction methods April 2024 52 /90



4. Neural Networks (and Deep Learning)

Neural Networks Example (continued)

@ We obtain
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4.5 Other Neural Networks

There are many types of neural networks.
Recurrent neural networks for e.g. autocorrelated time series.

Convolutional neural networks for images.

Document classification with e.g. word-pairs as features
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TRV RIS ENE DR RETGIN NN 4.5 Other Neural Networks

Recurrent neural networks

Example from ISL2 and ISLP chapter 10.

Consider prediction of a single y; e.g. daily stock trading volume
Predict using past values of y and (p — 1) other variables up to lag L
So Xe—y = (Ye—t, Xt ety oo Xp—1,6—1), | =1,..., L.

Then in a one hidden layer model

> the activation zj,,(+) for lag / and unit m depends not only on x;_; but
also on the M activations in the previous period

We have for lags /= 1,...,Land units m=1,.... M

fi(x) = Bo+ Yoo Bnzim(")
ZIm(-) = g (DCOm -+ Zle Déij/j + Zi\il 5m52/,1v5) .

And we use the final outcome y; = f(x).

@ Can also use recurrent neural net for word sequences

» then classification.
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TRV RIS ENE DR RETGIN NN 4.5 Other Neural Networks

Convolutional neural networks

o For classification of images

» e.g. data are 32 x 32 pixels with three eight-bit numbers per pixel for
red, green and blue.

Data input features are three dimensional

» pixel x coordinate x by colors.

@ Use convolutional layers to find small patterns in the data such as
edges and small shapes

Use pooling layers that then reduce to a prominent subset.
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TRV RIS ENE DR RETGIN NN 4.5 Other Neural Networks

4.5 References

@ Geron book gives a very extensive discussion of neural nets

> over half the book
» uses Python modules keras and tensorflow for neural networks.

@ Chapter 10 of ISL2 covers neural nets

> summarizes various methods and types of neural net

> uses the keras package in Python

> https://www.statlearning.com/resources-second-edition has the same
example done using the torch package in R

» and ISLP uses the pytorch package.

@ An older text for deep learning is

> Goodfellow, Yoshua Bengio and Aaron Courville (2016), Deep
Learning, MIT Press.
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5. Regression Trees and Random Forests

5. Regression Trees and Random Forests: Overview

@ Regression Trees sequentially split regressors x into regions that best

predict y

> e.g., first split is income < or > $12,000
second split is on gender if income > $12,000

third split is income < or > $30,000 (if female and income > $12,000).

@ Trees do not predict well

» due to high variance
> e.g. split data in two then can get quite different trees
> e.g. first split determines future splits (a greedy method).

@ Better methods are then given

> bagging (bootstrap averaging)
> random forests
» boosting

@ Bagging and boosting are general methods (not just for trees).
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5. Regression Trees and Random Forests 5.1 Regression Trees

5.1 Regression Trees

o Regression trees

> sequentially split x’s into rectangular regions in way that reduces RSS
> then ¥; is the average of y's in the region that x; falls in
> with J blocks RSS= Y7 Lier,(vi — 7r,)%.

@ Need to determine both the regressor j to split and the split point s.

» For any regressor j and split point s, define the pair of half-planes

R1(j,s) = {X|X; < s} and R2(j,s) = {X|X; > s}
Find the value of j and s that minimize

Y i)+ Y (i)

ix;€R1(j,s) ix;€R2(j,s)

where yr1 is the mean of y in region R1 (and similar for R2).
» Once this first split is found, split both R1 and R2 and repeat
» Each split is the one that reduces RSS the most.

Stop when e.g. less than five observations in each region.
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5.1 Recgression iazs
Tree example from ISL2 Figure 8.3 page 332

@ (1) split X1 in two; (2) split the lowest X1 values on the basis of X2
into R1 and R2; (3) split the highest X1 values into two regions (R3
and R4/R5); (4) split the highest X1 values on the basis of X2 into
R4 and R5.

Ry 21

Xz
2

Ry
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5.1 Recgression iazs
Tree example from ISL (continued)

@ The left figure gives the tree.
@ The right figure shows the predicted values of y.

X <ty
]

Xo<ta X1<t3 b4

X2ty

I Ry Ry

By Rs
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5.1 Recgression iazs
Regression tree (continued)

@ The model is of form f(x) = ¥7_; ¢; x 1[x € R}]
» essentially OLS on a set of data-determined indicator variables.

