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1. Introduction

1. Introduction

@ Bayesian methods provide an alternative method of computation and
statistical inference to ML estimation.

» Some researchers use a fully Bayesian approach to inference.

> Other researchers use Bayesian computation methods (with a diffuse or
uninformative prior) as a tool to obtain the MLE and then interpret
results as they would classical ML results.
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2. Bayesian Methods: Basic ldea

@ Bayesian methods for inference on 0 obtain information on 0 from
two sources

> Data - the likelihood function
* for regression this is usually L(y|6, X)

» Prior beliefs on 0

* the prior density 77(0)
* this bit is new.
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Pesiaiter sty
Bayesian Methods: The posterior density

o Recall Bayes Theorem that Pr[A|B] = Pr[AN B]/ Pr[B].
@ Applying Bayes here, the posterior density for 0 given data y, X is

_pB.y.X)
p(6ly, X) = oy, X)

@ So the posterior density of 0 is

L(y|6, X) x 7(8)
m(y|X)

p(Oly, X) =

» m(y|X) = [ L(y|0,X) x 71(6)d0 is called the marginal likelihood

* problem: there is usually no tractable expression for m(y|X).

@ In general

Posterior oc Likelihood x Prior
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Bayesian Methods: The prior density

The prior can be informative so it does effect p(6y, X)
» do this if have strong prior information on 6.
@ In some simple settings such as a doctor interpreting a medical test

> 0 is scalar
> there are no regressors so the likelihood is L(y|6)
> there can be strong prior beliefs 77(0).

@ The prior can be uninformative so it has little effect on p(6|y, X)
> e.g. O can take a very wide range of values (large variance)

@ For econometrics regressions prior beliefs are typically uninformative
over all parameters, or over all but a subset of the parameters.

@ As N — oo the prior has little effect as the likelihood dominates.
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2. Bayesian Approach Posterior density

Bayesian Methods: Inference

@ Bayesian analysis bases inference on the posterior distribution.

» the best estimate of 0 is the mean or the mode of the posterior
distribution.

> a 95% credible interval (or “Bayesian confidence interval") for 6 is
from the 2.5 to 97.5 percentiles of the posterior distribution

> no need for asymptotic theory!

o Classical statisticians interpret results in the usual MLE way

» the mode or mean of the posterior is viewed as estimate 0 of 6.

@ Until recently only very simple Bayesian models could be computed
> due to inability to compute m(y|X) = [ L(y|0, X) x 71(6)d6
* including Bayes (1765) original example
» MCMC methods have changed this.
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3. Normal-normal Example

3. Normal-normal Bayesian example

Suppose y|6 ~ N[6,100] (02 is known from other studies)
And we have independent sample of size N = 50 with y = 10.
Classical analysis uses y|0 ~ N'[0,100/N] ~ N[0, 2]
Reinterpret as likelihood 6]y ~ N[6,2].

Then MLE 6 = y = 10.

Bayesian analysis introduces prior, say 6 ~ N[5, 3].

We combine likelihood and prior to get posterior.

We expect

» posterior mean: between prior mean 5 and sample mean 10
» posterior variance: less than 2 as prior info reduces noise
» posterior distribution: ? Generally intractable.

But here can show that the posterior for 6 is A/[8,1.2].
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3. Normal-normal Example

@ Prior N[5, 3] and likelihood N[10, 2] and yields posterior N'[8, 1.2]

for 6
<]: -
C\Q 4
t\! -
‘—! -
o4
T T T T T
0 5 10 15 20
X
* prior ¢ likelihood
= posterior
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3. Normal-normal Example

o Classical inference: § = y = 10 ~ N10, 2]

» A 95% confidence interval for 6 is 10 & 1.96 x /2 = (7.23,12.77)
> i.e. if we sampled many times then 95% of the time a similarly
constructed confidence interval will include the unknown constant 6.

