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Course Outline

1. Variable selection and cross validation
2. Shrinkage methods

I ridge, lasso, elastic net

3. ML for causal inference using lasso
I OLS with many controls, IV with many instruments

Part 4: Other methods for prediction
I nonparametric regression, principal components, splines
I neural networks
I regression trees, random forests, bagging, boosting

5. More ML for causal inference
I ATE with heterogeneous e¤ects and many controls.

6. Classi�cation and unsupervised learning
I classi�cation (categorical y) and unsupervised learning (no y).
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Introduction

Introduction

Basics used OLS regression
I though with potentially rich set of regressors with interactions
I and regularized OLS using lasso, ridge and elastic net.

Now consider various other �exible methods for regress y on x
I some existed before ML became popular

F nonparametric and semiparametric regression
F principal components
F basis functions: polynomials, splines, sieves

I some are more recent

F neural networks
F regression trees and random forests

I in this part consider supervised learning (y and x) for continuous y .

Based on the two books by Hastie and Tibshirani and coauthors and
Geron (2022).
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Introduction

Flexible methods

These slides present many methods

Which method is best (or close to best) varies with the application
I e.g. deep learning (neural nets) works very well for Google Translate
I all require setting tuning parameters which may not be straightforward.

In forecasting competitions the best forecasts are ensembles
I a weighted average of the forecasts obtained by several di¤erent
methods

I the weights can be obtained by OLS regression in a test sample

F e.g. given three forecast methods minimize w.r.t. τ1 and τ2

∑ni=1fyi � τ1by (1)i � τ2by (2)i � (1� τ1 � τ2)by (3)i g2.
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Introduction

Implementation

Stata has built-in commands for
I lasso and ridge (already covered)
I nonparametric regression, principal components and basis functions.

For other models (neural network, random forests, ...)
I R has many commands
I Python is viewed as best
I Stata has add-ons that often are front-ends to R or Python so require
also installing R or Python

F crtrees does trees and random forests directly in Stata
F srtree is a wrapper for R functions tree(), randomForest(), and
gbm()

F pylearn does trees, random forests and neural nets directly in Stata
and requires installation of Python and the Python scikit-learn library.
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Introduction

Overview

1 Nonparametric and semiparametric regression
2 Dimension reduction (principal components)
3 Flexible regression (polynomials, splines, sieves)
4 Neural networks
5 Regression trees and random forests

1 Regression trees
2 Bagging
3 Random forests
4 Boosting

6 Prediction Example
7 Prediction for Economics
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Introduction 1. Nonparametric and Semiparametric Regression

1. Nonparametric and Semiparametric Regression

We want a �exible model for
f (x0) = E [y jx = x0] evaluated at a range of values x0.
Use ȳ jx = x0 if there are many observations of y at each value of x0.
In practice there are few values of y at each value of x0,
so bring into the average values of y at values of x near to x0

I local constant kernel-weighted regression
I local linear kernel-weighted regression
I k-nearest neighbors
I lowess.

All depend on a tuning parameter that trades o¤ bias and variance
I like choice of bin width for a histogram
I usually minimize MSE using leave-one-out cross validation.

Problem: curse of dimensionality if many x
Solutions: semiparametric (old school) or ML methods (new school).
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Introduction 1.1 Nonparametric Regression

1.1 Nonparametric kernel-weighted regression
Start with scalar x .

Local-weighted average

bf (x0) = ∑N
i=1 w(xi , x0, h)yi , ∑N

i=1 wi = 1.

Kernel-weighted average uses kernel weights

w(xi , x0, h) = K
� xi�x0

h

�
/
�

∑N
j=1 K

�
xj�x0
h

��
K (z) is a kernel function with

R
K (z)dz = 1, K (�z) = K (z),

K (z)! 0 as z ! ∞.
I Most kernels have K (z) = 0 for jz j > 1 (epanechnikov, uniform,
triangular)

I Others are continuous on (�∞,∞) (gaussian).

Key is the bandwidth h (the tuning parameter)
I chosen by leave-one-out cross validation (minimizes MSE).
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Introduction 1.1 Nonparametric Regression

Local constant regression

Recall: a sample mean of y = OLS of y on an intercept.

Similarly: a weighted sample mean of y = weighted OLS of y on an
intercept.

Weighted regression on a constant is the estimator that minimizes the
weighted sum of squared residuals

∑N
i=1 w(xi , x0, h)(yi � α0)

2

I which yields bα0 = ∑Ni=1 w(xi , x0, h)yi which is the estimator in the
previous slide.

I so called (kernel-weighted) local constant regression.
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Introduction 1.1 Nonparametric Regression

Local linear regression

The local linear estimator generalizes to linear regression in the
neighborhood of x0.

Then bf (x0) = bα0 where minimize w.r.t. α0 and β0

∑N
i=1 w(xi , x0, h)fyi � α0 � β0(xi � x0)g2.

I so called (kernel-weighted) local linear regression.

Advantages
I better estimates at endpoints of the data
I bβ0 = bf 0(x0) provides an estimate of the gradient ∂E [y jx ]/∂x jx0 .

Stata commands
I lpoly y x, degree(1)
I or npregress kernel y x, estimator(linear)
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Introduction 1.1 Nonparametric Regression

Other nonparametric methods

Lowess (locally weighted scatterplot smoothing)
I a variation of local linear with variable bandwidth, tricubic kernel and
downweighting of outliers

I lowess y x.

k-nearest neighbors
I use an equal-weighted average of y values for the k observations with
xi closest to x0

I bf (x0) = 1
k ∑Ni=1 1[xi 2 N(x0)]� yi

I Stata user-written command knnreg
I not used much in economics aside from matching estimates of ATE.
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Introduction 1.2 Curse of Dimensionality

1.2 Curse of Dimensionality

Nonparametric methods do not extend well to multiple regressors.

Consider p-dimensional x broken into bins
I for p = 1 we might average y in each of 10 bins of x
I for p = 2 we may need to average over 102 bins of (x1, x2)
I and so on.

On average there may be few to no points with high-dimensional xi
close to x0

I called the curse of dimensionality.

Formally for local constant kernel regression with bandwidth h
I bias is O(h2) and variance is O(nhp)
I optimal bandwidth is O(n�1/(p+4))

F gives asymptotic bias so standard conf. intervals not properly centered

I convergence rate is then n�2/(p+4) << n�0.5
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Introduction 1.3 Kernel Regression in Higher Dimensions

1.3 Kernel Regression in Higher Dimensions

Kernel regression extends to higher dimensions.

For dim(x) = k local linear regression α0 and β0 minimize

∑N
i=1 w(xi , x0,h)fyi � α0 � (xi � x0)0β0g2

where w(xi , x0,h) = ∏k
j=1 w(xji , xj0, hj ) is a product kernel.

Then bα0 = bf (x0) can predict f (x0) poorly due to curse of
dimensionality.

But when we average we may predict better.

