Bayesian Methods: Part 1

A. Colin Cameron Univ. of Calif. - Davis

. .

May 2021

A. Colin Cameron Univ. of Calif. - Davis

Bayesian Methods: Part 1

▲ ■ → ■ → へへの May 2021 1 / 44

イロト イヨト イヨト イヨト

1. Introduction

- Bayesian methods provide an alternative method of computation and statistical inference to ML estimation.
 - Some researchers use a fully Bayesian approach to inference.
 - Other researchers use Bayesian computation methods (with a diffuse or uninformative prior) as a tool to obtain the MLE and then interpret results as they would classical ML results.

Outline

- Introduction
- Bayesian Approach
- In Normal-normal Example
- MCMC Example using Stata command bayes:
- Markov Chain Monte Carlo Methods
- 6 Further discussion
- Appendix: Accept/reject method
- Some references

2. Bayesian Methods: Basic Idea

- Bayesian methods for inference on θ obtain information on θ from two sources
 - Data the likelihood function
 - ***** for regression this is usually $L(\mathbf{y}|\boldsymbol{\theta}, \mathbf{X})$
 - Prior beliefs on θ
 - **\star** the prior density $\pi(\theta)$
 - ★ this bit is new.

(3)

Bayesian Methods: The posterior density

- Recall Bayes Theorem that $\Pr[A|B] = \Pr[A \cap B] / \Pr[B]$.
- Applying Bayes here, the **posterior density** for θ given data **y**, **X** is

$$oldsymbol{
ho}(oldsymbol{ heta}|oldsymbol{y},oldsymbol{X}) = rac{oldsymbol{
ho}(oldsymbol{ heta},oldsymbol{y},oldsymbol{X})}{oldsymbol{
ho}(oldsymbol{y},oldsymbol{X})}$$

• So the **posterior density** of θ is

$$p(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}) = \frac{L(\mathbf{y}|\boldsymbol{\theta}, \mathbf{X}) \times \pi(\boldsymbol{\theta})}{m(\mathbf{y}|\mathbf{X})}$$

► $m(\mathbf{y}|\mathbf{X}) = \int L(\mathbf{y}|\boldsymbol{ heta}, \mathbf{X}) imes \pi(\boldsymbol{ heta}) d\boldsymbol{ heta}$ is called the marginal likelihood

***** problem: there is usually no tractable expression for $m(\mathbf{y}|\mathbf{X})$.

In general

 $\mathsf{Posterior} \propto \mathsf{Likelihood} \times \mathsf{Prior}$

イロト 不得下 イヨト イヨト 二日

Bayesian Methods: The prior density

- The prior can be **informative** so it does effect $p(\theta|\mathbf{y}, \mathbf{X})$
 - do this if have strong prior information on θ .
- In some simple settings such as a doctor interpreting a medical test
 - θ is scalar
 - there are no regressors so the likelihood is $L(\mathbf{y}|\theta)$
 - there can be strong prior beliefs $\pi(\theta)$.
- The prior can be **uninformative** so it has little effect on $p(\theta|\mathbf{y}, \mathbf{X})$
 - e.g. θ can take a very wide range of values (large variance)
- For econometrics regressions prior beliefs are typically uninformative over all parameters, or over all but a subset of the parameters.
- As $N \to \infty$ the prior has little effect as the likelihood dominates.

- 4 目 ト - 4 日 ト - 4 日 ト

Bayesian Methods: Inference

- Bayesian analysis bases inference on the posterior distribution.
 - the **best estimate** of θ is the mean or the mode of the posterior distribution.
 - ► a **95% credible interval** (or "Bayesian confidence interval") for θ is from the 2.5 to 97.5 percentiles of the posterior distribution
 - no need for asymptotic theory!
- Classical statisticians interpret results in the usual MLE way
 - the mode or mean of the posterior is viewed as estimate $\hat{\theta}$ of θ .
- Until recently only very simple Bayesian models could be computed
 - due to inability to compute $m(\mathbf{y}|\mathbf{X}) = \int L(\mathbf{y}|\boldsymbol{\theta}, \mathbf{X}) \times \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$
 - ★ including Bayes (1765) original example
 - MCMC methods have changed this.