@ Bayesian inference: Posterior 6 ~ A[8, 1.2]

> A 95% posterior interval for 6 is 8 £ 1.96 x /1.2 = (5.85,10.15)
> i.e. with probability 0.95 the true value of 8 lies in this interval.
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3. Normal-normal Example

Role of the prior and the sample size

@ For normal-normal if y;|p ~ N[, 0] with 0 known
and prior it ~ N'[p, %] then the posterior puly ~ N[fi, 5]

2 x [(‘7—,\7)*15/4— (52)*1@ is the posterior mean

»U=73
» and 3% = [(‘7—,\?)71 + (s2)71 7L is the posterior variance
* the inverse of the variance is called the precision.
o Consider variations of the preceding example with p ~ N[8,1.2].
» with a “diffuse” prior Bayesian gives similar numerical result to classical

* if prior is y ~ N[5, 100] then posterior is p ~ N'[9.903, 1.961].

» with a large sample we get result close to the classical result

* if N =5,000 then y = 10 ~ A/[10,0.02] and posterior is u
~ N9.961,0.01987].
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3. Normal-normal Example Tractable results are rare

Tractable results are rare

@ The tractable result for normal-normal (known variance) carries over
to exponential family using a conjugate prior

Likelihood Prior Posterior
Normal (mean p) Normal Normal
Normal (precision ) Gamma Gamma
Binomial (p) Beta Beta
Poisson () Gamma Gamma

» using conjugate prior is like augmenting data with a sample from the
same distribution
» for Normal with precision matrix £~ gamma generalizes to Wishart.

@ But in general tractable results are not available

» so use numerical methods, notably MCMC.
> using tractable results in subcomponents of MCMC can speed up
computation.
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4. MCMC Example using Stata command bayes:

o Consider a linear regression log earnings - schooling example
» men and women full-time workers in 2010.

.B*BReadBinBandBsummarizelBlearning schoolingBdata

.BquiBusePmus229acs.dta,Bclear
.BdescribeBearningsBlnearningsiageBeducation

VariableBRE

Bnamel BVariableRlabel
earnings BfloatREE%9 . 0g AnnualBearningsBinB$
lnearnings BfloatBRR%9 .08 Natural@logarighmBofBearnings
age AgeBinByears
education EducationalBattainment:Byearsiof
schooling

.Bquilkeep@ifl_nBE<=E100

.BsummarizeBearningsBlnearnings@ageleducation

BEEEVariable pStd.Bdev.

EREERERRRage | ARRRERRE1OQRRRERREA 3 . 33RERRE10 . 934 2BRRARERRE 2 SERERRRREN6 5
BBReducation |EREEEREE1QQRE [F113 . 69RIFER3 . 1581068 ERERE20
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MLE (equals OLS) for Comparison

@ Concentrate on coefficient of education
» MLE is 0.0852 with se 0.0221 and 95% Cl (0.041, 0.129)

.P*BEMLBElinearBregressiont(samelasBOLSEwithBiidRerrors)
.BregressBlnearningsfeducationklage,Enoheader

BElnearnings

BCoefficientBRStd.Berr.

0. 215BRERE . 0047 195BERRREE . 02071
0. 000 8.344190FRE10.14871
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MCMC Simple overview

@ Markov chain Monte Carlo methods (MCMC) are a way to make
draws of 0 from the posterior given the previous draw of 6.

@ Metropolis-Hastings iterative procedure

> at round s draw 0* from a candidate distribution that depends on
0(s—1) and possibly the data y, X
> use a rule (Metropolis or Metropolis-Hastings) to

* either set 8() = 8* or set 8(s) = g(s—1),

» thus some draws from the candidate distribution are accepted and
some are not.

@ The initial resulting 0'*) draws are not draws from the posterior
> so discard the first several thousand draws.

@ Hopefully after that we have (correlated) draws from the posterior.

@ Given the draws from the posterior we can do almost anything.
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MCMC Example: Linear Regression

@ Stata command bayes: prefix command is simple
> e.g. bayes: regress y x1 x2

@ The default sets the following priors
> P, are independently N(0, 100?)

2 is inverse gamma (0.01, 0.01)

* so 1/0? is gamma (0.01, 0.01).

>

@ The default sets

» 12,500 MCMC iterations
> first 2,500 are not used (“burn-in")

@ The defaults can be changed.
@ The command bayesmh is more flexible

» e.g. for nonstandard models you can provide the likelihood.
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MCMC Example

@ First part of output
.@*EBayesianBlinearfregressionBwithBuninformativeBpriorfandaStataidefaults
.Bbayes,Brseed(10101) :BregressBlnearningsPeducationBage

Burn@ing. ..
Simulation@...