In particular can compute quantities such as
I average marginal e¤ect for the j th regressor
I marginal e¤ect for the j th regressor with other regressors set at their
mean values or a prespeci�ed value

Stata�s npregress kernel command does this
I use bootstrap to get con�dence intervals.
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Introduction 1.4 Semiparametric Models

1.4 Semiparametric Models

Semiparametric methods place some structure on the problem
I parametric component (β) for part of the model
I nonparametric component (function(s) f ) that is often one dimensional

Ideally
p
N(bβ� β)

d! N [0,V] despite the nonparametric component.
Leading examples

I partial linear (used in economics)
I single-index (used in economics)
I generalized additive model (used in statistics)
I project pursuit (used in statistics).
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Introduction 1.4 Semiparametric Models

Leading semiparametric models

Partial linear model: E [yi jxi , zi ] = x0iβ+ g(zi ) where g(�) not
speci�ed.

I use Robinson di¤erencing estimator.

Single index model: E[yi jxi ] = g(x0iβ) where g(�) not speci�ed
I Ichimura semiparametric least squares

F bβ and bg minimize ∑Ni=1 w (xi )fyi � bg (x0i β)g2
F where w (xi ) is a trimming function that drops outlying x values.

I can only estimate β up to scale in this model

F still useful as ratio of coe¢ cients equals ratio of marginal e¤ects in a
single-index models.

Generalized additive model: E [yi jxi ] = g1(x1i ) + � � �+ gK (xKi )
where the gj (�) are unspeci�ed.

I estimate by back�tting
I can make more complex by e.g. x3i = x1i � x2i .
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Introduction 1.5 How can ML methods do better?

1.5 How can ML methods do better?

Machine learning methods can outperform nonparametric and
semiparametric methods

I so wherever econometricians use nonparametric and semiparametric
regression in higher-dimensional models it may be useful to use ML
methods.

I In theory there is scope for improving nonparametric methods.

k-nearest neighbors usually has a �xed number of neighbors
I but it may be better to vary the number of neighbors with data sparsity

Kernel-weighted local regression methods usually use a �xed
bandwidth

I but it may be better to vary the bandwidth with data sparsity.

There may be advantage to basing neighbors in part on relationship
with y .
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2. Dimension Reduction

2. Dimension Reduction

Reduce from p regressors to M < p linear combinations of regressors.

So form
X�

(N�m)
= X
(N�p)

� A
(p�M )

where M < p.

Then after dimension reduction

y = β0 +X
�δ+ u

= β0 +Xβ+ u where β = Aδ.

Aside: in ML high-dimensional simply means p is large relative to n
I some methods (not PCA) even allow p > n
I n could be large or small.
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2. Dimension Reduction

Dimension Reduction (continued)

Two methods are covered in ISL
I 1. Principal components (PCA)

F use only X to form A (unsupervised)

I 2. Partial least squares (PLS)

F also use relationship between y and X to form A (supervised).

PCA is widely used in other social sciences
I and is related to factor analysis.

PCA using just the �rst few predict y almost as well as using all the
predictors, with less risk of over�tting.

For PCA standardize regressors as the method is not scale invariant
I and can use cross-validation to determine the number of component M.

PLS is really not used in practice.
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2. Dimension Reduction 2.1 Principal Components Analysis

2.1 Principal Components Analysis (PCA)

Suppose X is normalized to have zero means so ij th entry is xji � x̄j .
The �rst principal component has the largest sample variance among
all normalized linear combinations of the columns of n� p matrix X.
How is this calculated?

I the �rst component is Xh1 where h1 is p � 1
I normalize h1 so that h01h1 = 1
I then h1 max Var(Xh1) = h01X

0Xh1 subject to h01h1 = 1
I the maximum is the largest eigenvalue of X0X and h1 is the
corresponding eigenvector.

The second principal component has the largest variance subject to
being orthogonal to the �rst

I and so on.
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2. Dimension Reduction 2.1 Principal Components Analysis

Formulas for PCA

Eigenvalues and eigenvectors of X0X
I Let Λ = Diag[λj ] be p � p vector of eigenvalues of X0X
I Order so λ1 � λ2 � � � � � λ1
I Let H = [h1 � � � hp ] be p � p vector of corresponding eigenvectors
I X0Xh1 = λ1h1 and X0XH = ΛH and H0H

Then
I the j th principal component is Xhj
I M�principal components regression uses X� = XA
where A = [h1 � � � hM ].

ASIDE: PCA is related to, but not exactly the same as factor analysis
I factor analysis decomposes observed p�dimensional x into a linear
combination of M unobserved factor loadings and p i.i.d. errors

I often M = 1 so xji = a multiple of the one common factor plus i.i.d.
noise.
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2. Dimension Reduction 2.1 Principal Components Analysis

Principal Components Analysis Example
Stata command pca by default standardizes the data.
For the d.g.p. for x1, x2, x3 (the d.g.p. in part 1 of these slides) we
expect eigenvalues 2, 0.5 and 0.5 as n �! ∞.

              x3   0.5254   0.7876   0.3220           0
              x2   0.5712  0.6070   0.5525           0
              x1   0.6306  0.1063  0.7688           0

        Variable     Comp1     Comp2     Comp3  Unexplained

Principal components (eigenvectors)

           Comp3       .455836            .             0.1519       1.0000
           Comp2       .727486       .27165             0.2425       0.8481
           Comp1       1.81668      1.08919             0.6056       0.6056

       Component    Eigenvalue   Difference         Proportion   Cumulative

Rotation: (unrotated = principal)            Rho              =     1.0000
Trace            =         3
Number of comp.  =          3

Principal components/correlation                 Number of obs    =         40

. pca x1 x2 x3

. * Principal components with default correlation option that standardizes data
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2. Dimension Reduction 2.1 Principal Components Analysis

Principal Components Analysis Example (continued)
First principal component is 0.6306zx1 + 0.5712zx2 + 0.5254zx3

I where zxj are the standardized xj
I and has variance 1.8618 that explains 1.8618/3 = 62.56% of the
variance.

The principal components have means 0, variances equal to the
eigenvalue, and are uncorrelated.

pc3   0.0000  0.0000   1.0000
pc2    0.0000   1.0000

         pc1    1.0000

      pc1      pc2      pc3

(obs=40)
. correlate pc1 pc2 pc3

         pc3          40    2.08e09    .6751564  1.504279   1.520466
         pc2          40   3.63e09    .8529281  1.854475    1.98207
         pc1          40   3.35e09    1.347842   2.52927   2.925341

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize pc1 pc2 pc3

. quietly predict pc1 pc2 pc3

. * Generate the 3 principal components and their means, st.devs., correlations
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2. Dimension Reduction 2.1 Principal Components Analysis

Principal Components Analysis Example (continued)
In-sample correlation coe¢ cient of y with by

I r = 0.4871 from OLS on all three regressors
I r = 0.4444 from OLS on �rst principal component
I r = 0.4740 on just x1 (the d.g.p. was yi = 2+ x1i + ui ) .

x3    0.2046   0.4200   0.7082   0.4281   0.2786   1.0000
x2    0.3370   0.6919   0.7700   0.5077   1.0000
x1    0.4740   0.9732   0.8499   1.0000
pc1    0.4444   0.9122   1.0000
yhat    0.4871   1.0000

           y    1.0000

        y     yhat      pc1       x1       x2       x3

(obs=40)
. correlate y yhat pc1 x1 x2 x3

(option xb assumed; fitted values)
. predict yhat

. qui regress y x1 x2 x3

. * Compare R from OLS on all three regressors, on pc1, on x1, on x2, on x3
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2. Dimension Reduction 2.1 Principal Components Analysis

Principal Components Analysis (continued)

PCA is unsupervised so seems unrelated to y but
I Elements of Statistical Learning says does well in practice.
I PCA has the smallest variance of any estimator that estimates the
model y = Xβ+ u with i.i.d. errors subject to constraint Cβ = c
where dim[C] � dim[X].

