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1. Introduction

1. Introduction

Bayesian methods provide an alternative method of computation and
statistical inference to ML estimation.

I Some researchers use a fully Bayesian approach to inference.
I Other researchers use Bayesian computation methods (with a di¤use or
uninformative prior) as a tool to obtain the MLE and then interpret
results as they would classical ML results.
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2. Bayesian Approach

2. Bayesian Methods: Basic Idea

Bayesian methods for inference on θ obtain information on θ from
two sources

I Data - the likelihood function
F for regression this is usually L(yjθ,X)

I Prior beliefs on θ

F the prior density π(θ)
F this bit is new.
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2. Bayesian Approach Posterior density

Bayesian Methods: The posterior density

Recall Bayes Theorem that Pr[AjB ] = Pr[A\ B ]/Pr[B ].
Applying Bayes here, the posterior density for θ given data y,X is

p(θjy,X) = p(θ, y,X)
p(y,X)

So the posterior density of θ is

p(θjy,X) = L(yjθ,X)� π(θ)

m(yjX)

I m(yjX) =
R
L(yjθ,X)� π(θ)dθ is called the marginal likelihood

F problem: there is usually no tractable expression for m(yjX).

In general
Posterior _ Likelihood� Prior

A. Colin Cameron Univ. of Calif. - Davis . . () Bayesian Methods: Part 1 May 2021 5 / 44



2. Bayesian Approach Posterior density

Bayesian Methods: The prior density

The prior can be informative so it does e¤ect p(θjy,X)
I do this if have strong prior information on θ.

In some simple settings such as a doctor interpreting a medical test
I θ is scalar
I there are no regressors so the likelihood is L(yjθ)
I there can be strong prior beliefs π(θ).

The prior can be uninformative so it has little e¤ect on p(θjy,X)
I e.g. θ can take a very wide range of values (large variance)

For econometrics regressions prior beliefs are typically uninformative
over all parameters, or over all but a subset of the parameters.

As N ! ∞ the prior has little e¤ect as the likelihood dominates.
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2. Bayesian Approach Posterior density

Bayesian Methods: Inference

Bayesian analysis bases inference on the posterior distribution.
I the best estimate of θ is the mean or the mode of the posterior
distribution.

I a 95% credible interval (or �Bayesian con�dence interval�) for θ is
from the 2.5 to 97.5 percentiles of the posterior distribution

I no need for asymptotic theory!

Classical statisticians interpret results in the usual MLE way
I the mode or mean of the posterior is viewed as estimate bθ of θ.

Until recently only very simple Bayesian models could be computed
I due to inability to compute m(yjX) =

R
L(yjθ,X)� π(θ)dθ

F including Bayes (1765) original example

I MCMC methods have changed this.
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3. Normal-normal Example

3. Normal-normal Bayesian example

Suppose y jθ � N [θ, 100] (σ2 is known from other studies)
And we have independent sample of size N = 50 with ȳ = 10.

Classical analysis uses ȳ jθ � N [θ, 100/N ] � N [θ, 2]
Reinterpret as likelihood θjy � N [θ, 2].
Then MLE bθ = ȳ = 10.

Bayesian analysis introduces prior, say θ � N [5, 3].
We combine likelihood and prior to get posterior.

We expect
I posterior mean: between prior mean 5 and sample mean 10
I posterior variance: less than 2 as prior info reduces noise
I posterior distribution: ? Generally intractable.

But here can show that the posterior for θ is N [8, 1.2].
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3. Normal-normal Example

Prior N [5, 3] and likelihood N [10, 2] and yields posterior N [8, 1.2]
for θ
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3. Normal-normal Example

Classical inference: bθ = ȳ = 10 � N [10, 2]
I A 95% con�dence interval for θ is 10� 1.96�

p
2 = (7.23, 12.77)

I i.e. if we sampled many times then 95% of the time a similarly
constructed con�dence interval will include the unknown constant θ.

Bayesian inference: Posterior θ � N [8, 1.2]
I A 95% posterior interval for θ is 8� 1.96�

p
1.2 = (5.85, 10.15)

I i.e. with probability 0.95 the true value of θ lies in this interval.