ModelBsummary

Likelihood:
lnearningsB~Bregress(xb_lnearnings,{sigma2})

Priors:
{lnearnings:educationBagel_cons}&~Enormal (0, 10000):rEEEERRREEERRRRERRRRRR (1)
{sigma2}@~Eigamma(.01, .01)

(1)BParametersBarelelementsBof@thellinearkform@xb_lnearnings.
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MCMC Example (continued)

@ Second part of output

» Efficiency: the 10,000 correlated draws are equivalent to on average
929.9 independent draws
» Acceptance rate: 3,071 of the 10,000 draws were accepted.

BayesianBlinearBregressionBRE PRRREREMCMCEiterations 12,500
RandomBwalkBMetropolis-HastingsBsamplingREREEREEREBUrnEinEREEREERER

MCMCBsampleBsiz
33 3 3{ 2 2 2] a2 2 2 2 3 {3 ] 2 2 3 3 3 3 3 a aaa aaa aalE] N[ Ti o Y=Y wlEa o R R Ea o) o

a2l a2l e a o R Y o of Yoy =Yg Lo Sl = R o

FRERERRR R R R R R R R R R R AR R R AR AR R RRRRRRRRREfficiency : BE

LogBmarginal®@likelihoodB= B133.37046
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MCMC Example (continued)

@ Third part of output for regressor education
> Posterior mean is 0.0872 with sd 0.0218 and 95% credible region

(0.047, 0.131)
» MLE is 0.0852 with se 0.0221 and 95% CI (0.041, 0.129)

1216 3 2 2 a2 2 a2 ) ) a a2 a2 2 a3 2 ) 2 R e [V EE N = B =T

lnearnings

1312628
.0208249

sigma2 |BE.4774248

Note: DefaultBlpriorsRareRusedBformodell
Note: AdaptationBtoleranceBisBnotBmetBinBat@leastlloneBofEthelblocks.

Bayesian Methods: Part 1 May 2021 19 / 44

A. Colin Cameron  Univ. of Calif. - Davis .



Dipgnesies
MCMC Example: Diagnostics
e For B

> use bayesgraph diagnostics {lnearnings:education}

educ Shows several graphical diagnostics

Inearnings:education

Trace Histogram
15+ &1
14 =1
=
S
.05+
0
04
o 2000 4000 s00 wo o0 O
Iteration number 0 K 1
Autocorrelation Density
0.80 "
0.60
0.40
=1 1l
0,004 Hmmmrmmmm.....
0 10 20 30 40 T T T : T
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Convaigane o Ciel
Convergence of Chain

@ There is no formal test.

@ Can do multiple independent chains and see if the variability of the
posterior mean of 8 across chains is small, relative to the variation of
draws of 8 within each chain.

Consider the jth of m chains

» 0; = posterior mean and s; = posterior variance
@ B measures variation between chains
_ 1 m ’\__7\2 7\_; m 7.
» B= -7 Zj:1(91 6)° where § = = i1 0.
@ W measures variation in 8 within chains

_ 1 vm 2
> W—m =157

The Gelman-Rubin Rc statistic Rc ~ %

» Actually uses an adjustment for finite number of chains
» A common threshold is Rc< 1.1 (equivalently % <0.1).
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4. MCMC Example using Stata command bayes: Convergence of Chain

Convergence of Chain (continued)

@ * Check convergence using multiple chains

@ bayes, rseed(10101) nchains(5): regress Inearnings education age

umberBoffchainskl
erBMCMCRBchain:

BayesianBlinear@regressionBRERREE
RandomBwalkBMetropolis-HastingsBsamplin,

EIIEEIEEIEEIZIEIZIEIZIEEIEEIEEIIEEIIEEIIEEIIEEEEIEEIZIEIZIEEIEEIEEIEEIEEEIEEIEEIEEISampleIEs izePRERER= RFERER10,000

BRREEREE! (]2 a a2 2 ENumberZofEobsBE ERRRREE100
AvgPlacceptanc .3402

AvgRefficiency:Bmi 07201

avgh .1053

a1 20 2 2 2 2 a2 a2 a2 e o e g o D A R Y
AvgRlogBmarginalBlikelihood@= @133.35288 Max@Gelman-RubinBRcE= EREER1.002