・ 何 ト ・ ヨ ト ・ ヨ ト

3. Normal-normal Bayesian example

- Suppose $y|\theta \sim \mathcal{N}[\theta, 100]$ (σ^2 is known from other studies) And we have independent sample of size N = 50 with $\bar{y} = 10$.
- Classical analysis uses $\bar{y}|\theta \sim \mathcal{N}[\theta, 100/N] \sim \mathcal{N}[\theta, 2]$ Reinterpret as likelihood $\theta|\mathbf{y} \sim \mathcal{N}[\theta, 2]$. Then MLE $\hat{\theta} = \bar{y} = 10$.
- Bayesian analysis introduces prior, say θ ~ N[5, 3].
 We combine likelihood and prior to get posterior.

• We expect

- posterior mean: between prior mean 5 and sample mean 10
- posterior variance: less than 2 as prior info reduces noise
- posterior distribution: ? Generally intractable.
- But here can show that the posterior for θ is $\mathcal{N}[8, 1.2]$.

(4回) (4回) (4回)

• Prior $\mathcal{N}[5,3]$ and likelihood $\mathcal{N}[10,2]$ and yields posterior $\mathcal{N}[8,1.2]$ for θ

★ Ξ ►

- Classical inference: $\widehat{ heta} = ar{y} = 10 \sim \mathcal{N}[10, 2]$
 - A 95% confidence interval for θ is $10 \pm 1.96 \times \sqrt{2} = (7.23, 12.77)$
 - i.e. if we sampled many times then 95% of the time a similarly constructed confidence interval will include the unknown constant θ.
- Bayesian inference: Posterior $heta \sim \mathcal{N}[\mathbf{8}, 1.2]$
 - A 95% posterior interval for θ is $8 \pm 1.96 \times \sqrt{1.2} = (5.85, 10.15)$
 - i.e. with probability 0.95 the true value of θ lies in this interval.

Role of the prior and the sample size

- For normal-normal if $y_i | \mu \sim \mathcal{N}[\mu, \sigma^2]$ with σ^2 known and prior $\mu \sim \mathcal{N}[\mu, \underline{s}^2]$ then the posterior $\mu | \mathbf{y} \sim \mathcal{N}[\overline{\mu}, \overline{s}^2]$
 - $\overline{\mu} = \overline{s}^2 \times [(\frac{\sigma^2}{N})^{-1}\overline{y} + (\underline{s}^2)^{-1}\underline{\mu}]$ is the posterior mean
 - ▶ and $\bar{s}^2 = [(\frac{\sigma^2}{N})^{-1} + (\underline{s}^2)^{-1}]^{-1}$ is the posterior variance

 \star the inverse of the variance is called the precision.

- Consider variations of the preceding example with $\mu \sim \mathcal{N}[8, 1.2].$
 - ▶ with a "diffuse" prior Bayesian gives similar numerical result to classical
 - * if prior is $\mu \sim \mathcal{N}[5, 100]$ then posterior is $\mu \sim \mathcal{N}[9.903, 1.961]$.
 - with a large sample we get result close to the classical result
 - * if N = 5,000 then $\bar{y} = 10 \sim \mathcal{N}[10,0.02]$ and posterior is $\mu \sim \mathcal{N}[9.961,0.01987]$.

イロト イポト イヨト イヨト

Tractable results are rare

• The tractable result for normal-normal (known variance) carries over to **exponential family using a conjugate prior**

Likelihood	Prior	Posterior
Normal (mean μ)	Normal	Normal
Normal (precision $\frac{1}{\sigma^2}$)	Gamma	Gamma
Binomial (p)	Beta	Beta
Poisson (μ)	Gamma	Gamma

- using conjugate prior is like augmenting data with a sample from the same distribution
- for Normal with precision matrix Σ^{-1} gamma generalizes to Wishart.
- But in general tractable results are not available
 - so use numerical methods, notably MCMC.
 - using tractable results in subcomponents of MCMC can speed up computation.

4. MCMC Example using Stata command bayes:

- Consider a linear regression log earnings schooling example
 - men and women full-time workers in 2010.
 - . * Read in and summarize earnings schooling data
 - . qui use mus229acs.dta, clear
 - . describe earnings lnearnings age education

Variable	Storage	Display	Value	Variable label
name	type	format	label	
earnings	float	%9.0g		Annual earnings in \$
lnearnings	float	%9.0g		Natural logarighm of earnings
age	int	%36.0g		Age in years
education	тloat	%a.qg		schooling

- . qui keep if _n <= 100
- . summarize earnings lnearnings age education

Variable	Obs	Mean	Std. dev.	Min	Max	
earnings	100	60244	46513.19	4000	318000	
lnearnings	100	10.76058	.7273709	8.294049	12.66981	
age	100	43.33	10.9342	25	65	
education	100	13.69	3.158106	0	20	
1				4 □ ▶		• • = 1