@ The approach is a topdown greedy approach

» top down as start with top of the tree

» greedy as at each step the best split is made at that particular step,
rather than looking ahead and picking a split that will lead to a better
tree in some future step

> so a seemingly worthless split early on in the tree might have been
followed by a very good split later on.

@ So deliberately overfit and then prune back

> use cost complexity pruning (or weakest link pruning)

» this adds a penalty in the number of terminal nodes and uses CV on
this

> see ISL2 equation (8.4).
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5. Regression Trees and Random Forests BRG] BN

Regression tree example

@ This example is for duration data using Stata add-on cart
> | used it merely to illustrate what a tree looks like.

CART analysis Periods jobless: two-weekintervals - Split if (adjusted) P<.05
With variables: ui logwage reprate age

N F RHR
43-61 | 567 119 A7
1 ag e at time of survey
20-42 A 1281 378 .80
Liffiled Ul claim
3-5 @3 A .64
3-6 log weeKy earnings
56 s0p 159 133
0 log weeky earnings
68 5 802 383 220
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5. Regression Trees and Random Forests BRG] BN

Tree as alternative to k-NN or kernel regression

e Figure from Athey and Imbens (2019), “Machine Learning Methods

Economists Should Know About”
> axes are x1 and xp

> note that tree used explanation of y in determining neighbors
> tree may not do so well near boundaries of region

* random forests form many trees so not always at boundary.

Euclidean neighborhood,

for KNN matching.

Tree-based neighborhood.
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5. Regression Trees and Random Forests [SEHNEAEESNIEES

Improvements to regression trees

@ Regression trees are easy to understand if there are few regressors.
@ But they do not predict as well as methods given so far

> due to high variance in the predictions
» e.g. split data in two then can get quite different trees and predictions.

@ Better methods are given next
> bagging (bootstrap aggregating)

* averages regression trees over many samples

* benefit: averaging reduces variance Var(Y) < Var(Y).
» random forests

* additionally uses only a random subset of regressors at each split
* benefit: the predictions being averaged are less correlated with each

other so Var(Y) is less.

> boosting

* trees build on the fit from preceding trees.
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5.2 Bagging
5.2 Bagging (Bootstrap Aggregating)

o Bagging is a general method for improving prediction that works
especially well for regression trees.
Idea is that averaging reduces variance (in nonlinear models).

So average regression trees over many samples

> the different samples are obtained by bootstrap resample with
replacement (so not completely independent of each other)
» for each sample obtain a large tree and prediction fj(x).

» average all these predictions: ?bag (x) = % 25:1 o (x).
o Get test sample error by using out-of-bag (OOB) observations not in
the bootstrap sample
» Pr[ith obs not in resample] = (1 —1)" — =1 = 0.368 ~ 1/3.

n
> this replaces using a validation dataset or using cross validation.

Interpretation of trees is now difficult so

> record the total amount that RSS is decreased due to splits over a
given predictor, averaged over all B trees.
> a large value indicates an important predictor.

A. Colin Cameron Univ.of California - Davis ML Part 4: More Prediction methods April 2024 66 / 90



SRR CEIT I SN REN MRSl 5.3 Random Forests

5.3 Random Forests

@ The B bagging estimates are correlated

> e.g. if a regressor is important it will appear near the top of the tree in
each bootstrap sample.
» the trees look similar from one resample to the next.

e Random forests get bootstrap resamples (like bagging)

> but use only a random sample of m < p predictors in deciding each
split (within each bootstrap sample)

> usually m~,/p
> this reduces correlation across bootstrap resamples and reduces

overfitting
» simple bagging is random forest with m = p.

e Stata add-on command rforest implements random forests (and

bagging)
» Matthias Schonlau and Rosie Zou (2020), “The random forest
algorithm for statistical learning,” The Stata Journal, 3-29.

@ Python use SciKit Learn module RandomForestRegressor.
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5. Regression Trees and Random Forests [ERENEN L[] WETEH

Random Forests (continued)

@ In practice choose the best predicting model from grid search over a
range of values for

number of trees: e.g. (50, 75, ..., 200)

number of features: e.g. (0.2, 0.4, ..., 1.0)

maximum tree depth: e.g. (3,5, 7, 9)

sample _sizes as fraction of n: e.g. (0.3, 0.5, 0.8).

vy VY VY

@ Random forests are related to kernel and k-nearest neighbors

> as use a weighted average of nearby observations

> but with a data-driven way of determining which nearby observations
get weight

> see Lin and Jeon (JASA, 2006).