ERERRREREE R R R R R R R R R R R REEREEERREqualltailed
MeanBRREStd .Bdev. CSERREREEMedianBR[95%Rcred.Binterval]

lnearnings
BEReducation |BRR.0855970RRE.0222416ERE.000371EEER. 085512 7ERR

2.0416117CREEE. 12877

EREERERRRage |EE.0079981REE. 0063156RER . 000096RER . 008120 1RIRR . 00444 35ERE . 0202879
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4. MCMC Example using Stata command bayes: Convergence of Chain

Convergence of Chain (continued)

@ Preceding gave average Rc across the four parameters of 1.002 < 1.1.

@ Now get Rc for each parameter.

BGivelGelmankRubinBRcBstatistickforBeachBparameter
ayesstatsBgrubin

Gelman-RubinBconvergenceldiagnostic

NumberBofEchainse
MCMCBsize,Bperfichain
MaxBGelman-RubinBRcEl

[F1.002092

FREERERRERC

1lnearnings
BEEeducation |EEE1.00161
.001305
.002092

(21 .000309

Convergenceflrule:BRcE<E1. 1
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SO VG dvi
MCMC Example: Some bayes: code

* Estimation

bayes rseed(10101): regress y x

* Summary statistics for model parameters
bayesstats summary {y:x}

* Probability that slope is in range 0.4 to 0.6
bayestest interval {y:x}, lower(0.4) upper(0.6)
* Effective sample size

bayesstats ess

* Graphical Diagnostics

bayesgraph diagnostics {y:x}

* Convergence diagnostics

bayes, rseed(10101) nchains(5): regress y x
bayesstats grubin
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5. Markov chain Monte Carlo (MCMC)

@ The challenge is to compute the posterior p(8]y, X)

> analytical results are only available in special cases.
» early numerical methods used importance sampling to estimate
posterior moments.

@ Instead use Markov chain Monte Carlo methods:

» Make sequential random draws 6(1), 6(2),
» where 8(°) depends in part on (1)

* but not on 8572) once we condition on 8(°~1) (so a Markov chain)

> in such a way that after an initial burn-in (discard these draws)
0(*) are (correlated) draws from the posterior p(6]y, X)

* the Markov chain converges to a stationary marginal distribution which
is the posterior.
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Markov Chains

@ A Markov chain is a stochastic sequence of possible events in which
the probability of each event depends only on the state attained in
the previous event

@ Under suitable assumptions the chain converges to a stationary
marginal distribution.

@ Here the MCMC method is set up so that this stationary distribution
is the desired posterior.

@ The one caveat is that while in theory the chain converges

> in practice it can take many rounds to converge
> and there is no formal test of whether convergence has occurred.
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Leading MCMC methods

o 1. Metropolis algorithm

» Nicholas Metropolis, Arianna W. Rosenbluth, Marshall Rosenbluth,
Augusta H. Teller and Edward Teller (1953), “Equation of State
Calculations by Fast Computing Machines”, Journal of Chemical
Physics.

@ 2. Metropolis-Hastings algorithm

> Relax the metropolis requirement that the candidate distribution is

symmetric
» W.K. Hastings (1970), “Monte Carlo Sampling Methods Using Markov
Chains and Their Applications ", Biometrika.

o 3. Gibbs sampler

> special case where conditional posteriors are known

» A.E. Gelfand and A.F.M. Smith (1990), JASA, is a key statistical paper
for Gibbs sampler and more generally use of MCMC methods in
statistics.
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5. Markov chain Monte Carlo (MCMC) methods IRY/IEZ]elel EWAFCTa AT f

Metropolis Algorithm

e We want to draw from posterior p(-) but usually cannot directly do

so.
@ Metropolis draws from a candidate distribution g(8*)|8(°~1))

> these draws are sometimes accepted and some times not
> like accept-reject method but do not require p(-) < kg(-)

@ Metropolis algorithm at the st round

» draw candidate 0* from candidate distribution g(-)
» the candidate distribution g(8®)[(s~1)) needs to be symmetric

* so it must satisfy g(6%6°) = g(6°|6?)