I PCA discards the p�M smallest eigenvalue components whereas ridge
does not, though ridge does shrink towards zero the most for the
smallest eigenvalue components (ESL p.79).

For machine learning the tuning parameter is the number of
components and use e.g. K -fold class validation to determine this.

For completeness next give partial least squares which is supervised.
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2. Dimension Reduction 2.2 Partial Least Squares

2.2 Partial Least Squares

Partial least squares produces a sequence of orthogonal linear
combinations of the regressors.

1. Standardize each regressor to have mean 0 and variance 1.

2. Regress y individually on each xj and let z1 = ∑p
j=1

bθ1jxj
3. Regress y on z1 and let by(1) be prediction of y.
4. Orthogonalize each xj by regress on z1 to give x

(1)
j = xj � z1bτj

where bτj = (z01z1)�1z01x(1)j .
5. Go back to step 1 with xj now x

(1)
j , etc.

I When done by = by(1) + by(2) + � � �
Partial least squares turns out to be similar to PCA

I especially if R2 is low
I in practice PCA is used rather than partial least squares.
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3. Flexible Regression using Basis Functions

3. Flexible Regression using Basis Functions

Basis function models (or sieves) include
I global polynomial regression
I splines: step functions, regression splines, smoothing splines, b-splines
I polynomial is global while the others break range of x into pieces.

Can make nonparametric
I increase order of polynomial or number of knots (split points) in splines
I select model using leave-one-out cross validation, generalized cross
validation, Mallows CP, AIC or BIC

Stata npregress series command implements these methods
I options polynomial, spline, bspline
I nonparametric tuning use option criterion()
I or parametric tuning use options polynomial(#), spline(#),
knots(#).
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3. Flexible Regression using Basis Functions 3.1 Basis Functions

3.1 Basis Functions

Also called series expansions and sieves.

General approach (scalar x for simplicity)

yi = β0 + β1b1(xi ) + � � �+ βK bK (xi ) + εi

I where b1(�), ..., bK (�) are basis functions that are �xed and known.

Global polynomial regression sets bj (xi ) = x
j
i

I typically K � 3 or K � 4.
I �ts globally and can over�t at boundaries.

Step functions: separately �t y in each interval x 2 (cj , cj+1)
I could be piecewise constant or piecewise linear.

Splines smooth so that not discontinuous at the cut points.
Wavelets are also basis functions, richer than Fourier series.
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3. Flexible Regression using Basis Functions 3.1 Basis Functions

Global Polynomials Example
Generated data:
yi = 1+ x1i + x2i + f (zi ) + ui where f (z) = z + z2.

           y         200    2.164401    3.604061  5.468721   14.83116
         zsq         200    1.312145    1.658477   .0000183   11.46977
           z         200    .0664539    1.146429  3.386704    2.77135
          x2         200    .0226274    1.158216  4.001105   3.049917
          x1         200    .0301211    1.014172  3.170636   3.093716

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize

. generate y = 1 + x1 + x2 + z + zsq + 2*rnormal()

. generate zsq = z^2

. generate z = rnormal() + 0.5*x1

. generate x2 = rnormal() + 0.5*x1

. generate x1 = rnormal()

. set seed 10101

number of observations (_N) was 0, now 200
. set obs 200

. clear

. * Generated data: y = 1 + 1*x1 + 1*x2 + f(z) + u where f(z) = z + z^2
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3. Flexible Regression using Basis Functions 3.1 Basis Functions

Global Polynomials Example (continued)
Fit quartic in z (with x1 and x2 omitted)
and compare to quadratic in z

I regress y c.z##c.z##c.z##c.z, vce(robust)
I quartic chases endpoints.

5
0

5
10

15

4 2 0 2 4
z

Actual data
Quadratic
Quartic
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3. Flexible Regression using Basis Functions 3.2 Regression Splines

3.2 Regression Splines

Begin with step functions: separate �ts in each interval (cj , cj+1)
Piecewise constant

I bj (xi ) = 1[cj � xi < cj+1 ]

Piecewise linear
I intercept is 1[cj � xi < cj+1 ] and slope is xi � 1[cj � xi < cj+1 ]

Problem is that discontinuous at the cut points (does not connect)
I solution is splines.
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3. Flexible Regression using Basis Functions 3.2 Regression Splines

Piecewise linear spline
Begin with piecewise linear with two knots at c and d

f (x) = α11[x < c ] + α21[x < c ]x + α31[c � x < d ]
+α41[c � x < d ]x + α51[x � d ] + α61[x � d ]x .

To make continuous at c (so f (c�) = f (c)) and d (so
f (d�) = f (d)) we need two constraints

at c : α1 + α2c = α3 + α4c
at d : α3 + α4d = α5 + α6d .

Alternatively introduce the Heaviside step function

h+(x) = x+ =
�
x x > 0
0 otherwise.

Then the following imposes the two constraints (so have 6� 2 = 4
regressors)

f (x) = β0 + β1x + β2(x � c)+ + β3(x � d)+
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3. Flexible Regression using Basis Functions 3.2 Regression Splines

Spline Example
Piecewise linear spline with two knots done manually.

       _cons   1.850531   .9204839    2.01   0.046    3.665855   .0352065
       zseg3    4.594974   .9164353     5.01   0.000     2.787634    6.402314
       zseg2    2.977586   .8530561     3.49   0.001     1.295239    4.659933
       zseg1   1.629491   .6630041    2.46   0.015    2.937029   .3219535

           y       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       Total  2584.86204       199  12.9892565 Root MSE        =  2.6064
   Adj Rsquared   =    0.4770

    Residual  1331.49624       196  6.79334818 Rsquared       =    0.4849
       Model   1253.3658         3    417.7886 Prob > F        =    0.0000

   F(3, 196)       =     61.50
      Source        SS           df       MS      Number of obs   =       200

. regress y zseg1 zseg2 zseg3

. * Piecewise linear regression with three sections

.

(47 real changes made)
. replace zseg3 = z  1 if z > 1

. generate zseg3 = 0

(163 real changes made)
. replace zseg2 = z  (1) if z > 1

. generate zseg2 = 0

. generate zseg1 = z

. * Create the basis function manually with three segments and knots at 1 and 1
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3. Flexible Regression using Basis Functions 3.2 Regression Splines

Spline Example (continued)
Plot of �tted values from piecewise linear spline has three connected
line segments.