@ Susan Athey and coauthors are big on random forests.

A. Colin Cameron Univ.of California - Davis ML Part 4: More Prediction methods April 2024 68 / 90



54 Boesiing
5.4 Boosting

@ Boosting is also a general method for improving prediction.
@ Regression trees use a greedy algorithm.
@ Boosting uses a slower algorithm to generate a sequence of trees
» each tree is grown using information from previously grown trees
» and is fit on a modified version of the original data set
» boosting does not involve bootstrap sampling.
@ Specifically (with A a penalty parameter)
» given current model b fit a decision tree to model b’s residuals (rather
than the outcome y)
> then update 7(x) = previous f(x) 4+ Af?(x)
> then update the residuals r; = previous r; — Af2(x;)
> the boosted model is f(x) = Y-8 | AfP(x;), a weighted sum of trees.

@ Stata add-on boost includes file boost64.d11 that needs to be
manually copied into c:\ado\plus

@ pylearn does trees, random forests and neural nets directly in Stata
and requires installation of Python and the Python scikit-learn library.
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5.5 Bevesien Regessieon Tizes
5.5 Bayesian Additive Regression Trees

@ Like boosting use only the original data

» whereas random forests draw random samples of the data.
e Start with K trees and in each tree ?(1)(x) =7y.
@ Then for each iteration b=1, ..., B

» for each tree k and each observation i create the partial residual which
is y; minus the predictions from all other trees

~(b ~(b
ri=Yi— 2k’<k fk( )(X) - 2k’>k fk( )(X)

> fit a new tree /f:k(b) (x) to r; by randomly perturbing tree k from the
~(b—1

]E)rewous iteration fk
It

> compute f( (x) = Zk 11 b 1)(x)

e Finally fk( )(X) =21 T, kb Y (x) where L is the number of
burn-in reps.

@ It is an MCMC algorithm.

@ ISL2 Section 8.2.4 has details.
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50 ML Temistey
5.6 ML Terminology

e ML

terminology such as that used by the Python SciKit-Learn

package

vV vV vV VY VY

label is the dependent variable (y)

features are the explanatory variables (X)
samples is the number of observations (n)
estimators is the number of trees in a forest
node is the split point or partition point

pure node is a node with all y values the same

* in classification all training observations belong to the same class
* if all end nodes were pure the training data is perfectly explained.

> impurity measure is the value of the loss function e.g. MSE
» importance measure is a measure of the relative importance of each

feature

* in each tree collect how on average it decreases the impurity due to
splits on that feature and average over all trees.
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6. Prediction Example

6. Prediction Example

@ Go through MUS2 Section 28.6 Prediction Example in detail

@ Use code in ML_2022_part4.do with data set
mus203mepsmedexp.dta

@ Predict using 7 methods

OLS with no interactions

OLS with interactions

LASSO with penalized coefficients

Post LASSO (OLS with variables selected by LASSO)
Neural network (add-on brain)

Random forest (add-on randomforest)

boost

Y VYV VvV VvV VvV VY

e Fit on 80% of sample. See how predicts out of sample.
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Data
@ Same MEPS data for 2013 on 65-90 year-olds. as in part 3.

@ yis ltotexp = log total annual medical expenditure
@ x is 5 continuous variables and 14 binary variables and N = 2955
> same as part 3 except include suppins with other binary variables.
o With interactions get 188 unique variables.
.B*EDatalforBpredictionBexample:@5BcontinuousBland@14BbinaryBvariables

.BquilluseBmus2@3mepsmedexp.dta,Bclear

.BkeepBifBltotexpl!=H.
(1e9kobservationsiideleted)

.BglobalBixlist@incomeleducyrilageBfamszeBtotchr

.BglobalRdlist@suppinsBfemaleBwhitel@hispBmarry@northelmwestBsouth®///
BEEmsaBphylimBactlim@injuryB@priolistBhvgg

.BglobalBrlistlc. ($x1list)##c. ($x1ist)Bi. ($dlist)Bc. ($x1ist)#i. ($dlist)
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6. Prediction Example