» draw u from uniform|0, 1]

o(s)

Il
D
*
=

<
A

065—1) otherwise.
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Wiasrepsits Algaiiin
Metropolis Algorithm (continued)

@ Because we only use a ratio of posteriors the difficult normalizing
constant (the marginal likelihood) does not have to be computed

L(y|6",X)x 7(6%)

p(O7ly.X) _  TTmopo - L(y|6" X) x 7 (67)
pO° Py, X) - LUTTRAOT  L(y]e™ Y, X) x (67

@ For proof that the Markov chain converges to the desired distribution
see, for example, Cameron and Trivedi (2005), p.451

» the proof requires that the candidate distribution is symmetric.
@ Taking logs
0) = 0% if Inu<Inp(6*) —Inp(et1)
= 0071 otherwise.

o Random walk Metropolis draws from 8() ~ N[0~ V] for fixed V
> ideally V such that 25-50% of candidate draws are accepted.
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5. Markov chain Monte Carlo (MCMC) methods Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm

@ Metropolis-Hastings is a generalization

» the candidate distribution g(8(9)|0(5~1)) need not be symmetric
p(6") (671" 1)

p(6 1) xg(0t1)|6%)

» Metropolis algorithm itself is often called Metropolis-Hastings.

> the acceptance rule is then u <

@ Independence chain MH uses g(G(S)

not depending on 8~ 1) where
g(+) is a good approximation to p(-

~—

» e.g. Do ML for p(8) and then g(8) is multivariate T with mean 6,
variance V[6].

» multivariate rather than normal as has fatter tails.
@ M and MH called Markov chain Monte Carlo

» because 05) given 8571 is a first-order Markov chain
> Markov chain theory proves convergence to draws from p(-) as s — co
» poor choice of candidate distribution leads to chain stuck in place.
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5. Markov chain Monte Carlo (MCMC) methods BEEREETTE
Gibbs sampler

@ Gibbs sampler (a general method for making draws)
» draw (Y7,Y3) by alternating draws from f(y;]y2) and f(y2|y1)
> after many draws gives draws from f(y1,y2) even though

fy1,y2) = f(y1ly2) x f(y2) # f(y1ly2) x f(y2ly1).

@ Suppose posterior is partitioned e.g. p(0) = p(61,6,)
> and we can make draws from p(61|02) and p(6,/6;).
@ Gibbs is special case of MH

> usually quicker than usual MH

> if need MH to draw from p(61|62) and/or p(65]671) called MH within
Gibbs.

> extends to e.g. p(601, 62, 03) make sequential draws from p(01|63, 03),
p(62|61,03) and p(63]01, 62)

> requires knowledge of all of the full conditionals.
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5. Markov chain Monte Carlo (MCMC) methods [EJEEVRMIENE

Correlated Draws

@ M, MH and Gibbs yield correlated draws of 0's).

o But it still gives correct estimate of marginal posterior distribution of
0 (once discard burn-in draws)

> e.g. estimate posterior mean by %Zle 0's).

@ The precision of this estimate will, however, decline with greater
correlation of the draws

> the efficiency statistic measures this
> if the efficiency statistic is low then make more draws (after the

burn-in).
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Stata bayes: and bayesmh commands

@ The bayes: prefix command can be applied to over 50 estimation
commands including regress, xtreg, logit, mlogit, ologit and
xtlogit. Defaults such as priors can be changed.

@ The bayesmh command is more flexible and allows one to program
ones own models.