5
0

5
10

15
y 

an
d 

f(z
)

4 2 0 2 4
z

Piecew ise linear: y=a+f(z)+u
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3. Flexible Regression using Basis Functions 3.2 Regression Splines

Spline Example (continued)

The mkspline command creates the same spline variables.

        zmk3         200     .138441    .3169973          0    1.77135
       zseg3         200     .138441    .3169973          0    1.77135
        zmk2         200    1.171111     .984493          0    3.77135
       zseg2         200    1.171111     .984493          0    3.77135
        zmk1         200    .0664539    1.146429  3.386704    2.77135
       zseg1         200    .0664539    1.146429  3.386704    2.77135

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize zseg1 zmk1 zseg2 zmk2 zseg3 zmk3, sep (8)

. mkspline zmk1 1 zmk2 1 zmk3 = z, marginal

. * Repeat piecewise linear using command mkspline to create the basis functions

To repeat earlier results: regress y zmk1 zmk2 zmk3

And to add regressors: regress y x1 x2 zmk1 zmk2 zmk3
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3. Flexible Regression using Basis Functions 3.2 Regression Splines

Cubic Regression Splines

This is the standard.

Piecewise cubic spline with K knots
I require f (x), f 0(x) and f 00(x) to be continuous at the K knots

Then can do OLS with

f (x) = β0+ β1x+ β2x
2+ β3x

3+ β4(x� c1)3++ � � �+ β(3+K )(x� cK )3+

I for proof when K = 1 see ISL exercise 7.1.

This is the lowest degree regression spline where the graph of bf (x) on
x seems smooth and continuous to the naked eye.

There is no real bene�t to a higher-order spline.

Regression splines over�t at boundaries.

A natural (or restricted) cubic spline is an adaptation that restricts
the relationship to be linear past the lower and upper knots.
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3. Flexible Regression using Basis Functions 3.2 Regression Splines

Spline Example
Natural or restricted cubic spline with �ve knots at the 5, 27.5, 50,
72.5 and 95 percentiles

I mkspline zspline = z, cubic nknots(5) displayknots
I regress y zspline*

5
0

5
10

15
f(z

)

4 2 0 2 4
z

Natural cubic spline: y=a+f (z)+u
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3. Flexible Regression using Basis Functions 3.2 Regression Splines

Other Splines

Regression splines and natural splines require choosing the cut points
I e.g. use quintiles of x .

Smoothing splines avoid this
I use all distinct values of x as knots
I but then add a smoothness penalty that penalizes curvature.

The function g(�) minimizes

∑n
i=1(yi � g(xi ))

2 + λ
Z b

a
g 00(t)dt where a � all xi � b.

I λ = 0 connects the data points and λ! ∞ gives OLS.

For multivariate splines use multivariate adaptive regression splines
(MARS).
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3. Flexible Regression using Basis Functions 3.2 Regression Splines

Stata Commands

The preceding examples were done manually for pedagogical reasons.

Stata�s npregress series command has options
I polynomial(#) for a global polynomial of order #
I spline(#) for a natural spline of order #
I bspline(#) for a b-spline of order #

For splines and B-splines the number of knots can be determined
I by CV (the default), generalized CV, AIC, BIC or Cp
I option knots(#) where # is the number of knots
I option knotsmat(matname) speci�es the values of the knots.

If there is more than one regressor then the basis functions for each
regressor may be interacted or not interacted.

Stata user-written add-on commands
I gam (Royston and Ambler) for smoothing splines
I bspline command (Newson 2012) for a range of bases.
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3. Flexible Regression using Basis Functions 3.3 Wavelets

3.3 Wavelets

Wavelets are used especially for signal processing and extraction.
I they are richer than a Fourier series basis.
I they can handle both smooth sections and bumpy sections of a series.

Wavelets are not used in cross-section econometrics
I they may be useful for some time series.

Start with a mother or father wavelet function ψ(x).

I example is the Haar function ψ(x) =

8<: 1 0 � x < 1
2

�1 1
2 < x < 1

0 otherwise

Then both translate by b and scale by a to give basis functions
ψab(x) = jaj�1/2ψ( x�ba ).
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4. Neural Networks (and Deep Learning)

4. Neural Networks (and Deep Learning)
A neural network is a model with one or more hidden layers with
multiple units in each layer
The term neural arises as initial models were based on mimicking
how the brain works

I a more complete name is arti�cial neural network.

Neural networks have been around for a long time
I but to work well they need to be complex with many parameters
I this requires a lot of data and good computational techniques.

Their use has exploded in the past �fteen years
I due to more computer power, more data, better algorithms, newer
models

I they work especially well for image recognition and language
translation (Google Translate)

I and are the basis for generative AI.

Deep learning is learning that occurs in a series of levels or layers
that goes to considerable depth.
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4. Neural Networks (and Deep Learning) 4.1 Multilayer Perceptron (MLP) Neural Network

4.1 Multilayer Perceptron (MLP) Neural Network

Like many neural net models originally proposed for classi�cation
I we consider use for regression (see part 6 for classi�cation).

Also called a sequential neural net.

A single hidden layer network explaining y by x has
I y depends linearly on z0s (hidden units)
I z0s are a nonlinear transformation of linear combinations of x0s (input
units).

History
I proposed in 1943 to model how the brain processes vision
I Rosenblatt in 1958 developed a physical machine
I better computational algorithms developed in the late 1960�s
I but not widely used until 2000�s.
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4. Neural Networks (and Deep Learning) 4.1 Multilayer Perceptron (MLP) Neural Network

One hidden layer neural network (single layer perceptron)

y depends on p x0s
Introduce an intermediate hidden layer of M z0s

I y is a linear combination of M z0s
I the z0s are each a nonlinear transformation of a linear combination of
the p x0s

I y  z x.

Then y = f (x) with hidden units z1(x), ..., zm(x)

f (x) = β0 + z
0β

= β0 +∑M
m=1 βmzm(x)

zm(x) = g(α0m + x0αm) for speci�ed function g(�)
= g(α0m +∑p

j=1 αmjxj ) m = 1, ...,M.
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4. Neural Networks (and Deep Learning) 4.1 Multilayer Perceptron (MLP) Neural Network

One hidden layer neural network (continued)

We have

f (x) = β0 +∑M
m=1 βmzm(x)

zm(x) = g(α0m +∑p
j=1 αmjxj ), m = 1, ...,M.

The speci�ed nonlinear function g(�) is called an activation function
I g(v) = max(0, v) is the recti�ed linear unit (ReLU) activation

F computationally quick to compute

I g(v) = 1
1+e�v is the sigmoid activation (logit)

I g(v) = exp(vk )/ ∑Kl=1 exp(vi ) is the softmax activation (MNL).
F softmax is used for classi�cation with outcomes y1, ..., yK .

The α0m , m = 1, ...,M, are called biases.
The αmj , j = 1, ..., p, m = 1, ...,M , are called weights.
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4. Neural Networks (and Deep Learning) 4.1 Multilayer Perceptron (MLP) Neural Network

Two hidden layer sequential neural network (perceptron)

Outcome y depends on w0s (hidden units), w0s depend on z0s
(hidden units) and z0s depend on x0s (input units).
Input x! z! w! y output

I a variation is classi�cation with more than one output y .
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4. Neural Networks (and Deep Learning) 4.2 Computation

4.2 Computation

A neural network model has a highly nonlinear and nonconvex
objective function

I Using squared error loss we minimize ∑ni=1(yi � f (xi , θ))
2..