A. Colin Cameron Univ. of Calif. - Davis . . () Bayesian Methods: Part 1 May 2021 10 / 44



3. Normal-normal Example

Role of the prior and the sample size

For normal-normal if yi jµ � N [µ, σ2] with σ2 known
and prior µ � N [µ, s2] then the posterior µjy � N [µ, s2]

I µ = s2 � [( σ2

N )
�1 ȳ + (s2)�1µ] is the posterior mean

I and s2 = [( σ2

N )
�1 + (s2)�1 ]�1 is the posterior variance

F the inverse of the variance is called the precision.

Consider variations of the preceding example with µ � N [8, 1.2].
I with a �di¤use�prior Bayesian gives similar numerical result to classical

F if prior is µ � N [5, 100] then posterior is µ � N [9.903, 1.961].
I with a large sample we get result close to the classical result

F if N = 5, 000 then ȳ = 10 � N [10, 0.02] and posterior is µ
� N [9.961, 0.01987].

A. Colin Cameron Univ. of Calif. - Davis . . () Bayesian Methods: Part 1 May 2021 11 / 44



3. Normal-normal Example Tractable results are rare

Tractable results are rare

The tractable result for normal-normal (known variance) carries over
to exponential family using a conjugate prior

Likelihood Prior Posterior
Normal (mean µ) Normal Normal
Normal (precision 1

σ2
) Gamma Gamma

Binomial (p) Beta Beta
Poisson (µ) Gamma Gamma

I using conjugate prior is like augmenting data with a sample from the
same distribution

I for Normal with precision matrix Σ�1 gamma generalizes to Wishart.

But in general tractable results are not available
I so use numerical methods, notably MCMC.
I using tractable results in subcomponents of MCMC can speed up
computation.
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4. MCMC Example using Stata command bayes:

4. MCMC Example using Stata command bayes:
Consider a linear regression log earnings - schooling example

I men and women full-time workers in 2010.

   education         100       13.69    3.158106          0         20
         age         100       43.33     10.9342         25         65
  lnearnings         100    10.76058    .7273709   8.294049   12.66981
    earnings         100       60244    46513.19       4000     318000

    Variable         Obs        Mean    Std. dev.       Min        Max

. summarize earnings lnearnings age education

. qui keep if _n <= 100

schooling
education  float   %9.0g Educational attainment: years of
age  int     %36.0g Age in years
lnearnings  float   %9.0g Natural logarighm of earnings
earnings  float   %9.0g Annual earnings in $

    name         type    format    label      Variable label
Variable      Storage   Display    Value

. describe earnings lnearnings age education

. qui use mus229acs.dta, clear

. * Read in and summarize earnings ­ schooling data

A. Colin Cameron Univ. of Calif. - Davis . . () Bayesian Methods: Part 1 May 2021 13 / 44



4. MCMC Example using Stata command bayes:

MLE (equals OLS) for Comparison

Concentrate on coe¢ cient of education
I MLE is 0.0852 with se 0.0221 and 95% CI (0.041, 0.129)

       _cons    9.246449   .4546021    20.34   0.000      8.34419    10.14871
         age    .0079952   .0064063     1.25   0.215    ­.0047195      .02071
   education    .0852959   .0221804     3.85   0.000     .0412739    .1293178

  lnearnings  Coefficient  Std. err.      t    P>|t|     [95% conf. interval]

. regress lnearnings education age, noheader

. * ML linear regression (same as OLS with iid errors)
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4. MCMC Example using Stata command bayes:

MCMC Simple overview

Markov chain Monte Carlo methods (MCMC) are a way to make
draws of θ from the posterior given the previous draw of θ.

Metropolis-Hastings iterative procedure
I at round s draw θ� from a candidate distribution that depends on

θ(s�1) and possibly the data y, X
I use a rule (Metropolis or Metropolis-Hastings) to

F either set θ(s) = θ� or set θ(s) = θ(s�1).

I thus some draws from the candidate distribution are accepted and
some are not.

The initial resulting θ(s) draws are not draws from the posterior
I so discard the �rst several thousand draws.

Hopefully after that we have (correlated) draws from the posterior.

Given the draws from the posterior we can do almost anything.
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4. MCMC Example using Stata command bayes:

MCMC Example: Linear Regression

Stata command bayes: pre�x command is simple
I e.g. bayes: regress y x1 x2

The default sets the following priors
I βj are independently N(0, 100

2)

I σ2 is inverse gamma (0.01, 0.01)

F so 1/σ2 is gamma (0.01, 0.01).

