Machine Learning for Microeconometrics Part 5: More Causal Inference

A. Colin Cameron Univ.of California - Davis

April 2024

Course Outline

- 1. Variable selection and cross validation
- 2. Shrinkage methods
 - ridge, lasso, elastic net
- 3. ML for causal inference using lasso
 - OLS with many controls, IV with many instruments
- 4. Other methods for prediction
 - nonparametric regression, principal components, splines
 - neural networks
 - regression trees, random forests, bagging, boosting
- Part 5: More ML for causal inference
 - ATE with heterogeneous effects and many controls.
- 6. Classification and unsupervised learning
 - ightharpoonup classification (categorical y) and unsupervised learning (no y).

1. Introduction

- Current microeconometric applications focus on causal estimation of a key parameter, such as an average marginal effect, after controlling for confounding factors
 - apply to models with selection on observables only
 - ★ good controls makes this assumption more reasonable
 - and to IV with available instruments
 - ★ good few instruments avoids many instruments problem.
- Machine learning methods determine good controls (or instruments)
 - but valid statistical inference needs to control for this data mining
 - currently extraordinarily active area of econometrics research.
- Previously considered LASSO for partial linear model with homogeneous effects.
- Now consider heterogeneous effects in potential outcomes model.
- This research area is currently exploding
 - these slides will become dated quickly.

Overview

- Introduction
- Machine learning for microeconometrics
- ATE with heterogeneous effects (doubly-robust augmented IPW)
- LASSO for causal ATE
- Random forests for causal ATE
- Neural networks for causal ATE
- More methods
- Some review articles of causal ML for Economics
- Appendix: Heterogeneous effects and AIPW
- References

2. Machine Learning for Microeconometrics

- Empirical microeconometrics studies focus on estimating partial effects
 - the effect on y of a change in x_1 controlling for x_2 .
- A machine learner would calculate this as follows
 - prediction function is $\widehat{y} = \widehat{f}(x_1, \mathbf{x}_2)$
 - the partial effect of a change of size Δx_1 is then

$$\Delta \widehat{y} = \widehat{f}(x_1 + \Delta x_1, \mathbf{x}_2) - \widehat{f}(x_1, \mathbf{x}_2).$$

- This could be very complicated as $\widehat{f}(\cdot)$ may be very nonlinear in x_1 .
- There is difficulty (impossibility?) in obtaining an asymptotic distribution for inference.
- And it requires a correct model $\widehat{f}(x_1, \mathbf{x}_2)$
 - formally the model needs to be consistent
 - i.e. probability that $\widehat{f}(\cdot)$ is correct $\to 1$ as $n \to \infty$.

4 D > 4 A > 4 B > 4 B > B 9 Q C

Add Some Structure

A partially linear control function model specifies

$$y = \alpha x_1 + g(\mathbf{x}_2) + u$$
 where $g(\cdot)$ is unknown.

- for simplicity consider only scalar x_1 .
- The partial effect of a change of size Δx_1 is then

$$\Delta \widehat{y} = \alpha \Delta x_1.$$

- Consistent estimator requires $E[y|x_1, \mathbf{x}_2] = \alpha x_1 + g(\mathbf{x}_2)$.
 - more plausible the better the choice of $g(\mathbf{x}_2)$
 - though we still need linear in x_1 and additivity.
- The partially linear model was used initially in semiparametrics
 - typically \mathbf{x}_1 and α were high dimension and \mathbf{x}_2 low dimension
 - now for causal ML x_1 and α are high dimension and \mathbf{x}_2 is high dimension.

How to add the controls

- Biostatistics includes regressors \mathbf{x}_2 as controls if p < 0.05
 - imperfect selection and also leads to pre-test bias.
- Economists use economics theory and previous studies to include regressors
 - these are included regardless of their statistical significance
 - to guard against omitted variables bias and to avoid pre-test bias.
- Machine learning methods are used to get a good choice of $g(\mathbf{x}_2)$
 - ideally in such a way and/or with assumptions so that standard inference can be used for $\widehat{\alpha}$
 - \star so data mining has not affected the distribution of $\widehat{\alpha}$.
 - ▶ The methods can extend to endogenous x_1 .
- The course to date has focused on determine $g(\mathbf{x}_2)$ using the LASSO
 - due to Belloni. Chernozhukov and Hansen and coauthors
 - assumptions including "sparsity" enable use of standard inference for $\widehat{\alpha}_1$.