I With one hidden layer θ = [β0, ..., βm , α10, ..., α1p , ..., αM0, ..., αMp ]
minimizes

Q(θ) = ∑n
i=1

n
yi � β0 �∑M

m=1 βm

h
g
�

αm0 +∑p
j=1 αmjxj

�io2
.

Optimization is speeded up by innovations in the 1960�s
I stochastic gradient descent
I back propagation.

Note that here we are only wanting to get a good by
I we are not interested in the parameter estimates per se.
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4. Neural Networks (and Deep Learning) 4.2 Computation

Computation: Stochastic Gradient Descent
(Mini-batch) stochastic gradient descent (SGD) uses update rule

bθs+1 = bθs � λs
∂Qs (θ)

∂θ

����bθs .
Computation at each step is fast for two reasons.
(1) Qs (�) is just a small randomly-chosen subsample of the data

I so the gradient is computed using only a subsample of the data
I pure SGD uses just one randomly chosen observation
I mini-batch SGD uses a subsample

F the Keras model.fit function has a default of 32 observations
I an epoch is a complete pass through all the data

F e.g. approximately N/32 iterations with mini-batch size 32.

(2) We simply multiply by a scalar λs (rather than e.g. H�1s ).
I λs is called the learning rate and is small e.g. λs = 0.01
I it is best to let λs decline with s.

Aside: In econometrics we instead use bθs+1 = bθs �H�1s � ∂Q (θ)
∂(θ)

���bθs
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4. Neural Networks (and Deep Learning) 4.2 Computation

Computation: Stochastic Gradient Descent
SGD requires many iterations e.g. 1,000

I recall there are many iterations per epoch.

Due to the sample used for the gradient changing at each iteration
there is chatter in the gradient and the loss function

I so stop when on average there is little change in validation loss.

The use of di¤erent subsamples at each iteration makes it less likely
to reach only a local minimum.
And it helps with regularization (reducing over�tting).
To further avoid over�tting use a Ridge or Lasso penalty in Q(θ)

I or dropout regularization that randomly drops some of the hidden units.

Nowadays better variants of SGD are used
I Especially Adam (Adaptive Moment) which is a variation of Momentum
I Momentum uses ∆bθs+1 = αs∆bθs � λs

∂Qs (θ)
∂θ

���bθs
F rather than ∆bθs+1 = �λs

∂Qs (θ)
∂θ

���bθs .
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4. Neural Networks (and Deep Learning) 4.2 Computation

Computation: Rescaling Data
For neural nets(and machine learners in general) it is best to have
inputs on a similar scale.

I Standardization converts the training data inputs to have mean 0 and
variance 1: z�i = (zi � z̄)/sz .

I Normalization converts the training data inputs to the 0-1 scale:
z�i = (zi �min(zi )g/fmax(zi )�min(zi )g

F not as robust as outlying min(zi ) or max(zi ) has a big e¤ect.

For a single target y there is usually no rescaling
I e.g. for Q(θ) = ∑ni=1(yi � x0iθ)2 if y is 1,000 times larger
then θ is 1,000 times larger
and ∂Q(θ)/∂θ = ∑ni=1 �2(yi � x0iθ)xi is 1,000 times larger

I so bθs+1 = bθs � λs
∂Qs (θ)

∂θ

���bθs leads to 1,000 times larger change inbθs+1 (for unchanged learning rate λs ).

For multiple targets y need to scale appropriately the individual
components of y to ensure a sensible overall loss function.
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4. Neural Networks (and Deep Learning) 4.2 Computation

Back Propagation

Back propagation computes gradients using the chain rule

∂qi (α, β)
∂αmj

= �2(yi � f (xi ))� βm �
∂g(x0iαm)

∂αmj
� xij

∂qi (α, β)
∂βm

= �2(yi � f (xi ))� g(x0iαm)

This saves computation time as e.g. �2(yi � f (xi ))� βm is the
same for all αm1, ..., αmp .

I �Forward propagation�goes from inputs to output: x ! z ! by
I Called back propagation as gradient computation order is by ! z ! x .
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4. Neural Networks (and Deep Learning) 4.2 Computation

Computation (continued)

Neural nets require a lot of �ne tuning - not o¤-the-shelf.

For a multilayer perceptron (a sequential NN) we need to do a grid
search over a range of possible values to choose

I the number of hidden layers
I the number M of hidden units within each layer
I the activation function
I a penalty to limit over�tting.

If it is computationally burdensome we need at least to
I choose the optimization algorithm (SGD, ADAM, ...)
I choose the mini-batch size for stochastic gradient descent
I choose step size λs (which should decrease with s)
I possibly starting values for the α0s, β0s, ....
I further re�nements - see Geron book.

An example from Geron book using keras and tensor�ow is at
I https://cameron.econ.ucdavis.edu/python/python_neural_net.py
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4. Neural Networks (and Deep Learning) 4.3 Shapley Value

4.3 Shapley Value

Motivation: how to explain relative importance of each feature.

For a linear regression model with K regressors
I rank regressors in terms of reduction in MSE
I depends on ordering of the regressors
I so consider marginal contribution of a regressors over all K ! unique
regressions (including those with some regressors omitted)

I computationally burdensome if K is large.

Recently extended to ML methods such as neural nets

Python package SHAP
I Shapley Additive exPlanations
I https://shap.readthedocs.io/en/latest/index.html
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4. Neural Networks (and Deep Learning) 4.4 Neural Networks Example

4.4 Neural Networks Example
This example uses user-written Stata command brain (Doherr)

I regression example with one hidden layer with 20 units

. twoway (scatter y x) (lfit y x) (line ybrain x)

. sort x

. brain think ybrain

. quietly brain train, iter(500) eta(2)

   brain[1,61]
   layer[1,3]
  neuron[1,22]
  output[4,1]
   input[4,1]
Defined matrices:
. brain define, input(x) output(y) hidden(20)

. gen y = sin(x)

. gen x = 4*_pi/200 *_n

number of observations (_N) was 0, now 200
. set obs 200

. clear

. * Example from help file for userwritten brain command
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4. Neural Networks (and Deep Learning) 4.4 Neural Networks Example

Neural Networks Example (continued)
We obtain

1
.5

0
.5

1

0 5 10 15
x

y Fitted values
ybrain
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4. Neural Networks (and Deep Learning) 4.5 Other Neural Networks

4.5 Other Neural Networks

There are many types of neural networks.

Recurrent neural networks for e.g. autocorrelated time series.

Convolutional neural networks for images.

Document classi�cation with e.g. word-pairs as features
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4. Neural Networks (and Deep Learning) 4.5 Other Neural Networks

Recurrent neural networks
Example from ISL2 and ISLP chapter 10.
Consider prediction of a single yt e.g. daily stock trading volume
Predict using past values of y and (p � 1) other variables up to lag L
So xt�l = (yt�l , x1,t�l , ..., xp�1,t�l ), l = 1, ..., L.
Then in a one hidden layer model

I the activation zlm(�) for lag l and unit m depends not only on xt�l but
also on the M activations in the previous period

We have for lags l = 1, ..., L and units m = 1, ...,M

fl (x) = β0 +∑M
m=1 βmzlm(�)

zlm(�) = g
�

α0m +∑p
j=1 αmjxlj +∑M

s=1 δmszl�1,s
�
.