The default sets
I 12,500 MCMC iterations
I �rst 2,500 are not used (�burn-in�)

The defaults can be changed.

The command bayesmh is more �exible
I e.g. for nonstandard models you can provide the likelihood.
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4. MCMC Example using Stata command bayes:

MCMC Example

First part of output

(1) Parameters are elements of the linear form xb_lnearnings.

{sigma2} ~ igamma(.01,.01)
{lnearnings:education age _cons} ~ normal(0,10000)                       (1)

Priors:

lnearnings ~ regress(xb_lnearnings,{sigma2})
Likelihood:

Model summary

Simulation ...
Burn­in ...

. bayes, rseed(10101): regress lnearnings education age

. * Bayesian linear regression with uninformative prior and Stata defaults
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4. MCMC Example using Stata command bayes:

MCMC Example (continued)

Second part of output
I E¢ ciency: the 10,000 correlated draws are equivalent to on average
929.9 independent draws

I Acceptance rate: 3,071 of the 10,000 draws were accepted.

Log marginal­likelihood = ­133.37046 max =      .1512
avg =     .09299

                                                 Efficiency:  min =     .07066
                                                 Acceptance rate  =      .3071
                                                 Number of obs    =        100

MCMC sample size =     10,000
Random­walk Metropolis–Hastings sampling         Burn­in          =      2,500
Bayesian linear regression                       MCMC iterations  =     12,500
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4. MCMC Example using Stata command bayes:

MCMC Example (continued)

Third part of output for regressor education
I Posterior mean is 0.0872 with sd 0.0218 and 95% credible region
(0.047, 0.131)

I MLE is 0.0852 with se 0.0221 and 95% CI (0.041, 0.129)

Note: Adaptation tolerance is not met in at least one of the blocks.
Note: Default priors are used for model parameters.

      sigma2   .4774248   .0711248   .001829   .4702676   .3587335   .6308758

       _cons   9.198406   .4482471   .016292   9.196124   8.319206   10.09851
         age    .008496   .0062873   .000231   .0089316  ­.0037933   .0208249
   education   .0871874   .0217776   .000819   .0868041   .0471493   .1312628
lnearnings

      Mean   Std. dev.     MCSE     Median  [95% cred. interval]
                                                Equal­tailed
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4. MCMC Example using Stata command bayes: Diagnostics

MCMC Example: Diagnostics

For βeduc shows several graphical diagnostics
I use bayesgraph diagnostics {lnearnings:education}
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4. MCMC Example using Stata command bayes: Convergence of Chain

Convergence of Chain

There is no formal test.

Can do multiple independent chains and see if the variability of the
posterior mean of θ across chains is small, relative to the variation of
draws of θ within each chain.

Consider the jth of m chains
I bθj = posterior mean and sj = posterior variance

B measures variation between chains
I B = 1

m�1 ∑mj=1(bθj � bθ)2 where bθ = 1
m ∑mj=1 bθj .

W measures variation in θ within chains
I W = 1

m ∑mj=1 s
2
j .

The Gelman-Rubin Rc statistic Rc ' W+B
W

I Actually uses an adjustment for �nite number of chains
I A common threshold is Rc< 1.1 (equivalently B

W < 0.1).
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4. MCMC Example using Stata command bayes: Convergence of Chain

Convergence of Chain (continued)

* Check convergence using multiple chains

bayes, rseed(10101) nchains(5): regress lnearnings education age

      sigma2   .4763385   .0699901   .000735   .4693347   .3578036   .6313855

       _cons   9.241303   .4537841   .007116    9.23721   8.355778   10.14552
         age   .0079981   .0063156   .000096   .0081201  ­.0044435   .0202879
   education    .085597   .0222416   .000371   .0855127   .0416117     .12877
lnearnings

      Mean   Std. dev.     MCSE     Median  [95% cred. interval]
                                                Equal­tailed

Avg log marginal­likelihood = ­133.35288 Max Gelman–Rubin Rc =      1.002
                                                              max =      .1815

avg =      .1053
Avg efficiency: min =     .07201
Avg acceptance rate =      .3402

                                              Number of obs       =        100
                                                  Sample size     =     10,000
                                                  Burn­in         =      2,500
                                                  Iterations      =     12,500
Random­walk Metropolis–Hastings sampling      Per MCMC chain:
Bayesian linear regression                    Number of chains    =          5
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4. MCMC Example using Stata command bayes: Convergence of Chain

Convergence of Chain (continued)
Preceding gave average Rc across the four parameters of 1.002 < 1.1.
Now get Rc for each parameter.