MLE (equals OLS) for Comparison

- Concentrate on coefficient of education
 - MLE is 0.0852 with se 0.0221 and 95% CI (0.041, 0.129)

. * ML linear regression (same as OLS with iid errors) . regress lnearnings education age, noheader

lnearnings	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
education	.0852959	.0221804	3.85	0.000	.0412739	.1293178
age	.0079952	.0064063	1.25	0.215	0047195	.02071
_cons	9.246449	.4546021	20.34	0.000	8.34419	10.14871

MCMC Simple overview

- Markov chain Monte Carlo methods (MCMC) are a way to make draws of θ from the posterior given the previous draw of θ.
- Metropolis-Hastings iterative procedure
 - ▶ at round *s* draw θ^* from a candidate distribution that depends on $\theta^{(s-1)}$ and possibly the data **y**, **X**
 - use a rule (Metropolis or Metropolis-Hastings) to

★ either set $\theta^{(s)} = \theta^*$ or set $\theta^{(s)} = \theta^{(s-1)}$.

- thus some draws from the candidate distribution are accepted and some are not.
- The initial resulting $heta^{(s)}$ draws are not draws from the posterior
 - so discard the first several thousand draws.
- Hopefully after that we have (correlated) draws from the posterior.
- Given the draws from the posterior we can do almost anything.

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

MCMC Example: Linear Regression

- Stata command bayes: prefix command is simple
 - e.g. bayes: regress y x1 x2
- The default sets the following priors
 - β_i are independently $N(0, 100^2)$
 - σ^2 is inverse gamma (0.01, 0.01)

***** so $1/\sigma^2$ is gamma (0.01, 0.01).

- The default sets
 - 12,500 MCMC iterations
 - first 2,500 are not used ("burn-in")
- The defaults can be changed.
- The command bayesmh is more flexible
 - e.g. for nonstandard models you can provide the likelihood.

MCMC Example

First part of output

. * Bayesian linear regression with uninformative prior and Stata defaults

. bayes, rseed(10101): regress lnearnings education age

```
Burn-in ...
Simulation ...
```

Model summary

```
Likelihood:
    lnearnings ~ regress(xb_lnearnings,{sigma2})
```

Priors:

(1) Parameters are elements of the linear form xb_lnearnings.

イロト イポト イヨト イヨト

MCMC Example (continued)

Second part of output

- Efficiency: the 10,000 correlated draws are equivalent to on average 929.9 independent draws
- ► Acceptance rate: 3,071 of the 10,000 draws were accepted.

Bayesian linear regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	100
	Acceptance rate =	.3071
	Efficiency: min =	.07066
	avg =	.09299
Log marginal-likelihood = -133.37046	max =	.1512

MCMC Example (continued)

- Third part of output for regressor education
 - Posterior mean is 0.0872 with sd 0.0218 and 95% credible region (0.047, 0.131)
 - MLE is 0.0852 with se 0.0221 and 95% CI (0.041, 0.129)

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
lnearnings						
education	.0871874	.0217776	.000819	.0868041	.0471493	.1312628
age	.008496	.0062873	.000231	.0089316	0037933	.0208249
_cons	9.198406	.4482471	.016292	9.196124	8.319206	10.09851
sigma2	.4774248	.0711248	.001829	.4702676	.3587335	.6308758

Note: <u>Default priors</u> are used for model parameters.

Note: Adaptation tolerance is not met in at least one of the blocks.

()

MCMC Example: Diagnostics

- For β_{educ} shows several graphical diagnostics
 - use bayesgraph diagnostics {lnearnings:education}

Inearnings:education

Convergence of Chain

- There is no formal test.
- Can do multiple independent chains and see if the variability of the posterior mean of θ across chains is small, relative to the variation of draws of θ within each chain.
- Consider the *jth* of *m* chains
 - $\widehat{ heta}_j = ext{posterior}$ mean and $s_j = ext{posterior}$ variance
- B measures variation between chains

•
$$B = \frac{1}{m-1} \sum_{j=1}^{m} (\widehat{\theta}_j - \overline{\widehat{\theta}})^2$$
 where $\overline{\widehat{\theta}} = \frac{1}{m} \sum_{j=1}^{m} \widehat{\theta}_j$.

• W measures variation in heta within chains

•
$$W = \frac{1}{m} \sum_{j=1}^m s_j^2$$
.