.P*ESummaryBstatisticsBforBfull@sample
.BsummarizeBltotexpP$xlistB$dlist

bs|

2,955
2,955
2,955
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6. Prediction Example

BOLSEfor@fullBsample
egressBltotexpl$xlist@$dlist,Bvce(robust)Bnoheader

[95%BConf.BInterval]

0. .499
5. .000
1. . 254
2. .010|
7. .000
3. . 000
1. .278
1. .161
1. .223
3. .001
3. .000
4. . 000
3. .001
1. .166
4. .000
5. .000
3. .002
6. .000
2. .038
6. .000
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6. Prediction Example

@ We will use 80% of sample for training and remaining 20% for
out-of-sample evaluation

.B*ESplitBtheBsampleBwithE80%@inBtraining@isample
.Bsplitsample@ltotexp,Bgenerate(train)Bsplit (184 )Bvalues(0OB1)Brseed(10101)

.Btabulateltrain

train |BPEERREEFreq.ERRRRPercentBRRERRRRECUM.
PEERERERERERO |ERREREERRSI1ERRREER20 . 00RRRRRER20 . 00
PEEEEEEEEEL |ERRRERERE2 , 364FRREEEERS0 . 00100 . 00
FERERRTotal |EREREREER2,955ERREEE100 .00

@ Then go through code in ML_2022_part4.do

A. Colin Cameron Univ.of California - Davis ML Part 4: More Prediction methods April 2024

76 / 90



6. Prediction Example

Predictions from Various Models

* OLS with 19 regressors

regress |totexp $xlist $dlist if train==1, noheader vce(robust)

qui predict y__small

* OLS with 188 potential regressors and 104 estimated

qui regress Itotexp $rlist if train==

qui predict y_full

* LASSO with 188 potential regressors leads to 32 selected

qui lasso linear Itotexp $rlist if train==1, selection(adaptive) rseed(10101) nolog
qui predict y _laspen // use penalized coefficients

qui predict y _laspost, postselection // use post selection OLS coeffs
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6. Prediction Example

Predictions from Various Models (continued)

* Principal components using the first 5 principal components of 19 variables
qui pca $xlist $dlist if train==

qui predict pc*

qui regress ltotexp pcl-pch if train==

qui predict y pca

* Neural network: 19 variables one hidden layers with 10 units

* This did not work on my latest computer

brain define, input($xlist $dlist) output(ltotexp) hidden(10)

qui brain train if train==1, iter(500) eta(2) // eta>1 uses SGD

brain think y _neural

* Random forest with 19 variables

qui rforest Itotexp $xlist $dlist if train==1, ///
type(reg) iter(200) depth(10) Isize(5)

qui predict y_ranfor
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6. Prediction Example

Predictions from Various Models (continued)

o Compute training MSE and test MSE

foreach var of varlist y noregy smally fully laspen ///
y lasposty pcay neuraly ranfor {
qui gen ‘var'errorsq = (‘var’ - ltotexp)"2
qui sum ‘var'errorsq if train == 1
scalar mse'var'train = r(mean)

qui sum ‘var’errorsq if train == 0

qui scalar mse'var'test = r(mean)

display "Predictor: " "‘var'" _col(21) ///
" Train MSE = " %5.3f mse'var'train ///
" Test MSE = " %5.3f mse'var'test
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6. Prediction Example

Predictions from Various Models (continued)

@ Training sample: Flexible models - random forest and neural networks

did best.

@ Test sample: Simpler models - LASSO and small model OLS did best.

Predictor:Ry_|
Predictor:Ry_.
Predictor:EG

.339ERTestRMSE
. 2620ATestEMS

Predictor:ly laspenBETrainBEMSE .298BETestEMSER
Predictor:By_laspostBTrainEMSE .297BBTestEMSER
Predictor:Ry_pcalRERERTrainkEMSE . 3970 TestEMSER
Predictor:By_neuralBETrainBEMSE .211FRETestEMSER

Predictor:By_ranforBETrainBMSER
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7. Prediction for Economics

7. Prediction for Economics

e Hal Varian (2014) has early survey.
@ Mullainathan and Spiess (2017)

> summarizes various
> has good application to housing prices(already presented)
» has good summary of recent economics ML applications.
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PO ISR R T ST« 7.1 Hal Varian 2014 Survey