And we use the �nal outcome yL = fL(x).
Can also use recurrent neural net for word sequences

I then classi�cation.
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4. Neural Networks (and Deep Learning) 4.5 Other Neural Networks

Convolutional neural networks

For classi�cation of images
I e.g. data are 32� 32 pixels with three eight-bit numbers per pixel for
red, green and blue.

Data input features are three dimensional
I pixel x coordinate x by colors.

Use convolutional layers to �nd small patterns in the data such as
edges and small shapes

Use pooling layers that then reduce to a prominent subset.
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4. Neural Networks (and Deep Learning) 4.5 Other Neural Networks

4.5 References

Geron book gives a very extensive discussion of neural nets
I over half the book
I uses Python modules keras and tensorflow for neural networks.

Chapter 10 of ISL2 covers neural nets
I summarizes various methods and types of neural net
I uses the keras package in Python
I https://www.statlearning.com/resources-second-edition has the same
example done using the torch package in R

I and ISLP uses the pytorch package.

An older text for deep learning is
I Goodfellow, Yoshua Bengio and Aaron Courville (2016), Deep
Learning, MIT Press.
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5. Regression Trees and Random Forests

5. Regression Trees and Random Forests: Overview

Regression Trees sequentially split regressors x into regions that best
predict y

I e.g., �rst split is income < or > $12,000
second split is on gender if income > $12,000
third split is income < or > $30,000 (if female and income > $12,000).

Trees do not predict well
I due to high variance
I e.g. split data in two then can get quite di¤erent trees
I e.g. �rst split determines future splits (a greedy method).

Better methods are then given
I bagging (bootstrap averaging)
I random forests
I boosting

Bagging and boosting are general methods (not just for trees).

A. Colin Cameron Univ.of California - Davis () ML Part 4: More Prediction methods April 2024 58 / 90



5. Regression Trees and Random Forests 5.1 Regression Trees

5.1 Regression Trees

Regression trees
I sequentially split x0s into rectangular regions in way that reduces RSS
I then byi is the average of y 0s in the region that xi falls in
I with J blocks RSS= ∑Jj=1 ∑i2Rj (yi � ȳRj )

2.

Need to determine both the regressor j to split and the split point s.
I For any regressor j and split point s, de�ne the pair of half-planes
R1(j , s) = fX jXj < sg and R2(j , s) = fX jXj � sg

I Find the value of j and s that minimize

∑
i :xi2R1(j ,s)

(yi � ȳR1)2 + ∑
i :xi2R2(j ,s)

(yi � ȳR2)2

where ȳR1 is the mean of y in region R1 (and similar for R2).
I Once this �rst split is found, split both R1 and R2 and repeat
I Each split is the one that reduces RSS the most.
I Stop when e.g. less than �ve observations in each region.
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5. Regression Trees and Random Forests 5.1 Regression Trees

Tree example from ISL2 Figure 8.3 page 332

(1) split X1 in two; (2) split the lowest X1 values on the basis of X2
into R1 and R2; (3) split the highest X1 values into two regions (R3
and R4/R5); (4) split the highest X1 values on the basis of X2 into
R4 and R5.
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5. Regression Trees and Random Forests 5.1 Regression Trees

Tree example from ISL (continued)

The left �gure gives the tree.

The right �gure shows the predicted values of y .
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5. Regression Trees and Random Forests 5.1 Regression Trees

Regression tree (continued)

The model is of form f (x) = ∑J
j=1 cj � 1[x 2 Rj ]

I essentially OLS on a set of data-determined indicator variables.

The approach is a topdown greedy approach
I top down as start with top of the tree
I greedy as at each step the best split is made at that particular step,
rather than looking ahead and picking a split that will lead to a better
tree in some future step

I so a seemingly worthless split early on in the tree might have been
followed by a very good split later on.

So deliberately over�t and then prune back
I use cost complexity pruning (or weakest link pruning)
I this adds a penalty in the number of terminal nodes and uses CV on
this

I see ISL2 equation (8.4).

A. Colin Cameron Univ.of California - Davis () ML Part 4: More Prediction methods April 2024 62 / 90



5. Regression Trees and Random Forests 5.1 Regression Trees

Regression tree example

This example is for duration data using Stata add-on cart
I I used it merely to illustrate what a tree looks like.

 N  F  RHR

 1 if filed UI claim

 4361  567  119  .47

 1  age at time of survey

 2042  1281  378  .80

 35  193  34  .64

 36  log weekly earnings

 56  500  159  1.33

 0  log weekly earnings

 68  802  383  2.20

 CART analysis Periods jobless: twoweek intervals  Split if (adjusted) P<.05
 With variables: ui logwage reprate age
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5. Regression Trees and Random Forests 5.1 Regression Trees

Tree as alternative to k-NN or kernel regression
Figure from Athey and Imbens (2019), �Machine Learning Methods
Economists Should Know About�

I axes are x1 and x2
I note that tree used explanation of y in determining neighbors
I tree may not do so well near boundaries of region

F random forests form many trees so not always at boundary.
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5. Regression Trees and Random Forests 5.1 Regression Trees

Improvements to regression trees

Regression trees are easy to understand if there are few regressors.

But they do not predict as well as methods given so far
I due to high variance in the predictions
I e.g. split data in two then can get quite di¤erent trees and predictions.

Better methods are given next
I bagging (bootstrap aggregating)

F averages regression trees over many samples
F bene�t: averaging reduces variance Var(Y ) � Var(Y ).

I random forests

F additionally uses only a random subset of regressors at each split
F bene�t: the predictions being averaged are less correlated with each
other so Var(Y ) is less.

I boosting

F trees build on the �t from preceding trees.
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5. Regression Trees and Random Forests 5.2 Bagging

5.2 Bagging (Bootstrap Aggregating)
Bagging is a general method for improving prediction that works
especially well for regression trees.
Idea is that averaging reduces variance (in nonlinear models).
So average regression trees over many samples

I the di¤erent samples are obtained by bootstrap resample with
replacement (so not completely independent of each other)

I for each sample obtain a large tree and prediction bfb(x).
I average all these predictions: bfbag(x) = 1

B ∑Bb=1 bfb(x).
Get test sample error by using out-of-bag (OOB) observations not in
the bootstrap sample

I Pr[i th obs not in resample] = (1� 1
n )
n ! e�1 = 0.368 ' 1/3.

I this replaces using a validation dataset or using cross validation.

Interpretation of trees is now di¢ cult so
I record the total amount that RSS is decreased due to splits over a
given predictor, averaged over all B trees.

I a large value indicates an important predictor.
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5. Regression Trees and Random Forests 5.3 Random Forests

5.3 Random Forests
The B bagging estimates are correlated

I e.g. if a regressor is important it will appear near the top of the tree in
each bootstrap sample.

I the trees look similar from one resample to the next.

Random forests get bootstrap resamples (like bagging)
I but use only a random sample of m < p predictors in deciding each
split (within each bootstrap sample)

I usually m ' pp
I this reduces correlation across bootstrap resamples and reduces
over�tting

I simple bagging is random forest with m = p.