Alternatively estimate average partial effects

- An alternative to the partially linear model is to use less structure and estimate average partial effects.
- The leading example is the heterogeneous effects literature
 - ▶ let x_1 be a binary treatment taking values 0 or 1
 - let $\Delta y/\Delta x_1$ vary across individuals in an unstructured way
 - estimate the average partial effect $E[y|x_1 = 1] E[y|x_1 = 0]$.
- One method used is propensity score matching
 - machine learning may give a better propensity score estimator.
- Another method used is nearest-neighbors matching
 - machine learning may give a better matching algorithm.
- To control for data mining, however, use an estimator that satisfies the orthogonalization condition.

3. ATE with heterogeneous effects

- Consider the effect of binary treatment d on an outcome y
 - ightharpoonup d=1 if treated and d=0 if untreated (control).
- If we could run a randomized control trial (RCT)
 - ▶ assignment to treatment is completely random (e.g. toss a coin)
 - ▶ then the average treatment effect would be simply the difference in means $\bar{y}_1 \bar{y}_0$.
- Important things to note
 - the treatment effect can differ from individual (we just average)
 - * even though mechanically OLS $y_i = \alpha + \beta d_i + u_i$ gives $\hat{\beta} = \bar{y}_1 \bar{y}_0$.
 - ightharpoonup there is no need to control for $\mathbf{x}'s$ given random assignment
 - though potentially adding controls could improve estimator precision.

4□ > 4□ > 4□ > 4□ > 4□ > 9

Homogeneous effects

- In practice in economics we usually have observational data
 - where individuals may self-select into treatment (d is endogenous).
- The control function approach specifies the partial linear model

$$y = \beta d + g(\mathbf{x}) + u.$$

- The key nontestable assumption (selection on observables only) is
 - once we include the control function $g(\mathbf{x})$ the treatment variable d can be viewed as if it is randomly assigned (i.e. d is **exogenous**)
 - ightharpoonup d is uncorrelated with (or independent of) the error u conditional on \mathbf{x} .
- Better control functions $g(\mathbf{x})$ may make this assumption more plausible
 - earlier we used an ML method such as Lasso for flexible $g(\mathbf{x})$.
- This model restricts the treatment effect to be the same β for each individual with the same ${\bf x}$
 - called homogeneous effects.

3.1 Heterogeneous Effects Model

- The heterogeneous effects model allows the treatment effect to differ across individuals
 - ▶ it is more flexible
 - ▶ and more plausible to believe **x** can control for self-selection.
- As for an RCT we wish to estimate the average treatment effect

$$au = \mathsf{ATE} = E[y^{(1)} - y^{(0)}]$$

- where $y^{(1)}$ is the potential outcome if treated (d=1)
- $y^{(0)}$ is the potential outcome if not treated (d=0)
- and for any given individual we only observe one of $y_i^{(1)}$ or $y_i^{(0)}$.

Unconfoundedness assumption

- The key nontestable assumption (unconfoundedness or conditional independence) is
 - once we adjust for control variables x the treatment variable d can be viewed as if it is randomly assigned (i.e. exogenous)
 - ▶ d is independent of the potential outcomes $y^{(0)}$ and $y^{(1)}$ conditional on \mathbf{x} .

3.2 Heterogeneous Effects Model Estimators

- Several estimators have been proposed for this model.
 - given in detail in the Appendix.
- Regression model adjustment
 - estimate separate models of y on x for the treated and the untreated
 - predict y for all individuals using the treated coefficient estimates and predict y for all individuals using the untreated coefficient estimates
 - finally compute the difference in the average predictions.
- Inverse probability weighting (IPW) using the propensity score
 - Use a weighted average of treated y's and untreated y's
 - with weights that adjust for the probability of selection into treatment.
- Augmented IPW combines the preceding two methods.
- Other methods include matching
 - compare the outcome for the treated to the outcome for similar (on x) untreated.