7.1 Hal Varian 2014 Survey

e Hal Varian (2014), “Big Data: New Tricks for Econometrics,” JEP,
Spring, 3-28.
@ Surveys tools for handling big data
» file system for files split into large blocks across computers
* Google file system (Google), Hadoop file system

» database management system to handle large amounts of data across
many computers

* Bigtable (Google), Cassandra
» accessing and manipulating big data sets across many computers
* MapReduce (Google), Hadoop.
> language for MapReduce / Hadoop
* Sawzall (Google), Pig
» Computer language for parallel processing
* Go (Google - open source)

v

simplified structured query language (SQL) for data enquiries
* Dremel, Big Query (Google), Hive, Drill, Impala.
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7. Prediction for Economics 7.1 Hal Varian 2014 Survey

Hal Varian (continued)

@ Surveys methods

article discusses k-fold CV, trees, lasso, ....
small discussion of causality and prediction
(note that a classic fail is Google flu trends)
for references mentions ESL and ISL.

>
>
>
>

@ While dated it is still worth reading.
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7.2 Summary of Machine Learning Algorithms
7.2 Summary of Machine Learning Algorithms

e From Mullainathan and Spiess (2017)

Table 2
Some Machine Learning Algorithms

Function class F (and its parametrization) Regularizer R(f)

Global/parametric predictors
Linear J'x (and generalizations) Subset selection||3] ], = Zf‘:l L0

LASSO |18l = 2k 18
Ridge [8]]2* = Yk 87
Elastic net of|A]], + (1 - a) [|8]].*

Local /nonparametric predictors
Decision /regression trees Depth, number of nodes/leaves, minimal leaf
size, information gain at splits

Random forest (linear combination of Number of trees, number of variables used
trees) in each tree, size of bootstrap sample,
complexity of trees (see above)

Nearest neighbors Number of neighbors

Kernel regression Kernel bandwidth
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7. Prediction for Economics 7.2 Summary of Machine Learning Algorithms

Table 2 (continued)

Mixed predictors
Deep learning, neural nets, convolutional
neural networks

Splines

Number of levels, number of neurons per
level, connectivity between neurons

Number of knots, order

Combined predictors
Bagging: unweighted average of predictors
from bootstrap draws
Boosting: linear combination of
predictions of resicual

Ensemble: weighted combination of
different predictors

Number of draws, size of bootstrap samples
(and individual regularization parameters)
Learning rate, number of iterations (and

individual regularization parameters)

Ensemble weights (and individual
regularization parameters)
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0 Gy UliEnelis on PreEion
7.3 Some Thoughts on ML Prediction

Clearly there are many decisions to make in implementation

» how are features converted into x's

> tuning parameter values

» which ML method to use

> even more with an ensemble forecast.

@ For commercial use this may not matter

> all that matters is that predict well enough.

But for published research we want reproducibility

> At the very least document exactly what you did
> provide all code (and data if it is publicly available)
> keep this in mind at the time you are doing the project.

@ For public policy we prefer some understanding of the black box

> this may be impossible.
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8. Software for Machine Learning

@ This list will change over time and is not necessarily the best

> There are over 20,000 R packages in CRAN
and over 350,000 Python packages (most are not data-oriented).

@ Python libraries presented in Geron book and ISLPython

» scikit-learn for most ML methods including trees and random
forests

» keras and tensorflow and pytorch for neural networks

> code at https://github.com/ageron/handson-ml3.

@ R packages used in ISLR2 include

> spline library for splines
» torch package for neural networks
> tree library and randomForest package for tree-based methods.

@ Stata commands include

» npregress for local regression, series regression and splines
» pca for principal components
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8. Software for Machine Learning

Software (continued)

@ Stata add-ons include

brain for neural networks (very basic)

rforest for trees and random forests

crtrees for trees and random forests

srtrees wrapper for R commands for trees and random forests
r_ml_stata.ado and r_ml_stata.ado wrappers for ML methods
including neural networks and trees in the python scikit-learn library

Yy VvV VvV VY

* https://sites.google.com /view/giovannicerulli/machine-learning-in-
stata

» pylearn is a wrapper for trees and random forests in python
scikit-learn library
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9. References
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A. Colin Cameron Univ.of California - Davis ML Part 4: More Prediction methods April 2024 89 / 90



References (continued)
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