- The Gelman-Rubin Rc statistic Rc $\simeq \frac{W+B}{W}$
 - Actually uses an adjustment for finite number of chains
 - A common threshold is Rc< 1.1 (equivalently $\frac{B}{W} < 0.1$).

글 > - + 글 >

Convergence of Chain (continued)

- * Check convergence using multiple chains
- bayes, rseed(10101) nchains(5): regress lnearnings education age

Bayesian linear regression	Number of chains	=	5
Random-walk Metropolis-Hastings sampling	Per MCMC chain:		
	Iterations	=	12,500
	Burn-in	=	2,500
	Sample size	=	10,000
	Number of obs	=	100
	Avg acceptance rate	5 =	.3402
	Avg efficiency: min	۱ =	.07201
	avg	g =	.1053
	max	< =	.1815
<u>Avg</u> log marginal-likelihood = -133.35288	<u>Max Gelman-Rubin Ro</u>	2 =	1.002

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
lnearnings						
education	.085597	.0222416	.000371	.0855127	.0416117	.12877
age	.0079981	.0063156	.000096	.0081201	0044435	.0202879
_cons	9.241303	.4537841	.007116	9.23721	8.355778	10.14552
sigma2	.4763385	.0699901	.000735	.4693347	.3578036	.6313855

Convergence of Chain (continued)

- Preceding gave average Rc across the four parameters of 1.002 < 1.1.
- Now get Rc for each parameter.
 - . * Give Gelman-Rubin Rc statistic for each parameter
 - . bayesstats grubin

Gelman-Rubin convergence diagnostic

Number of chains	=	5
MCMC size, per chain	=	10,000
Max Gelman-Rubin Rc	=	1.002092

	Rc
lnearnings	
education	1.00161
age	1.001305
_cons	1.002092
sigma2	1.000309

Convergence rule: Rc < 1.1

MCMC Example: Some bayes: code

```
* Estimation
bayes rseed(10101): regress y x
* Summary statistics for model parameters
bayesstats summary {y:x}
* Probability that slope is in range 0.4 to 0.6
bayestest interval {y:x}, lower(0.4) upper(0.6)
* Effective sample size
bayesstats ess
* Graphical Diagnostics
bayesgraph diagnostics {y:x}
* Convergence diagnostics
bayes, rseed(10101) nchains(5): regress y x
bayesstats grubin
```

(日) (周) (日) (日) (日) (0) (0)

5. Markov chain Monte Carlo (MCMC)

• The challenge is to compute the posterior $p(\theta|\mathbf{y}, \mathbf{X})$

- analytical results are only available in special cases.
- early numerical methods used importance sampling to estimate posterior moments.
- Instead use Markov chain Monte Carlo methods:
 - Make sequential random draws θ⁽¹⁾, θ⁽²⁾,
 where θ^(s) depends in part on θ^(s-1)

***** but not on $\theta^{(s-2)}$ once we condition on $\theta^{(s-1)}$ (so a Markov chain)

- in such a way that after an initial burn-in (discard these draws) $\boldsymbol{\theta}^{(s)}$ are (correlated) draws from the posterior $p(\boldsymbol{\theta}|\mathbf{y},\mathbf{X})$
 - * the Markov chain converges to a stationary marginal distribution which is the posterior.

< 回 ト < 三 ト < 三 ト

Markov Chains

- A Markov chain is a stochastic sequence of possible events in which the probability of each event depends only on the state attained in the previous event
- Under suitable assumptions the chain converges to a stationary marginal distribution.
- Here the MCMC method is set up so that this stationary distribution is the desired posterior.
- The one caveat is that while in theory the chain converges
 - in practice it can take many rounds to converge
 - ▶ and there is no formal test of whether convergence has occurred.

Leading MCMC methods

- 1. Metropolis algorithm
 - Nicholas Metropolis, Arianna W. Rosenbluth, Marshall Rosenbluth, Augusta H. Teller and Edward Teller (1953), "Equation of State Calculations by Fast Computing Machines", *Journal of Chemical Physics*.
- 2. Metropolis-Hastings algorithm
 - Relax the metropolis requirement that the candidate distribution is symmetric
 - ▶ W.K. Hastings (1970), "Monte Carlo Sampling Methods Using Markov Chains and Their Applications ", *Biometrika*.
- 3. Gibbs sampler
 - special case where conditional posteriors are known
 - A.E. Gelfand and A.F.M. Smith (1990), JASA, is a key statistical paper for Gibbs sampler and more generally use of MCMC methods in statistics.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Metropolis Algorithm