3.2 ATE estimated using Augmented IPW

- Define the following quantities
 - $\mu_1(\mathbf{x}) = E[y^{(1)}|\mathbf{x}]$ the conditional mean of y if treated
 - $m{\mu}_0(\mathbf{x}) = E[y^{(0)}|\mathbf{x}]$ the conditional mean of y if untreated
 - $p(\mathbf{x}) = \Pr[d = 1|\mathbf{x}]$ the conditional probability of treatment (propensity score)
- Define corresponding regression estimates for each individual
 - $\mathbf{\hat{\mu}}_{1}(\mathbf{x}_{i}), \ \widehat{\mu}_{0}(\mathbf{x}_{i}), \ \widehat{p}(\mathbf{x}_{i}).$
- The doubly-robust method (augmented IPW) uses

$$\widehat{\tau} = \widehat{\mathsf{ATE}} = \frac{\frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{d_i(y_i - \widehat{\mu}_1(\mathbf{x}_i))}{\widehat{p}(\mathbf{x}_i)} + \widehat{\mu}_1(\mathbf{x}_i) \right\}}{-\frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{(1 - d_i)(y_i - \widehat{\mu}_0(\mathbf{x}_i))}{1 - \widehat{p}(\mathbf{x}_i)} + \widehat{\mu}_0(\mathbf{x}_i) \right\}}$$

- Doubly-robust as estimator remains consistent if either
 - the propensity score model $p(\mathbf{x})$ or
 - the regression imputation model $\mu_i(\mathbf{x})$ is misspecified.
- Stata command teffects aipw estimates this with OLS and logit.

4. LASSO for the AIPW estimate of the ATE

ullet For AIPW the moment condition for the ATE parameter au is

- In addition to being doubly-robust, the orthogonalization condition holds (shown below).
- So use
 - ▶ LASSO logit to obtain $\widehat{p}(\mathbf{x})$
 - ▶ LASSO OLS to obtain $\widehat{\mu}_1(\mathbf{x})$ and $\widehat{\mu}_0(\mathbf{x})$.
- The Stata command telasso implements this.
- Max Farrell (2015), "Robust Estimation of Average Treatment Effect with Possibly more Covariates than Observations," *Journal of Econometrics*, 189, 1-23.
 - considers multivalued treatment but I present binary d case.

Stata telasso command

- ullet The following code gives lasso AIPW with various methods for the lasso penalty parameter λ where
 - y is log medical expenditures
 - ▶ *d* is whether have supplementary health insurance
 - x is 176 controls (\$rlist2)

```
* Plugin values for lambda (the default)
telasso (Itotexp $rlist2) (suppins $rlist2), selection(plugin) vce(robust)

* BIC values for lambda
telasso (Itotexp $rlist2) (suppins $rlist2), selection(bic) vce(robust)

* CV takes a long time
telasso (Itotexp $rlist2) (suppins $rlist2), selection(cv) xfolds(10) ///
rseed(10101) vce(robust)
```

Stata Results

- Apply to earlier data.
- ATE is effect of supplementary insurance on log medical expenditures

Method	Stata command	ATE	se(ATE)
Partial linear lasso	poregress	0.1839	0.0468
Regression adjustment	teffects, ra	0.1745	0.0496
IPW	teffects, ipw	0.1867	0.0481
Augmented IPW	teffects, aipw	0.1713	0.0483
Lasso AIPW plugin	telasso, sel(plug)	0.1502	0.0519
Lasso AIPW bic	telasso, sel(bic)	0.1428	0.0596
Lasso AIPW CV	telasso, sel(cv)	0.1496	

5. Random Forests for Causal ATE

- Random forests predict very well
 - Susan Athey's research emphasizes random forests.
- Stefan Wager and Susan Athey (2018), "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," JASA, 1228-1242.
- Standard binary treatment and heterogeneous effects with unconfoundness assumption
 - use random forests to determine the controls.
 - proves asymptotic normality and gives point-wise confidence intervals
 - ★ This is a big theoretical contribution.
- Stefan Wager and Susan Athey (2018), "Estimating treatment Effects with Causal Forests: An Application," Observational Studies 5, September 2019, 21-35 (also https://arxiv.org/pdf/1902.07409)
 - a how-to application (and allows for clustered errors)
 - uses the R package grf.