@ The default version of bayesmh can give somewhat different results
to bayes: because bayes: takes advantage of the knowledge of the
particular model used, such as blocking of model parameters to
improve the efficiency of the sampling algorithm.
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SV ET VRS (BT VTN CET SN V[ VIS WL S I Stata bayes: and bayesmh commands

bayesmh command equal to earlier bayes: regress
command

@ The following command gives exactly the same results as the earlier

bayes, rseed(10101): regress Inearnings education age

@ bayesmh command example

bayesmh Inearnings education age, likelihood(normal({sigma2})) ///
prior({Inearnings:education}, normal(0,10000)) ///
prior({Inearnings:age}, normal(0,10000)) ///

prior({Inearnings: _cons},normal(0,10000)) ///
prior({sigma2},igamma(0.01,0.01)) rseed(10101) ///
block({Inearnings: education age cons}) block({sigma2})

o If the last line (blocking) is dropped the results differ

> blocking can really speed up computation.
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6. Further discussion Specification of prior

6. Further discussion: Specification of prior

@ As N — oo data dominates the prior 77(0)
and then posterior 8]y = N[O, /(B) 1]

> but in finite samples prior can make a difference.

@ Noninformative and improper prior

has little effect on posterior

a uniform or flat prior (with all values equally likely) is frequent choice
this is an improper prior if 8 is unbounded

but usually the posterior is still proper

* if 71(0) = c we need [ L(y|0,X)7t(6)d6 = c [ L(y|6, X)d0 to be finite

Yy VvV VY

» not invariant to transformation of 0 (e.g. 8 — €).
o Jeffreys prior sets 77(0) oc det[/(0)7], 1(8) = —0°In L/9600’

> invariant to transformation
> for linear regression under normality this is uniform prior for
> also an improper prior.
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6. Further discussion Specification of prior

@ Proper prior (informative or uninformative)

» informative becomes uninformative as prior variance becomes large.
> use conjugate prior if available as it is tractable
> hierarchical (multi-level) priors are often used

* Bayesian analog of random coefficients

* let 71(6) depend on unknown parameters T which in turn have a
completely specified distribution

* p(6, tly) o L(y|0) x 7(6]T) x 7(T) so p(By) « [ p(6, T|ly)dT

@ Poisson example with y; Poisson[y,- = exp(xf-ﬁ)]

> P(B.p |y, X) o Ly|p) > 7t (u[X, B) > 7t2(P)
> where 711 (p;|B) is gamma with mean exp(x’p)

~ and 75(B) is  ~ NB, V]
* works better than p(Bly, X) o L(y|X, B) x 7(B).
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6. Further discussion Informative Prior example

Informative Prior Example

@ Consider Inearnings regressed on intercept, education and age.

e Education: N[0.06,0.01%] means 95% sure that earnings increase
proportionately by between 0.04 and 0.08 (so between 4% and 8%)
with one more year of education.

o Age: N[0.02,0.01%] means 95% sure that earnings increase by
between 0% and 4% with one more year of aging.

@ Intercept: Not clear so choose a diffuse N[10, 10] prior

> need to be very careful with prior for intercept
> NJ[10, 10] prior is very informative for earnings rather than Inearnings.
@ sigma2 (0?): difficult to explain but choose a reasonably diffuse prior.

* bayesmh example with informative priors

bayesmh Inearnings education age, likelihood(normal({var})) ///
prior({Inearnings:education}, normal(0.06,0.0001)) ///
prior({Inearnings:age}, normal(0.02,0.0001)) ///
prior({Inearnings: _cons},normal(10,100)) ///
prior({var},igamma(1,0.5)) rseed(10101)
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CeEEEes 97 EIE
Convergence of MCMC

@ Theory says chain converges as s — o
» could still have a problem with one million draws.
@ Checks for convergence of the chain (after discarding burn-in)

» graphical: plot 80°) to see that 8°) is moving around

correlations: of 8() and 857K should — 0 as k gets large

plot posterior density: multimodality could indicate problem

break into pieces: expect each 1,000 draws to have similar properties
run several independent chains with different starting values

Yy vV VY

*  Gelman-Rubin statistic.

@ But it is not possible to be 100% sure that chain has converged.
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6. Further discussion Bayesian model selection

Bayesian model selection

@ Bayesians use the marginal likelihood

» m(y|X) = [ L(y|6,X) x 7(6)d6
> this weights the likelihood (used in ML analysis) by the prior.

o Bayes factor is analog of likelihood ratio

5 mi(y|X)  marginal likelihood model 1

~ m(y|X)  marginal likelihood model 2

> one rule of thumb is that the evidence against model 2 is

* weak if 1 < B < 3 (or approximately 0 < 2In B < 2)

positive if 1 < B < 3 (or approximately 2 < 2In B < 6)
strong if 20 < B < 150 (or approximately 6 < 2In B < 10)
very strong if B > 150 (or approximately 2In B > 10).