- We want to draw from **posterior** $p(\cdot)$ but usually cannot directly do so.
- Metropolis draws from a **candidate** distribution $g(\theta^{(s)}|\theta^{(s-1)})$
 - these draws are sometimes accepted and some times not
 - ▶ like accept-reject method but do not require $p(\cdot) \leq kg(\cdot)$
- Metropolis algorithm at the *s*th round
 - draw candidate θ^* from candidate distribution $g(\cdot)$
 - the candidate distribution $g(heta^{(s)}| heta^{(s-1)})$ needs to be symmetric

 $\star\,$ so it must satisfy $g(\pmb{\theta}^a|\pmb{\theta}^b)=g(\pmb{\theta}^b|\pmb{\theta}^a)$

draw u from uniform[0, 1]

$$\begin{aligned} \boldsymbol{\theta}^{(s)} &= \boldsymbol{\theta}^* \text{ if } u < \frac{\boldsymbol{p}(\boldsymbol{\theta}^*)}{\boldsymbol{p}(\boldsymbol{\theta}^{(s-1)})} \\ &= \boldsymbol{\theta}^{(s-1)} \text{ otherwise.} \end{aligned}$$

< 同 ト く ヨ ト く ヨ ト

Metropolis Algorithm (continued)

• Because we only use a ratio of posteriors the difficult normalizing constant (the marginal likelihood) does not have to be computed

$$\frac{p(\boldsymbol{\theta}^*|\mathbf{y}, \mathbf{X})}{p(\boldsymbol{\theta}^{(s-1)}|\mathbf{y}, \mathbf{X})} = \frac{\frac{L(\mathbf{y}|\boldsymbol{\theta}^*, \mathbf{X}) \times \pi(\boldsymbol{\theta}^*)}{m(\mathbf{y}|\mathbf{X})}}{\frac{L(\mathbf{y}|\boldsymbol{\theta}^{(s-1)}, \mathbf{X}) \times \pi(\boldsymbol{\theta}^{(s-1)})}{m(\mathbf{y}|\mathbf{X})}} = \frac{L(\mathbf{y}|\boldsymbol{\theta}^*, \mathbf{X}) \times \pi(\boldsymbol{\theta}^*)}{L(\mathbf{y}|\boldsymbol{\theta}^{(s-1)}, \mathbf{X}) \times \pi(\boldsymbol{\theta}^{(s-1)})}$$

- For proof that the Markov chain converges to the desired distribution see, for example, Cameron and Trivedi (2005), p.451
 - the proof requires that the candidate distribution is symmetric.
- Taking logs

$$\begin{aligned} \boldsymbol{\theta}^{(s)} &= \boldsymbol{\theta}^* \text{ if } \ln u < \ln p(\boldsymbol{\theta}^*) - \ln p(\boldsymbol{\theta}^{(s-1)}) \\ &= \boldsymbol{\theta}^{(s-1)} \text{ otherwise.} \end{aligned}$$

- Random walk Metropolis draws from $\theta^{(s)} \sim \mathcal{N}[\theta^{(s-1)}, V]$ for fixed V
 - ▶ ideally **V** such that 25-50% of candidate draws are accepted.

Metropolis-Hastings Algorithm

- Metropolis-Hastings is a generalization
 - the candidate distribution $g(\pmb{\theta}^{(s)}|\pmb{\theta}^{(s-1)})$ need not be symmetric
 - ► the acceptance rule is then $u < \frac{p(\theta^*) \times g(\theta^*|\theta^{(s-1)})}{p(\theta^{(s-1)}) \times \sigma(\theta^{(s-1)}|\theta^*)}$
 - Metropolis algorithm itself is often called Metropolis-Hastings.
- Independence chain MH uses $g(\theta^{(s)})$ not depending on $\theta^{(s-1)}$ where $g(\cdot)$ is a good approximation to $p(\cdot)$
 - ▶ e.g. Do ML for $p(\theta)$ and then $g(\theta)$ is multivariate T with mean $\hat{\theta}$, variance $\hat{V}[\hat{\theta}]$.
 - multivariate rather than normal as has fatter tails.
- M and MH called Markov chain Monte Carlo
 - ▶ because $\theta^{(s)}$ given $\theta^{(s-1)}$ is a first-order Markov chain
 - Markov chain theory proves convergence to draws from $p(\cdot)$ as $s
 ightarrow \infty$
 - poor choice of candidate distribution leads to chain stuck in place.