Random Forests for Causal ATE (continued)

- Let L denote a specific leaf in tree b.
- $\tau(\mathbf{x}) = E[y^{(1)} y^{(0)}|\mathbf{x}]$ in a single regression tree b is estimated by

$$\begin{array}{ll} \widehat{\boldsymbol{\tau}}_b(\mathbf{x}) &= \frac{1}{\#\{i:d_i=1,\mathbf{x}_i\in L\}} \sum_{i:d_i=1,\mathbf{x}_i\in L} y_i - \frac{1}{\#\{i:d_i=0,\mathbf{x}_i\in L\}} \sum_{i:d_i=0,\mathbf{x}_i\in L} y_i \\ &= \bar{y}_1 \text{ in leaf } L - \bar{y}_0 \text{ in leaf } L. \end{array}$$

• Then a random forest with sub-sample size s gives B trees with

$$\begin{array}{rcl} \widehat{\tau}_b(\mathbf{x}) & = & \frac{1}{B} \sum_{b=1}^B \widehat{\tau}_b(\mathbf{x}) \\ \widehat{Var}[\widehat{\tau}_b(\mathbf{x})] & = & \frac{n-1}{n} \left(\frac{n}{n-2}\right)^2 \sum_{i=1}^n Cov(\widehat{\tau}_b(\mathbf{x}), d_{ib}) \end{array}$$

- where $d_{ib} = 1$ if i^{th} observation in tree b and 0 otherwise
- and the covariance is taken over all B trees.
- Key is that a tree is honest.
- A tree is honest if for each training observation i it only uses y_i to
 - either estimate $\widehat{\tau}(\mathbf{x})$ within leaf
 - or to decide where to place the splits
 - but not both (analogous to cross fitting in partial linear model).

6. Deep Neural Networks for Causal ATE

- Max Farrell, Tengyuan Liang and Sanjog Misra (2021), ""Deep Neural Networks for Estimation and Inference," Econometrica.
 - Further detail in "Deep Neural Networks for Estimation and Inference: Application to Causal Effects and Other Semiparametric Estimands," arXiv:1809.09953v2.
- Obtains nonasymptotic bounds and convergence rates for nonparametric estimation using deep neural networks.
- Then obtain asymptotic normal results for inference on finite-dimensional parameters following first-step estimation using deep neural nets.
- Application is to ATE using doubly robust augmented IPW
 - outcome is consumer spending and interest is in effect of marketing
 - consider effect of three different targeting strategies: (1) never treat;
 (2) blanket treatment; (3) loyalty policy.

7.1 LATE and local quantile treatment effects

- Belloni, Chernozhukov, Fernandez-Val and Hansen (2015), "Program Evaluation with High-Dimensional Data".
- Binary treatment and heterogeneous effects with endogenous treatment and valid instruments
 - allow for estimation of functions
 - ★ such as local quantile treatment effects over a range of quantiles
 - ▶ The paper is very high level as it uses functionals
 - uses LASSO along the way.
- Key is to use an orthogonalization moment condition
 - allows inference to be unaffected by first-stage estimation.

8. Some review articles of ML for Economics

- Susan Athey's website has several wider-audience papers on machine learning in economics.
- Susan Athey (2017), "Beyond Prediction: Using Big Data for Policy Problems," Science 355, 483-485.
 - Off-the shelf prediction methods assume a stable environment
 - ★ includes Kleinberg et al (2015) AER hip replacement.
 - Economics considers causal prediction by
 - * adjust for confounders e.g. Belloni et al., Athey et al.
 - ★ designed experiments e.g. Blake et al.
 - excellent references.

Susan Athey (continued)

- Susan Athey (2018), "The Impact of Machine Learning on Economics"
- Lengthy wide-ranging survey paper with no equations.
- Machine learning methods can
 - provide variables to be used in economic analysis (e.g. from images or text)
 - ▶ lead to better model selection through e.g. cross-validation
 - provide much quicker computation using stochastic gradient descent
 - use gradient at a single data point to approximate average over observations of the gradient
 - lead to better causal estimates
 - ★ fundamental identification issues are not solved
 - ★ but perhaps make assumptions more credible e.g. unconfoundedness
 - be used whenever semiparametric methods might have been used.
- Paper surveys recent work on ML for causal inference
 - double machine learning (Chernozhukov et al 2018) and orthogonalization are especially promising.