@ Can use to "test” Hy: 0 = 01 against H, : 6 = 0,.
@ The posterior odds ratio weights B by priors on models 1 and 2

> so now use priors on both 8 and the model.

* O+ %
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6. Further discussion Bayesian model selection

@ Problem: MCMC methods to obtain the posterior avoid computing
the marginal likelihood
» computing the marginal likelihood can be difficult
» see Chib (1995), JASA, and Chib and Jeliazkov (2001), JASA.

@ An asymptotic approximation to the Bayes factor is

L1(y|6, X
By, — 1(Y10.X) ptk—k0) /2

L>(y|6., X)

» Here model 1 is nested in model 2 and due to asymptotics the prior has
no influence (so the ratio of posteriors is the ratio of likelihoods)
> This is the Bayesian information criterion (BIC) or Schwarz criterion.
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TG TEETESTM  What does it mean to be Bayesian?

What does it mean to be a Bayesian?

@ Modern Bayesian methods (Markov chain Monte Carlo)

» make it much easier to compute the posterior distribution than to
maximize the log-likelihood.

@ So classical statisticians:

» use Bayesian methods to compute the posterior
> use an uninformative prior so p(8]y, X) ~ L(y|6, X)
» so 0 that maximizes the posterior is also the MLE.

@ Others go all the way and be Bayesian:

» give Bayesian interpretation

* e.g. use credible intervals
* e.g. given draws of 6 can easily do inference on transformations of 6

> if possible use an informative prior that embodies previous knowledge.
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7. Appendix: Accept-reject method

@ There are many ways to random draws from a distribution such as
inverse-transformation method.

@ The accept-reject method can be used when

we want to draw from density f(x) but this is difficult

we have a candidate density g(x) that we can make draws from
for any value of x we can compute f(x) and g(x)

key: g(x) covers f(x) with f(x) < kg(x) for some r and all x

v v vy

* this is often not possible, especially in tails for e.g. —co < x < o0
* Metropolis and Metropolis-Hastings do not have this restriction.
* The accept-reject method to get draws from f(x)

> draw x from g(x)
> draw u from uniform(0,1) and accept the draw x if

f(x)

"= ke ()
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7. Appendix: Accept reject method

Accept-reject method proof

@ Y denotes the random variable generated by the accept-reject method
X denotes a random variable with density g(x) and
U denotes a draw from the uniform. Then Y has c.d.f.

PrlY <]

A. Colin Cameron  Univ. of Calif. - Davis .

=Pr[X <y|U < f(x)/kg(x)]
_ PriX <y U< f(x)/kg(x)]

Pr[U <kf( x)/kg(x)]
L dube(x)

e {fo F007K8) ) g (x) dx

fy (x)/ kg (x)]g(x)dx
-5 [ (X)/kg( )g (x)dx
fy (x)/ k]dx

Bayesian Methods: Part 1

oLl (x) /K] dx

= 7 f(x)dx
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8. Some References

8. Some References

@ Chapter 13 “Bayesian Methods” in A. Colin Cameron and Pravin K. Trivedi,

Microeconometrics: Methods and Applications, Cambridge University Press.

@ Chapter 29 “Bayesian Methods: basics” in A. Colin Cameron and Pravin K.

Trivedi, Microeconometrics using Stata, Second edition, forthcoming.
@ Bayesian books by econometricians that feature MCMC are

> Geweke, J. (2003), Contemporary Bayesian Econometrics and Statistics,
Wiley.

> Koop, G., Poirier, D.J., and J.L. Tobias (2007), Bayesian Econometric
Methods, Cambridge University Press.

> Koop, G. (2003), Bayesian Econometrics, Wiley.

> Lancaster, T. (2004), Introduction to Modern Bayesian Econometrics, Wiley.

@ Most useful (for me) book by statisticians

» Gelman, A., J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari and D.B.
Rubin (2013), Bayesian Data Analysis, Third Edition, Chapman & Hall/CRC.
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