Convergence rule: Rc < 1.1

      sigma2   1.000309

       _cons   1.002092
         age   1.001305
   education    1.00161
lnearnings

        Rc

Max Gelman–Rubin Rc  =   1.002092
MCMC size, per chain =     10,000
Number of chains     =          5

Gelman–Rubin convergence diagnostic

. bayesstats grubin

. * Give Gelman­Rubin Rc statistic for each parameter
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4. MCMC Example using Stata command bayes: Some bayes: code

MCMC Example: Some bayes: code

* Estimation
bayes rseed(10101): regress y x
* Summary statistics for model parameters
bayesstats summary {y:x}
* Probability that slope is in range 0.4 to 0.6
bayestest interval {y:x}, lower(0.4) upper(0.6)
* Effective sample size
bayesstats ess
* Graphical Diagnostics
bayesgraph diagnostics {y:x}
* Convergence diagnostics
bayes, rseed(10101) nchains(5): regress y x
bayesstats grubin
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5. Markov chain Monte Carlo (MCMC) methods

5. Markov chain Monte Carlo (MCMC)

The challenge is to compute the posterior p(θjy,X)
I analytical results are only available in special cases.
I early numerical methods used importance sampling to estimate
posterior moments.

Instead use Markov chain Monte Carlo methods:
I Make sequential random draws θ(1), θ(2), ....
I where θ(s) depends in part on θ(s�1)

F but not on θ(s�2) once we condition on θ(s�1) (so a Markov chain)

I in such a way that after an initial burn-in (discard these draws)
θ(s) are (correlated) draws from the posterior p(θjy,X)

F the Markov chain converges to a stationary marginal distribution which
is the posterior.
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5. Markov chain Monte Carlo (MCMC) methods

Markov Chains

A Markov chain is a stochastic sequence of possible events in which
the probability of each event depends only on the state attained in
the previous event

Under suitable assumptions the chain converges to a stationary
marginal distribution.

Here the MCMC method is set up so that this stationary distribution
is the desired posterior.

The one caveat is that while in theory the chain converges
I in practice it can take many rounds to converge
I and there is no formal test of whether convergence has occurred.
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5. Markov chain Monte Carlo (MCMC) methods

Leading MCMC methods

1. Metropolis algorithm
I Nicholas Metropolis, Arianna W. Rosenbluth, Marshall Rosenbluth,
Augusta H. Teller and Edward Teller (1953), �Equation of State
Calculations by Fast Computing Machines�, Journal of Chemical
Physics.

2. Metropolis-Hastings algorithm
I Relax the metropolis requirement that the candidate distribution is
symmetric

I W.K. Hastings (1970), �Monte Carlo Sampling Methods Using Markov
Chains and Their Applications �, Biometrika.

3. Gibbs sampler
I special case where conditional posteriors are known
I A.E. Gelfand and A.F.M. Smith (1990), JASA, is a key statistical paper
for Gibbs sampler and more generally use of MCMC methods in
statistics.
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5. Markov chain Monte Carlo (MCMC) methods Metropolis Algorithm

Metropolis Algorithm

We want to draw from posterior p(�) but usually cannot directly do
so.

Metropolis draws from a candidate distribution g(θ(s)jθ(s�1))
I these draws are sometimes accepted and some times not
I like accept-reject method but do not require p(�) � kg(�)

Metropolis algorithm at the sth round
I draw candidate θ� from candidate distribution g(�)
I the candidate distribution g(θ(s)jθ(s�1)) needs to be symmetric

F so it must satisfy g (θa jθb) = g (θb jθa)
I draw u from uniform[0, 1]

θ(s) = θ� if u <
p(θ�)

p(θ(s�1))

= θ(s�1) otherwise.
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5. Markov chain Monte Carlo (MCMC) methods Metropolis Algorithm

Metropolis Algorithm (continued)
Because we only use a ratio of posteriors the di¢ cult normalizing
constant (the marginal likelihood) does not have to be computed

p(θ�jy,X)
p(θ(s�1)jy,X)

=

L(yjθ�,X)�π(θ�)
m(yjX)

L(yjθ(s�1),X)�π(θ(s�1)
m(yjX)

=
L(yjθ�,X)� π(θ�)

L(yjθ(s�1),X)� π(θ(s�1)

For proof that the Markov chain converges to the desired distribution
see, for example, Cameron and Trivedi (2005), p.451

I the proof requires that the candidate distribution is symmetric.