Other Sources

- Dario Sansone (University of Exeter) provides very many good references
 - https://sites.google.com/view/dariosansone/resources/machine-learning
- Susan Athey and Guido Imbens (2019), "Machine Learning Methods Economists Should Know About," Annual Review of Economics.
- This paper provides great detail on the current literature with many references.

9. Appendix: Heterogeneous Effects Model and AIPW

- This appendix provides details for those unfamiliar with heterogeneous effects and associated estimation methods for a binary treatment.
 - Rubin causal model
 - Average treatment effect (ATE)
 - Regression model adjustment estimator
 - Inverse probability-weighted (IPW) estimator
 - Doubly-robust Augmented IPW estimator
 - Proof of orthogonalization condition for AIPW.

9.1 Rubin Causal Model and Potential Outcomes

- Consider a **binary treatment** $d \in \{0, 1\}$
 - for some individuals we observe y only when d = 1 (treated)
 - for others we observe y only when d = 0 (untreated or control)
 - some methods generalize to multi-valued treatment $d \in \{0, 1, ..., J\}$.
- The Rubin causal model defines
 - ▶ potential outcomes $y^{(1)}$ if d = 1 and $y^{(0)}$ if d = 0
 - for a given individual we observe only one of $y_i^{(1)}$ and $y_i^{(0)}$
 - we observe $y_i = d_i y_i^{(1)} + (1 d_i) y_i^{(0)}$.

Average Treatment Effect

The goal is to estimate the average treatment effect (ATE)

$$\tau = ATE = E[y^{(1)} - y^{(0)}].$$

- Or the conditional treatment effect given x
 - $au(\mathbf{x}) = E[y^{(1)} y^{(0)}|\mathbf{x}].$
- Also may be interested in the average treatment effect on the treated (ATET)

$$ATET = E[y^{(1)} - y^{(0)}|d = 1].$$

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 釣 へ @

Unconfoundness

- A treatment assignment mechanism is unconfounded if assignment to treatment does not depend on the potential outcomes.
- Thus $\Pr[d|y^{(0)},y^{(1)},\mathbf{x}]=\Pr[d|y^{*(0)},y^{*(1)},\mathbf{x}]$ for all $d,y^{(0)},y^{(1)},y^{*(0)},y^{*(1)},\mathbf{x}$.
- This crucial nontestable assumption is also called the conditional independence assumption and is often written as
 - $d_i \perp \{y_i^{(0)}, y_i^{(1)}\} | \mathbf{x}_i.$
 - conditional on **x**, treatment is independent of the potential outcome.
- This means once we condition on x
 - the conditional distribution of the potential outcome if treated $(y^{(1)})$ is the same for those who did and did not actually get treatment
 - $\star \ y_i^{(1)} | d_i = 1$, ${f x}$ has the same distribution as $y_i^{(1)} | d_i = 0$, ${f x}$
 - the conditional distribution of the potential outcome if not treated $(y^{(0)})$ is the same for those who did and did not actually get treatment
 - * $y_i^{(0)}|d_i=1$, x has the same distribution as $y_i^{(0)}|d_i=0$, x.

Heterogeneous Effects Model Estimators

- Several estimators have been proposed for this model
 - given in detail next.
- Regression model adjustment
 - estimate separate models of y on x for the treated and the untreated
 - predict y for all individuals using the treated coefficient estimates and predict y for all individuals using the untreated coefficient estimates
 - finally compute the difference in the average predictions.
- Inverse probability weighting (IPW) using the propensity score
 - Use a weighted average of treated y's and untreated y's
 - with weights that adjust for the probability of selection into treatment.
- Augmented IPW combines the preceding two methods.
- Other methods include matching
 - compare the outcome for the treated to the outcome for similar (on x) untreated.