Stata add-on command rforest implements random forests (and
bagging)

I Matthias Schonlau and Rosie Zou (2020), �The random forest
algorithm for statistical learning,�The Stata Journal, 3-29.

Python use SciKit Learn module RandomForestRegressor.
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5. Regression Trees and Random Forests 5.3 Random Forests

Random Forests (continued)

In practice choose the best predicting model from grid search over a
range of values for

I number of trees: e.g. (50, 75, ...., 200)
I number of features: e.g. (0.2, 0.4, ..., 1.0)
I maximum tree depth: e.g. (3, 5, 7, 9)
I sample_sizes as fraction of n: e.g. (0.3, 0.5, 0.8).

Random forests are related to kernel and k-nearest neighbors
I as use a weighted average of nearby observations
I but with a data-driven way of determining which nearby observations
get weight

I see Lin and Jeon (JASA, 2006).

Susan Athey and coauthors are big on random forests.
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5. Regression Trees and Random Forests 5.4 Boosting

5.4 Boosting
Boosting is also a general method for improving prediction.
Regression trees use a greedy algorithm.
Boosting uses a slower algorithm to generate a sequence of trees

I each tree is grown using information from previously grown trees
I and is �t on a modi�ed version of the original data set
I boosting does not involve bootstrap sampling.

Speci�cally (with λ a penalty parameter)
I given current model b �t a decision tree to model b0s residuals (rather
than the outcome y)

I then update bf (x) = previous bf (x) + λbf b(x)
I then update the residuals ri = previous ri � λbf b(xi )
I the boosted model is bf (x) = ∑Bb=1 λbf b(xi ), a weighted sum of trees.

Stata add-on boost includes �le boost64.dll that needs to be
manually copied into c:nadonplus
pylearn does trees, random forests and neural nets directly in Stata
and requires installation of Python and the Python scikit-learn library.
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5. Regression Trees and Random Forests 5.5 Bayesian Regression Trees

5.5 Bayesian Additive Regression Trees
Like boosting use only the original data

I whereas random forests draw random samples of the data.

Start with K trees and in each tree bf (1)(x) = ȳ .
Then for each iteration b = 1, ...,B

I for each tree k and each observation i create the partial residual which
is yi minus the predictions from all other trees

ri = yi �∑k 0<k
bf (b)k (x)�∑k 0>k

bf (b)k (x)

I �t a new tree bf (b)k (x) to ri by randomly perturbing tree k from the

previous iteration bf (b�1)k (x) and favor perturbations that improve the
�t

I compute bf (b)k (x) = ∑Kk=1 bf (b�1)k (x)

Finally bf (b)k (x) = 1
B�L ∑K

k=1
bf (b�1)k (x) where L is the number of

burn-in reps.
It is an MCMC algorithm.
ISL2 Section 8.2.4 has details.
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5. Regression Trees and Random Forests 5.6 ML Terminology

5.6 ML Terminology

ML terminology such as that used by the Python SciKit-Learn
package

I label is the dependent variable (y)
I features are the explanatory variables (X)
I samples is the number of observations (n)
I estimators is the number of trees in a forest
I node is the split point or partition point
I pure node is a node with all y values the same

F in classi�cation all training observations belong to the same class
F if all end nodes were pure the training data is perfectly explained.

I impurity measure is the value of the loss function e.g. MSE
I importance measure is a measure of the relative importance of each
feature

F in each tree collect how on average it decreases the impurity due to
splits on that feature and average over all trees.
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6. Prediction Example

6. Prediction Example

Go through MUS2 Section 28.6 Prediction Example in detail

Use code in ML_2022_part4.do with data set
mus203mepsmedexp.dta

Predict using 7 methods
I OLS with no interactions
I OLS with interactions
I LASSO with penalized coe¢ cients
I Post LASSO (OLS with variables selected by LASSO)
I Neural network (add-on brain)
I Random forest (add-on randomforest)
I boost

Fit on 80% of sample. See how predicts out of sample.
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6. Prediction Example

Data

Same MEPS data for 2013 on 65-90 year-olds. as in part 3.

y is ltotexp = log total annual medical expenditure

x is 5 continuous variables and 14 binary variables and N = 2955
I same as part 3 except include suppins with other binary variables.

With interactions get 188 unique variables.

. global rlist c.($xlist)##c.($xlist) i.($dlist) c.($xlist)#i.($dlist)

>     msa phylim actlim injury priolist hvgg
. global dlist suppins female white hisp marry northe mwest south ///

. global xlist income educyr age famsze totchr

(109 observations deleted)
. keep if ltotexp != .

. qui use mus203mepsmedexp.dta, clear

. * Data for prediction example: 5 continuous and 14 binary variables
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6. Prediction Example

        hvgg       2,955    .6013536    .4897026          0          1
    priolist       2,955    .8240271    .3808616          0          1
      injury       2,955    .2020305    .4015828          0          1
      actlim       2,955    .2879865    .4529014          0          1
      phylim       2,955    .4362098    .4959981          0          1

         msa       2,955    .7397631     .438838          0          1
       south       2,955    .3922166    .4883272          0          1
       mwest       2,955    .2318105      .42206          0          1
      northe       2,955    .1536379    .3606623          0          1
       marry       2,955    .5583756    .4966646          0          1

        hisp       2,955    .0812183    .2732163          0          1
       white       2,955    .9736041    .1603368          0          1
      female       2,955    .5840948    .4929608          0          1
     suppins       2,955    .5915398    .4916322          0          1
      totchr       2,955    1.808799    1.294613          0          7

      famsze       2,955    1.890694    .9644483          1         13
         age       2,955    74.24535    6.375975         65         90
      educyr       2,955    11.82809    3.405095          0         17
      income       2,955    22.68353    22.60988         1     312.46
     ltotexp       2,955    8.059866    1.367592   1.098612   11.74094

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize ltotexp $xlist $dlist

. * Summary statistics for full sample
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6. Prediction Example

       _cons    5.633868   .3425158    16.45   0.000     4.962272    6.305463
        hvgg   .0959803   .0463345    2.07   0.038    .1868316   .0051289
    priolist    .4361775   .0689187     6.33   0.000     .3010436    .5713114
      injury    .1664688   .0539137     3.09   0.002     .0607564    .2721813
      actlim    .3661458   .0636335     5.75   0.000      .241375    .4909165
      phylim     .268737   .0567284     4.74   0.000     .1575054    .3799685
         msa    .0709307   .0512069     1.39   0.166    .0294743    .1713357
       south    .1957967   .0593267     3.30   0.001     .0794705    .3121229
       mwest    .3051208   .0689651     4.42   0.000      .169896    .4403456
      northe    .2736686   .0713944     3.83   0.000     .1336804    .4136567
       marry    .1751016   .0516199     3.39   0.001     .0738868    .2763164
        hisp   .1101501   .0904202    1.22   0.223    .2874435    .0671433
       white    .1858472   .1325621     1.40   0.161     .074077    .4457713
      female   .0508783   .0468787    1.09   0.278    .1427968    .0410403
     suppins    .1706101   .0469033     3.64   0.000     .0786434    .2625768
      totchr    .3238205   .0188741    17.16   0.000     .2868126    .3608283
      famsze   .0669498   .0261385    2.56   0.010    .1182014   .0156982
         age    .0042834   .0037527     1.14   0.254    .0030749    .0116416
      educyr    .0415116   .0076743     5.41   0.000     .0264641    .0565591
      income    .0007411   .0010967     0.68   0.499    .0014092    .0028914

     ltotexp       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
               Robust

. regress ltotexp $xlist $dlist, vce(robust) noheader

. * OLS for full sample
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6. Prediction Example

We will use 80% of sample for training and remaining 20% for
out-of-sample evaluation

      Total       2,955      100.00

          1       2,364       80.00      100.00
          0         591       20.00       20.00

train       Freq.     Percent        Cum.