Taking logs

θ(s) = θ� if ln u < ln p(θ�)� ln p(θ(s�1))
= θ(s�1) otherwise.

Random walk Metropolis draws from θ(s) � N [θ(s�1), V] for �xed V
I ideally V such that 25-50% of candidate draws are accepted.
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5. Markov chain Monte Carlo (MCMC) methods Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm

Metropolis-Hastings is a generalization

I the candidate distribution g(θ(s)jθ(s�1)) need not be symmetric
I the acceptance rule is then u < p(θ�)�g (θ� jθ(s�1))

p(θ(s�1))�g (θ(s�1) jθ�)
I Metropolis algorithm itself is often called Metropolis-Hastings.

Independence chain MH uses g(θ(s)) not depending on θ(s�1) where
g(�) is a good approximation to p(�)

I e.g. Do ML for p(θ) and then g(θ) is multivariate T with mean bθ,
variance bV[bθ].

I multivariate rather than normal as has fatter tails.

M and MH called Markov chain Monte Carlo
I because θ(s) given θ(s�1) is a �rst-order Markov chain
I Markov chain theory proves convergence to draws from p(�) as s ! ∞
I poor choice of candidate distribution leads to chain stuck in place.

A. Colin Cameron Univ. of Calif. - Davis . . () Bayesian Methods: Part 1 May 2021 30 / 44



5. Markov chain Monte Carlo (MCMC) methods Gibbs sampler

Gibbs sampler

Gibbs sampler (a general method for making draws)
I draw (Y1,Y2) by alternating draws from f (y1 jy2) and f (y2 jy1)
I after many draws gives draws from f (y1, y2) even though

f (y1, y2) = f (y1 jy2)� f (y2) 6= f (y1 jy2)� f (y2 jy1).

Suppose posterior is partitioned e.g. p(θ) = p(θ1, θ2)
I and we can make draws from p(θ1 jθ2) and p(θ2 jθ1).

Gibbs is special case of MH
I usually quicker than usual MH
I if need MH to draw from p(θ1 jθ2) and/or p(θ2 jθ1) called MH within
Gibbs.

I extends to e.g. p(θ1, θ2, θ3) make sequential draws from p(θ1 jθ2, θ3),
p(θ2 jθ1, θ3) and p(θ3 jθ1, θ2)

I requires knowledge of all of the full conditionals.
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5. Markov chain Monte Carlo (MCMC) methods Correlated Draws

Correlated Draws

M, MH and Gibbs yield correlated draws of θ(s).

But it still gives correct estimate of marginal posterior distribution of
θ (once discard burn-in draws)

I e.g. estimate posterior mean by 1
S ∑Ss=1 θ(s).

The precision of this estimate will, however, decline with greater
correlation of the draws

I the e¢ ciency statistic measures this
I if the e¢ ciency statistic is low then make more draws (after the
burn-in).
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5. Markov chain Monte Carlo (MCMC) methods Stata bayes: and bayesmh commands

Stata bayes: and bayesmh commands

The bayes: pre�x command can be applied to over 50 estimation
commands including regress, xtreg, logit, mlogit, ologit and
xtlogit. Defaults such as priors can be changed.

The bayesmh command is more �exible and allows one to program
ones own models.