9.2 ATE estimated using Regression Model Adjustment

- Regress y on x for the treated sample, regress y on x for the untreated sample, predict potential outcomes for a person if treated and for the same person if untreated, average for all individuals and subtract.
- Define the conditional means
 - $\mu_1(\mathbf{x}) = E[y^{(1)}|\mathbf{x}]$ for treated
 - $\mu_0(\mathbf{x}) = E[y^{(0)}|\mathbf{x}]$ for control
 - so ATE(x) = $\tau(x) = \mu_1(x) \mu_0(x)$.
- Then

$$\widehat{\mathsf{ATE}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_1(\mathbf{x}_i) - \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_0(\mathbf{x}_i).$$

- Stata command teffects ra does this
 - ▶ OLS regression with specified functions $\mu_1(\cdot)$ & $\mu_0(\cdot)$ and specified ${\bf x}$
 - equals $\widehat{\beta}_2$ in OLS regression $y_i = \beta_1 + \beta_2 d_i + \mathbf{x}_i' \boldsymbol{\beta}_3 + d_i \mathbf{x}_i' \boldsymbol{\beta}_4 + u_i$, i = 1, ..., n.

9.3 ATE Estimated using Inverse Probability Weighting

- Adjust for selection into treatment using the propensity score.
- ullet Define the **propensity score** $p(\mathbf{x}) = \Pr[d=1|\mathbf{x}] = E[d|\mathbf{x}].$
- Under the conditional independence assumption
 - $m{\mu}_1(\mathbf{x}) = E[y^{(1)}|\mathbf{x}] = E[rac{dy}{p(\mathbf{x})}|\mathbf{x}]$ shown on next slide
 - $\mu_0(\mathbf{x}) = E[y^{(0)}|\mathbf{x}] = E[rac{(1-d)y}{1-p(\mathbf{x})}|\mathbf{x}]$ by similar proof
 - ► ATE(\mathbf{x}) = $\tau(\mathbf{x}) = E[y^{(1)} y^{(0)} | \mathbf{x}] = E\left[\left(\frac{dy}{p(\mathbf{x})} \frac{(1-d)y}{1-p(\mathbf{x})}\right) | \mathbf{x}\right]$
 - * downweights y for treated with high $p(\mathbf{x})$ and y for untreated with low $p(\mathbf{x})$.
- Inverse probability weighting (IPW) uses the sample analog

$$\widehat{\tau} = \widehat{\mathsf{ATE}} = \frac{1}{n} \sum_{i=1}^n \frac{d_i y_i}{\widehat{p}_i(\mathbf{x}_i)} - \frac{1}{n} \sum_{i=1}^n \frac{(1-d_i)y_i}{1-\widehat{p}(\mathbf{x}_i)}.$$

- 4 ロ > 4 個 > 4 差 > 4 差 > 差 釣 Q ()

Proof of IPW

• Note that $d^2 = d$ for binary d = 0 or 1. Then

$$d \times y = d \times \{dy^{(1)} + (1 - d)y^{(0)}\} = d^2y^{(1)} + (d - d^2)y^{(0)} = dy^{(1)}$$

So

$$\begin{split} E_{d,y^{(0)},y^{(1)}} & \left[\frac{dy}{p(\mathbf{x})} | \mathbf{x} \right] \\ &= E_{d,y^{(0)},y^{(1)}} \left[\frac{dy^{(1)}}{p(\mathbf{x})} | \mathbf{x} \right] \text{ as } d \times y = dy^{(1)} \\ &= E_d \left[\frac{d}{p(\mathbf{x})} | \mathbf{x} \right] \times E_{y^{(1)}} \left[y^{(1)} | \mathbf{x} \right] \text{ by unconfoundness assumption} \\ &= \frac{p(\mathbf{x})}{p(\mathbf{x})} \times E_{y^{(1)}} \left[y^{(1)} | \mathbf{x} \right] \text{ as } E_d \left[d | \mathbf{x} \right] = p(\mathbf{x}) \\ &= E_y \left[y_1^{(1)} | \mathbf{x} \right] \end{split}$$

- (ロ) (個) (差) (差) (差) (2) (9)(G

ATE estimated using propensity scores (continued)

- Stata command teffects ipw estimates this
 - ▶ logit specification for $p(\mathbf{x})$ with specified \mathbf{x} .
- Instead could use ML methods such as LASSO logit to get $\widehat{p}(\mathbf{x})$
 - ► The conditional independence assumption is more plausible the more x's considered.
- This method works best when $\hat{p}(\mathbf{x})$ is constant as in a randomized trial.
- When $\widehat{p}(\mathbf{x})$ is close to 0 or 1 the weights become very large.
- Then it is better to use a blocking estimator
 - **partition** observations into subclasses based on value of $\widehat{p}(\mathbf{x})$
 - compute the ATE in each subclass as $\bar{y}_1 \bar{y}_0$
 - then ATE is the average across subclasses (weighted by subclass size).