Gibbs sampler

- Gibbs sampler (a general method for making draws)
 - draw $(\mathbf{Y}_1, \mathbf{Y}_2)$ by alternating draws from $f(\mathbf{y}_1 | \mathbf{y}_2)$ and $f(\mathbf{y}_2 | \mathbf{y}_1)$
 - after many draws gives draws from $f(\mathbf{y}_1, \mathbf{y}_2)$ even though

$$f(\mathbf{y}_1, \mathbf{y}_2) = f(\mathbf{y}_1 | \mathbf{y}_2) \times f(\mathbf{y}_2) \neq f(\mathbf{y}_1 | \mathbf{y}_2) \times f(\mathbf{y}_2 | \mathbf{y}_1).$$

- Suppose posterior is partitioned e.g. $p(\pmb{ heta}) = p(\pmb{ heta}_1,\pmb{ heta}_2)$
 - and we can make draws from $p(\theta_1|\theta_2)$ and $p(\theta_2|\theta_1)$.
- Gibbs is special case of MH
 - usually quicker than usual MH
 - ▶ if need MH to draw from $p(\theta_1|\theta_2)$ and/or $p(\theta_2|\theta_1)$ called MH within Gibbs.
 - extends to e.g. $p(\theta_1, \theta_2, \theta_3)$ make sequential draws from $p(\theta_1 | \theta_2, \theta_3)$, $p(\theta_2 | \theta_1, \theta_3)$ and $p(\theta_3 | \theta_1, \theta_2)$
 - requires knowledge of all of the full conditionals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Correlated Draws

- M, MH and Gibbs yield correlated draws of $\theta^{(s)}$.
- But it still gives correct estimate of marginal posterior distribution of θ (once discard burn-in draws)
 - e.g. estimate posterior mean by $\frac{1}{5} \sum_{s=1}^{5} \theta^{(s)}$.
- The precision of this estimate will, however, decline with greater correlation of the draws
 - the efficiency statistic measures this
 - if the efficiency statistic is low then make more draws (after the burn-in).

★ 3 > < 3 >

Stata bayes: and bayesmh commands

- The bayes: prefix command can be applied to over 50 estimation commands including regress, xtreg, logit, mlogit, ologit and xtlogit. Defaults such as priors can be changed.
- The bayesmh command is more flexible and allows one to program ones own models.
- The default version of bayesmh can give somewhat different results to bayes: because bayes: takes advantage of the knowledge of the particular model used, such as blocking of model parameters to improve the efficiency of the sampling algorithm.

bayesmh command equal to earlier bayes: regress command

- The following command gives exactly the same results as the earlier bayes, rseed(10101): regress lnearnings education age
- bayesmh command example

bayesmh lnearnings education age, likelihood(normal({sigma2})) ///
prior({lnearnings:education}, normal(0,10000)) ///
prior({lnearnings:age}, normal(0,10000)) ///
prior({lnearnings:_cons},normal(0,10000)) ///
prior({sigma2},igamma(0.01,0.01)) rseed(10101) ///
block({lnearnings: education age_cons}) block({sigma2})

- If the last line (blocking) is dropped the results differ
 - blocking can really speed up computation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

6. Further discussion: Specification of prior

- As $N \to \infty$ data dominates the prior $\pi(\theta)$ and then posterior $\theta | \mathbf{y} \stackrel{a}{\sim} \mathcal{N}[\widehat{\theta}_{\mathsf{ML}}, I(\widehat{\theta}_{\mathsf{ML}})^{-1}]$
 - but in finite samples prior can make a difference.
- Noninformative and improper prior
 - has little effect on posterior
 - ▶ a uniform or flat prior (with all values equally likely) is frequent choice
 - \blacktriangleright this is an improper prior if heta is unbounded
 - but usually the posterior is still proper

* if $\pi(\theta) = c$ we need $\int L(\mathbf{y}|\boldsymbol{\theta}, \mathbf{X}) \pi(\theta) d\theta = c \int L(\mathbf{y}|\boldsymbol{\theta}, \mathbf{X}) d\theta$ to be finite

• not invariant to transformation of θ (e.g. $\theta \rightarrow e^{\theta}$).

• Jeffreys prior sets $\pi(\theta) \propto \det[I(\theta)^{-1}]$, $I(\theta) = -\partial^2 \ln L/\partial\theta \partial\theta'$

- invariant to transformation
- \blacktriangleright for linear regression under normality this is uniform prior for eta
- also an improper prior.