The default version of bayesmh can give somewhat di¤erent results
to bayes: because bayes: takes advantage of the knowledge of the
particular model used, such as blocking of model parameters to
improve the e¢ ciency of the sampling algorithm.
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5. Markov chain Monte Carlo (MCMC) methods Stata bayes: and bayesmh commands

bayesmh command equal to earlier bayes: regress
command

The following command gives exactly the same results as the earlier
bayes, rseed(10101): regress lnearnings education age

bayesmh command example

bayesmh lnearnings education age, likelihood(normal({sigma2})) ///

prior({lnearnings:education}, normal(0,10000)) ///

prior({lnearnings:age}, normal(0,10000)) ///

prior({lnearnings:_cons},normal(0,10000)) ///

prior({sigma2},igamma(0.01,0.01)) rseed(10101) ///

block({lnearnings: education age _cons}) block({sigma2})

If the last line (blocking) is dropped the results di¤er
I blocking can really speed up computation.
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6. Further discussion Speci�cation of prior

6. Further discussion: Speci�cation of prior

As N ! ∞ data dominates the prior π(θ)

and then posterior θjy a� N [bθML, I (bθML)�1]
I but in �nite samples prior can make a di¤erence.

Noninformative and improper prior
I has little e¤ect on posterior
I a uniform or �at prior (with all values equally likely) is frequent choice
I this is an improper prior if θ is unbounded
I but usually the posterior is still proper

F if π(θ) = c we need
R
L(yjθ,X)π(θ)dθ = c

R
L(yjθ,X)dθ to be �nite

I not invariant to transformation of θ (e.g. θ ! eθ).

Je¤reys prior sets π(θ) _ det[I (θ)�1], I (θ) = �∂2 ln L/∂θ∂θ0

I invariant to transformation
I for linear regression under normality this is uniform prior for β
I also an improper prior.
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6. Further discussion Speci�cation of prior

Proper prior (informative or uninformative)
I informative becomes uninformative as prior variance becomes large.
I use conjugate prior if available as it is tractable
I hierarchical (multi-level) priors are often used

F Bayesian analog of random coe¢ cients
F let π(θ) depend on unknown parameters τ which in turn have a
completely speci�ed distribution

F p(θ, τjy) _ L(yjθ)� π(θjτ)� π(τ) so p(θjy) _
R
p(θ, τjy)dτ

Poisson example with yi Poisson[µi = exp(x
0
iβ)]

I p(β, µ, jy,X) _ L(yjµ)� π1(µjX, β)� π2(β)
I where π1(µi jβ) is gamma with mean exp(x0i β)
I and π2(β) is β � N [β, V]

F works better than p(βjy,X) _ L(yjX, β)� π(β).
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6. Further discussion Informative Prior example

Informative Prior Example
Consider lnearnings regressed on intercept, education and age.
Education: N [0.06, 0.012] means 95% sure that earnings increase
proportionately by between 0.04 and 0.08 (so between 4% and 8%)
with one more year of education.
Age: N [0.02, 0.012] means 95% sure that earnings increase by
between 0% and 4% with one more year of aging.
Intercept: Not clear so choose a di¤use N [10, 10] prior

I need to be very careful with prior for intercept
I N [10, 10] prior is very informative for earnings rather than lnearnings.

sigma2 (σ2): di¢ cult to explain but choose a reasonably di¤use prior.

* bayesmh example with informative priors

bayesmh lnearnings education age, likelihood(normal({var})) ///

prior({lnearnings:education}, normal(0.06,0.0001)) ///

prior({lnearnings:age}, normal(0.02,0.0001)) ///

prior({lnearnings:_cons},normal(10,100)) ///

prior({var},igamma(1,0.5)) rseed(10101)
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6. Further discussion Convergence of MCMC

Convergence of MCMC

Theory says chain converges as s ! ∞
I could still have a problem with one million draws.

Checks for convergence of the chain (after discarding burn-in)

I graphical: plot θ(s) to see that θ(s) is moving around
I correlations: of θ(s) and θ(s�k ) should ! 0 as k gets large
I plot posterior density: multimodality could indicate problem
I break into pieces: expect each 1,000 draws to have similar properties
I run several independent chains with di¤erent starting values

F Gelman-Rubin statistic.

But it is not possible to be 100% sure that chain has converged.
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6. Further discussion Bayesian model selection

Bayesian model selection
Bayesians use the marginal likelihood

I m(yjX) =
R
L(yjθ,X)� π(θ)dθ

I this weights the likelihood (used in ML analysis) by the prior.