9.4 ATE estimated using doubly-robust AIPW method

ullet As before define $\mu_1=E[y^{(1)}]$ and $\mu_0=E[y^{(0)}]$ and

$$\mu_1({\bf x}) = E[y^{(1)}|{\bf x}]; \ \mu_0({\bf x}) = E[y^{(0)}|{\bf x}]; \ p({\bf x}) = \Pr[d=1|{\bf x}].$$

 The doubly-robust method (augmented IPW) combines the preceding regression adjustment and IPW methods and uses

$$\begin{split} \widehat{\tau} &= \widehat{\mathsf{ATE}} = \widehat{\mu}_1 - \widehat{\mu}_0 \\ \widehat{\mu}_1 &= \frac{1}{n} \sum_{i=1}^n \left\{ \frac{d_i(y_i - \widehat{\mu}_1(\mathbf{x}_i))}{\widehat{p}(\mathbf{x}_i)} + \widehat{\mu}_1(\mathbf{x}_i) \right\} \\ \widehat{\mu}_0 &= \frac{1}{n} \sum_{i=1}^n \left\{ \frac{(1 - d_i)(y_i - \widehat{\mu}_0(\mathbf{x}_i))}{1 - \widehat{p}(\mathbf{x}_i)} + \widehat{\mu}_0(\mathbf{x}_i) \right\} \end{split}$$

- Doubly-robust as estimator remains consistent if either
 - the propensity score model $p(\mathbf{x})$ or
 - the regression imputation model $\mu_i(\mathbf{x})$ is misspecified.
- Stata command teffects aipw estimates this with OLS and logit.

A. Colin Cameron Univ.of California - Davis

Stata telasso command

- The following code gives standard estimators
 - y is log medical expenditures
 - d is whether have supplementary health insurance
 - x is 176 controls (\$rlist2)
- * Homogeneous effects: partialling-out partial linear model poregress Itotexp suppins, controls(\$rlist2)
- * Heterogeneous effects: regression adjustment estimate of ATE teffects ra (Itotexp \$rlist2) (suppins), vce(robust)
- * Heterogeneous effects: inverse probability weighting estimate of ATE teffects ipw (Itotexp) (suppins \$rlist2), vce(robust)
- * Heterogeneous effects: Augmented IPW estimate of ATE teffects aipw (Itotexp \$rlist2) (suppins \$rlist2), vce(robust)

9.5 Orthogonalization for AIPW

- For simplicity define $\eta_1 = \mu_1(\mathbf{x})$, $\eta_2 = \mu_0(\mathbf{x})$ and $\eta_3 = p(\mathbf{x})$.
- ullet The preceding AIPW estimator au solves the population moment condition $E[\psi(d,y,\pmb{\eta})]=0$ where

$$\psi(d, y, \tau, \eta) = \frac{d(y - \eta_1)}{\eta_3} + \eta_1 - \frac{(1 - d)(y - \eta_2)}{1 - \eta_3} - \eta_2 - \tau.$$

- Orthogonalization requires $E[\psi(d, y, \tau, \eta)/\partial \eta_j | \mathbf{x}] = 0$ for j = 1, 2, 3.
- $$\begin{split} \bullet \ \eta_1 : E[\psi(d,y,\tau,\pmb{\eta})/\partial \eta_1|\mathbf{x}] &= E[\frac{-d}{\eta_3} + 1|\mathbf{x}] = \frac{-E[d|\mathbf{x}]}{\eta_3} + 1 \\ &= \frac{-\eta_3}{\eta_3} + 1 = 0, \quad \text{using } E[d|\mathbf{x}] = \Pr[d=1|\mathbf{x}] = \eta_3. \end{split}$$
- $$\begin{split} \bullet \ \eta_2 : E[\psi(d,y,\tau,\pmb{\eta})/\partial \eta_2|\mathbf{x}] &= E[\frac{(1-d)}{\eta_3} 1|\mathbf{x}] = \frac{1-E[d|\mathbf{x}]}{1-\eta_3} + 1 \\ &= \frac{1-\eta_3}{1-\eta_3} + 1 = 0, \quad \text{using } E[d|\mathbf{x}] = \Pr[d=1|\mathbf{x}] = \eta_3. \end{split}$$