イロト イポト イヨト イヨト

- Proper prior (informative or uninformative)
 - informative becomes uninformative as prior variance becomes large.
 - use conjugate prior if available as it is tractable
 - hierarchical (multi-level) priors are often used
 - ★ Bayesian analog of random coefficients
 - ★ let $\pi(\theta)$ depend on unknown parameters τ which in turn have a completely specified distribution
 - * $p(\theta, \tau | \mathbf{y}) \propto L(\mathbf{y} | \theta) \times \pi(\theta | \tau) \times \pi(\tau)$ so $p(\theta | \mathbf{y}) \propto \int p(\theta, \tau | \mathbf{y}) d\tau$
- Poisson example with y_i Poisson $[\mu_i = \exp(\mathbf{x}_i' \boldsymbol{\beta})]$
 - $\blacktriangleright \ p(\boldsymbol{\beta},\boldsymbol{\mu},|\mathbf{y},\mathbf{X}) \propto L(\mathbf{y}|\boldsymbol{\mu}) \times \pi_1(\boldsymbol{\mu}|\mathbf{X},\boldsymbol{\beta}) \times \pi_2(\boldsymbol{\beta})$
 - where $\pi_1(\mu_i|m{eta})$ is gamma with mean $\exp(\mathbf{x}_i'm{eta})$
 - and $\pi_2(\boldsymbol{\beta})$ is $\boldsymbol{\beta} \sim \mathcal{N}[\boldsymbol{\beta}, \boldsymbol{\underline{V}}]$

* works better than $p(\beta|\mathbf{y}, \mathbf{X}) \propto L(\mathbf{y}|\mathbf{X}, \boldsymbol{\beta}) \times \pi(\boldsymbol{\beta})$.

・ 日 ・ ・ ヨ ・ ・ ヨ ・

Informative Prior Example

- Consider Inearnings regressed on intercept, education and age.
- Education: $N[0.06, 0.01^2]$ means 95% sure that earnings increase proportionately by between 0.04 and 0.08 (so between 4% and 8%) with one more year of education.
- Age: N[0.02, 0.01²] means 95% sure that earnings increase by between 0% and 4% with one more year of aging.
- Intercept: Not clear so choose a diffuse N[10, 10] prior
 - need to be very careful with prior for intercept
 - N[10, 10] prior is very informative for earnings rather than lnearnings.
- sigma2 (σ^2): difficult to explain but choose a reasonably diffuse prior.
- * bayesmh example with informative priors

bayesmh lnearnings education age, likelihood(normal({var})) ///

prior({lnearnings:education}, normal(0.06,0.0001)) ///

- prior({lnearnings:age}, normal(0.02,0.0001)) ///
- $prior(\{lnearnings:_cons\}, normal(10, 100)) ~///$

 $prior({var}, igamma(1,0.5)) rseed(10101)$

イロト イポト イヨト イヨト

Convergence of MCMC

- Theory says chain converges as $s o \infty$
 - could still have a problem with one million draws.
- Checks for convergence of the chain (after discarding burn-in)
 - graphical: plot $\theta^{(s)}$ to see that $\theta^{(s)}$ is moving around
 - ▶ correlations: of $\theta^{(s)}$ and $\theta^{(s-k)}$ should $\rightarrow 0$ as k gets large
 - plot posterior density: multimodality could indicate problem
 - break into pieces: expect each 1,000 draws to have similar properties
 - run several independent chains with different starting values

★ Gelman-Rubin statistic.

• But it is not possible to be 100% sure that chain has converged.

Bayesian model selection

- Bayesians use the marginal likelihood
 - $m(\mathbf{y}|\mathbf{X}) = \int L(\mathbf{y}|\boldsymbol{\theta}, \mathbf{X}) \times \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$
 - ▶ this weights the likelihood (used in ML analysis) by the prior.

• Bayes factor is analog of likelihood ratio

$$B = \frac{m_1(\mathbf{y}|\mathbf{X})}{m_2(\mathbf{y}|\mathbf{X})} = \frac{\text{marginal likelihood model 1}}{\text{marginal likelihood model 2}}$$

one rule of thumb is that the evidence against model 2 is

- ★ positive if 1 < B < 3 (or approximately $2 < 2 \ln B < 6$)
- \star strong if 20 < B < 150 (or approximately 6 < 2 ln B < 10)
- ***** very strong if B > 150 (or approximately $2 \ln B > 10$).
- Can use to "test" $H_0: \theta = \theta_1$ against $H_a: \theta = \theta_2$.
- The posterior odds ratio weights B by priors on models 1 and 2
 - \blacktriangleright so now use priors on both $\pmb{\theta}$ and the model.