Bayes factor is analog of likelihood ratio

B =
m1(yjX)
m2(yjX)

=
marginal likelihood model 1
marginal likelihood model 2

I one rule of thumb is that the evidence against model 2 is
F weak if 1 < B < 3 (or approximately 0 < 2 lnB < 2)
F positive if 1 < B < 3 (or approximately 2 < 2 lnB < 6)
F strong if 20 < B < 150 (or approximately 6 < 2 lnB < 10)
F very strong if B > 150 (or approximately 2 lnB > 10).

Can use to �test�H0 : θ = θ1 against Ha : θ = θ2.

The posterior odds ratio weights B by priors on models 1 and 2
I so now use priors on both θ and the model.
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6. Further discussion Bayesian model selection

Problem: MCMC methods to obtain the posterior avoid computing
the marginal likelihood

I computing the marginal likelihood can be di¢ cult
I see Chib (1995), JASA, and Chib and Jeliazkov (2001), JASA.

An asymptotic approximation to the Bayes factor is

B12 =
L1(yjbθ,X)
L2(yjbθ,X)N (k2�k1)/2

I Here model 1 is nested in model 2 and due to asymptotics the prior has
no in�uence (so the ratio of posteriors is the ratio of likelihoods)

I This is the Bayesian information criterion (BIC) or Schwarz criterion.
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6. Further discussion What does it mean to be Bayesian?

What does it mean to be a Bayesian?

Modern Bayesian methods (Markov chain Monte Carlo)
I make it much easier to compute the posterior distribution than to
maximize the log-likelihood.

So classical statisticians:
I use Bayesian methods to compute the posterior
I use an uninformative prior so p(θjy,X) ' L(yjθ,X)
I so θ that maximizes the posterior is also the MLE.

Others go all the way and be Bayesian:
I give Bayesian interpretation

F e.g. use credible intervals
F e.g. given draws of θ can easily do inference on transformations of θ

I if possible use an informative prior that embodies previous knowledge.
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7. Appendix: Accept reject method

7. Appendix: Accept-reject method

There are many ways to random draws from a distribution such as
inverse-transformation method.

The accept-reject method can be used when
I we want to draw from density f (x) but this is di¢ cult
I we have a candidate density g(x) that we can make draws from
I for any value of x we can compute f (x) and g(x)
I key: g(x) covers f (x) with f (x) � kg(x) for some r and all x

F this is often not possible, especially in tails for e.g. �∞ < x < ∞
F Metropolis and Metropolis-Hastings do not have this restriction.
F The accept-reject method to get draws from f (x)

I draw x from g(x)
I draw u from uniform(0,1) and accept the draw x if

u � f (x)
kg(x)
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7. Appendix: Accept reject method

Accept-reject method proof

Y denotes the random variable generated by the accept-reject method
X denotes a random variable with density g(x) and
U denotes a draw from the uniform. Then Y has c.d.f.

Pr[Y � y ] = Pr [X � y jU � f (x)/kg(x)]
=
Pr [X � y ,U � f (x)/kg(x)]

Pr [U � f (x)/kg(x)]

=

R y
�∞f

R f (x )/kg (x )
0 dugg(x)dxR ∞

�∞f
R f (x )/kg (x )
0 dugg(x)dx

=

R y
�∞[f (x)/kg(x)]g(x)dxR ∞
�∞[f (x)/kg(x)]g(x)dx

=

R y
�∞[f (x)/k ]dxR ∞
�∞[f (x)/k ]dx

=
R y
�∞ f (x)dx
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8. Some References

8. Some References

Chapter 13 �Bayesian Methods� in A. Colin Cameron and Pravin K. Trivedi,

Microeconometrics: Methods and Applications, Cambridge University Press.

Chapter 29 �Bayesian Methods: basics� in A. Colin Cameron and Pravin K.

Trivedi, Microeconometrics using Stata, Second edition, forthcoming.

Bayesian books by econometricians that feature MCMC are

I Geweke, J. (2003), Contemporary Bayesian Econometrics and Statistics,
Wiley.

I Koop, G., Poirier, D.J., and J.L. Tobias (2007), Bayesian Econometric
Methods, Cambridge University Press.

I Koop, G. (2003), Bayesian Econometrics, Wiley.
I Lancaster, T. (2004), Introduction to Modern Bayesian Econometrics, Wiley.

Most useful (for me) book by statisticians

I Gelman, A., J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari and D.B.
Rubin (2013), Bayesian Data Analysis, Third Edition, Chapman & Hall/CRC.
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