Othogonalization for AIPW (continued)

- ullet Lastly consider derivative w.r.t. η_3 . This is less straightforward.
- $\psi(d, y, \tau, \eta) = \frac{d(y \eta_1)}{\eta_3} + \eta_1 \frac{(1 d)(y \eta_2)}{1 \eta_3} \eta_2 \tau.$
- $\eta_3 : E[\psi(d, y, \tau, \eta)/\partial \eta_3 | \mathbf{x}] = E[-\frac{d(y-\eta_1)}{\eta_3^2} \frac{(1-d)(y-\eta_2)}{(1-\eta_3)^2} | \mathbf{x}].$
- This term involves the product dy. The conditional independence assumption $y^{(0)}, y^{(1)} \perp d|\mathbf{x}$ implies that $E_{d,y|\mathbf{x}}[dy|\mathbf{x}] = \Pr[d=1|\mathbf{x}] \times E[y^{(1)}|\mathbf{x}] = \eta_3 \times \eta_1$.
- Then $E\left[\frac{d(y-\eta_1)}{\eta_3^2}|\mathbf{x}\right] = \frac{E[dy|\mathbf{x}] E[d|\mathbf{x}]\eta_1}{\eta_3^2} = \frac{\eta_3\eta_1 \eta_3\eta_1}{\eta_3^2} = 0.$
- And similarly $E[\frac{(1-d)(y-\eta_0)}{(1-\eta_3)^2}|\mathbf{x}] = \frac{E[(1-d)y|\mathbf{x}] E[(1-d)|\mathbf{x}]\eta_2}{(1-\eta_3)^2} = \frac{(1-\eta_3)\eta_2 (1-\eta_3)\eta_2}{(1-\eta_3)^2} = 0.$
- So $E[\psi(d, y, \tau, \eta)/\partial \eta_3 | \mathbf{x}] = E[-\frac{d(y-\eta_1)}{\eta_3^2} \frac{(1-d)(y-\eta_2)}{(1-\eta_3)^2} | \mathbf{x}] = 0 0 = 0.$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

10. References

- Achim Ahrens, Christian Hansen, Mark Schaffer (2020), "lassopack: Model selection and prediction with regularized regression in Stata," The Stata Journal, Vol.20, 176–235.
- Susan Athey (2018), "The Impact of Machine Learning on Economics," The economics of artificial intelligence, 507-552.
- Susan Athey and Guido Imbens (2019), "Machine Learning Methods Economists Should Know About," Annual Review of Economics 11, 685-725.
- Alex Belloni, Victor Chernozhukov and Christian Hansen (2011), "Inference Methods for High-Dimensional Sparse Econometric Models," Advances in Economics and Econometrics, ES World Congress 2010, ArXiv 2011.
- Alex Belloni, D. Chen, Victor Chernozhukov and Christian Hansen (2012), "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain", Econometrica, Vol. 80, 2369-2429.
- Alex Belloni, Victor Chernozhukov and Christian Hansen (2014),
 "High-dimensional methods and inference on structural and treatment effects,"
 Journal of Economic Perspectives, Spring, 29-50.

References (continued)

- Alex Belloni, Victor Chernozhukov, Ivan Fernandez-Val and Christian Hansen (2017), "Program Evaluation and Causal Inference with High-Dimensional Data," Econometrica, 233-299.
- Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey and James Robins (2018), "Double/debiased machine learning for treatment and structural parameters," The Econometrics Journal, 21, C1-C68.
- Max Farrell (2015), "Robust Estimation of Average Treatment Effect with Possibly more Covariates than Observations", Journal of Econometrics, 189, 1-23.
- Max Farrell, Tengyuan Liang and Sanjog Misra (2021), "Deep Neural Networks for Estimation and Inference," Econometrica.
- Stefan Wager and Susan Athey (2018), "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," JASA, 1228-1242.
- Stefan Wager and Susan Athey (2018), "Estimating Treatment Effects with Causal Forests: An Application," Observational Studies 5, September 2019, 21-35 (also https://arxiv.org/pdf/1902.07409)