- Problem: MCMC methods to obtain the posterior avoid computing the marginal likelihood
 - computing the marginal likelihood can be difficult
 - ▶ see Chib (1995), JASA, and Chib and Jeliazkov (2001), JASA.
- An asymptotic approximation to the Bayes factor is

$$B_{12} = \frac{L_1(\mathbf{y}|\widehat{\boldsymbol{\theta}}, \mathbf{X})}{L_2(\mathbf{y}|\widehat{\boldsymbol{\theta}}, \mathbf{X})} N^{(k_2 - k_1)/2}$$

- Here model 1 is nested in model 2 and due to asymptotics the prior has no influence (so the ratio of posteriors is the ratio of likelihoods)
- This is the Bayesian information criterion (BIC) or Schwarz criterion.

A B > A B >

What does it mean to be a Bayesian?

- Modern Bayesian methods (Markov chain Monte Carlo)
 - make it much easier to compute the posterior distribution than to maximize the log-likelihood.
- So classical statisticians:
 - use Bayesian methods to compute the posterior
 - use an uninformative prior so $p(\theta|\mathbf{y}, \mathbf{X}) \simeq L(\mathbf{y}|\theta, \mathbf{X})$
 - so θ that maximizes the posterior is also the MLE.
- Others go all the way and be Bayesian:
 - give Bayesian interpretation
 - ★ e.g. use credible intervals
 - \star e.g. given draws of heta can easily do inference on transformations of heta
 - if possible use an informative prior that embodies previous knowledge.

A B > A B >

7. Appendix: Accept-reject method

- There are many ways to random draws from a distribution such as inverse-transformation method.
- The accept-reject method can be used when
 - we want to draw from density f(x) but this is difficult
 - we have a candidate density g(x) that we can make draws from
 - for any value of x we can compute f(x) and g(x)
 - ▶ key: g(x) covers f(x) with $f(x) \le kg(x)$ for some r and all x
 - \star this is often not possible, especially in tails for e.g. $-\infty < x < \infty$
 - * Metropolis and Metropolis-Hastings do not have this restriction.
 - **★** The accept-reject method to get draws from f(x)
 - draw x from g(x)
 - draw u from uniform(0,1) and accept the draw x if

$$u \le \frac{f(x)}{kg(x)}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Accept-reject method proof

Ρ

- Y denotes the random variable generated by the accept-reject method X denotes a random variable with density g(x) and
 - U denotes a draw from the uniform. Then Y has c.d.f.

$$r[Y \le y] = \Pr[X \le y|U \le f(x)/kg(x)]$$

$$= \frac{\Pr[X \le y, U \le f(x)/kg(x)]}{\Pr[U \le f(x)/kg(x)]}$$

$$= \frac{\int_{-\infty}^{y} \{\int_{0}^{f(x)/kg(x)} du\}g(x)dx}{\int_{-\infty}^{\infty} \{\int_{0}^{f(x)/kg(x)} du\}g(x)dx}$$

$$= \frac{\int_{-\infty}^{y} [f(x)/kg(x)]g(x)dx}{\int_{-\infty}^{\infty} [f(x)/kg(x)]g(x)dx}$$

$$= \frac{\int_{-\infty}^{y} [f(x)/k]dx}{\int_{-\infty}^{\infty} [f(x)/k]dx}$$

$$= \int_{-\infty}^{y} f(x)dx$$

8. Some References

- Chapter 13 "Bayesian Methods" in A. Colin Cameron and Pravin K. Trivedi, Microeconometrics: Methods and Applications, Cambridge University Press.
- Chapter 29 "Bayesian Methods: basics" in A. Colin Cameron and Pravin K. Trivedi, Microeconometrics using Stata, Second edition, forthcoming.
- Bayesian books by econometricians that feature MCMC are
 - Geweke, J. (2003), Contemporary Bayesian Econometrics and Statistics, Wiley.
 - Koop, G., Poirier, D.J., and J.L. Tobias (2007), Bayesian Econometric Methods, Cambridge University Press.
 - ▶ Koop, G. (2003), Bayesian Econometrics, Wiley.
 - Lancaster, T. (2004), Introduction to Modern Bayesian Econometrics, Wiley.
- Most useful (for me) book by statisticians
 - Gelman, A., J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari and D.B. Rubin (2013), Bayesian Data Analysis, Third Edition, Chapman & Hall/CRC.

< ロ > < 同 > < 三 > < 三