. tabulate train

. splitsample ltotexp, generate(train) split(1 4) values(0 1) rseed(10101)

. * Split the sample with 80% in training sample

Then go through code in ML_2022_part4.do
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6. Prediction Example

Predictions from Various Models

* OLS with 19 regressors

regress ltotexp $xlist $dlist if train==1, noheader vce(robust)

qui predict y_small

* OLS with 188 potential regressors and 104 estimated

qui regress ltotexp $rlist if train==1

qui predict y_full

* LASSO with 188 potential regressors leads to 32 selected

qui lasso linear ltotexp $rlist if train==1, selection(adaptive) rseed(10101) nolog

qui predict y_laspen // use penalized coe¢ cients

qui predict y_laspost, postselection // use post selection OLS coe¤s
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6. Prediction Example

Predictions from Various Models (continued)

* Principal components using the �rst 5 principal components of 19 variables

qui pca $xlist $dlist if train==1

qui predict pc*

qui regress ltotexp pc1-pc5 if train==1

qui predict y_pca

* Neural network: 19 variables one hidden layers with 10 units

* This did not work on my latest computer

brain de�ne, input($xlist $dlist) output(ltotexp) hidden(10)

qui brain train if train==1, iter(500) eta(2) // eta>1 uses SGD

brain think y_neural

* Random forest with 19 variables

qui rforest ltotexp $xlist $dlist if train==1, ///

type(reg) iter(200) depth(10) lsize(5)

qui predict y_ranfor
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6. Prediction Example

Predictions from Various Models (continued)

Compute training MSE and test MSE

foreach var of varlist y_noreg y_small y_full y_laspen ///

y_laspost y_pca y_neural y_ranfor {

qui gen �var�errorsq = (�var�- ltotexp)^2

qui sum �var�errorsq if train == 1

scalar mse�var�train = r(mean)

qui sum �var�errorsq if train == 0

qui scalar mse�var�test = r(mean)

display "Predictor: " "�var�" _col(21) ///

" Train MSE = " %5.3f mse�var�train ///

" Test MSE = " %5.3f mse�var�test

}

A. Colin Cameron Univ.of California - Davis () ML Part 4: More Prediction methods April 2024 79 / 90



6. Prediction Example

Predictions from Various Models (continued)

Training sample: Flexible models - random forest and neural networks
did best.

Test sample: Simpler models - LASSO and small model OLS did best.

Predictor: y_ranfor  Train MSE = 1.047  Test MSE = 1.574
Predictor: y_neural  Train MSE = 1.211  Test MSE = 1.808
Predictor: y_pca     Train MSE = 1.397  Test MSE = 1.545
Predictor: y_laspost Train MSE = 1.297  Test MSE = 1.493
Predictor: y_laspen  Train MSE = 1.298  Test MSE = 1.491
Predictor: y_full    Train MSE = 1.262  Test MSE = 1.509
Predictor: y_small   Train MSE = 1.339  Test MSE = 1.492
Predictor: y_noreg   Train MSE = 1.821  Test MSE = 2.063

A. Colin Cameron Univ.of California - Davis () ML Part 4: More Prediction methods April 2024 80 / 90



7. Prediction for Economics

7. Prediction for Economics

Hal Varian (2014) has early survey.

Mullainathan and Spiess (2017)
I summarizes various
I has good application to housing prices(already presented)
I has good summary of recent economics ML applications.

A. Colin Cameron Univ.of California - Davis () ML Part 4: More Prediction methods April 2024 81 / 90



7. Prediction for Economics 7.1 Hal Varian 2014 Survey

7.1 Hal Varian 2014 Survey
Hal Varian (2014), �Big Data: New Tricks for Econometrics,� JEP,
Spring, 3-28.
Surveys tools for handling big data

I �le system for �les split into large blocks across computers
F Google �le system (Google), Hadoop �le system

I database management system to handle large amounts of data across
many computers

F Bigtable (Google), Cassandra
I accessing and manipulating big data sets across many computers

F MapReduce (Google), Hadoop.
I language for MapReduce / Hadoop

F Sawzall (Google), Pig
I Computer language for parallel processing

F Go (Google - open source)
I simpli�ed structured query language (SQL) for data enquiries

F Dremel, Big Query (Google), Hive, Drill, Impala.
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7. Prediction for Economics 7.1 Hal Varian 2014 Survey

Hal Varian (continued)

Surveys methods
I article discusses k-fold CV, trees, lasso, ....
I small discussion of causality and prediction
I (note that a classic fail is Google �u trends)
I for references mentions ESL and ISL.

While dated it is still worth reading.
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7. Prediction for Economics 7.2 Summary of Machine Learning Algorithms

7.2 Summary of Machine Learning Algorithms

From Mullainathan and Spiess (2017)
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7. Prediction for Economics 7.2 Summary of Machine Learning Algorithms

Table 2 (continued)
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7. Prediction for Economics 7.3 Some Thoughts on Prediction

7.3 Some Thoughts on ML Prediction

Clearly there are many decisions to make in implementation
I how are features converted into x�s
I tuning parameter values
I which ML method to use
I even more with an ensemble forecast.

For commercial use this may not matter
I all that matters is that predict well enough.

But for published research we want reproducibility
I At the very least document exactly what you did
I provide all code (and data if it is publicly available)
I keep this in mind at the time you are doing the project.

For public policy we prefer some understanding of the black box
I this may be impossible.
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8. Software for Machine Learning

8. Software for Machine Learning
This list will change over time and is not necessarily the best

I There are over 20,000 R packages in CRAN
and over 350,000 Python packages (most are not data-oriented).

Python libraries presented in Geron book and ISLPython
I scikit-learn for most ML methods including trees and random
forests

I keras and tensorflow and pytorch for neural networks
I code at https://github.com/ageron/handson-ml3.

R packages used in ISLR2 include
I spline library for splines
I torch package for neural networks
I tree library and randomForest package for tree-based methods.

Stata commands include
I npregress for local regression, series regression and splines
I pca for principal components
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8. Software for Machine Learning

Software (continued)

Stata add-ons include
I brain for neural networks (very basic)
I rforest for trees and random forests
I crtrees for trees and random forests
I srtrees wrapper for R commands for trees and random forests
I r_ml_stata.ado and r_ml_stata.ado wrappers for ML methods
including neural networks and trees in the python scikit-learn library

F https://sites.google.com/view/giovannicerulli/machine-learning-in-
stata

I pylearn is a wrapper for trees and random forests in python
scikit-learn library
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