
Bayesian Methods: Part 2

A. Colin Cameron
Univ. of Calif. - Davis

. .

May 2021

A. Colin Cameron Univ. of Calif. - Davis . . () Bayesian Methods: Part 2 May 2021 1 / 33



1. Introduction

1. Introduction

Consider extensions of Bayesian methods.

1. Code up a Metropolis example in Mata.

2. Code up a Gibbs example in Mata.

3. Multiple Imputation.
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2. Metropolis Algorithm for probit in Mata

2. Metropolis Algorithm for probit in Mata
Consider probit model.
The likelihood is

L(yjβ,X) = ∏N
i=1 Φ(x0iβ)

yi (1�Φ(x0iβ))
1�yi

Use an uninformative prior (all values of β equally likely)

π(β) _ 1

I even though improper the posterior will be proper.

The posterior is

p(βjy,X) _ L(yjβ,X)� π(β)

_ ∏N
i=1 Φ(x0iβ)

yi (1�Φ(x0iβ))
1�yi � 1

_ ∏N
i=1 Φ(x0iβ)

yi (1�Φ(x0iβ))
1�yi

I Note: we know p(βjy,X) only up to a scale factor.
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2. Metropolis Algorithm for probit in Mata Random walk Metropolis draws

Random walk Metropolis draws

We use Metropolis algorithm to make draws from this posterior.

The random walk MH uses a draw from N [β(s�1), cI] where c is set.
I So we draw β� = β(s�1) + v where v is draw from N [0, cI]

For u � uniform[0, 1] draw and acceptance probability
paccept = p(β�)/p(β(s�1))

I set β(s) = β� if u < paccept
I set β(s) = β(s�1) if u > paccept

Taking logs, equivalent to

I β(s) = β� if ln u < ln(paccept) where
I ln(paccept) = [∑i yi lnΦ(x0i β

�) + (1� yi ) ln(1�Φ(x0i β
�))]

� [∑i yi lnΦ(x0i β
(s�1)) + (1� yi ) ln(1�Φ(x0i β

(s�1)))]
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2. Metropolis Algorithm for probit in Mata Generated data

Generated data

        cons         100           1           0          1          1
           y         100         .59    .4943111          0          1
       ystar         100    .2901163     1.46373  ­3.372719   3.316435
           x         100   ­.1477064    1.003931  ­2.583632   2.350792

    Variable         Obs        Mean    Std. dev.       Min        Max

. summarize

. generate cons = 1   // Mata code below requires a regressor for the intercept

. generate y = (ystar > 0)

. generate ystar = 0.5 + 1*x + rnormal(0,1)

. generate x = rnormal(0,1)

. set seed 1234567

Number of observations (_N) was 0, now 100.
. set obs 100
. * Generate data N = 100  Pr[y=1|x] = PHI(0.5 + 1.0*x) and x ~ N(0,1)
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2. Metropolis Algorithm for probit in Mata Probit MLE

Probit MLE

       _cons    .4810185   .1591173     3.02   0.003     .1691543    .7928827
           x    1.137895   .2236915     5.09   0.000     .6994677    1.576322

           y  Coefficient  Std. err.      z    P>|z|     [95% conf. interval]

Log likelihood = ­46.350193                             Pseudo R2     = 0.3152
                                                        Prob > chi2   = 0.0000
                                                        LR chi2(1)    =  42.67
Probit regression                                       Number of obs =    100

. probit y x, nolog

. * Estimate probit model by MLE
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2. Metropolis Algorithm for probit in Mata Probit MLE

Stata estimation using bayesmh with �at prior

bayesmh y x, likelihood(probit) prior({y:_cons x}, �at) rseed(10101)

       _cons   .4912771   .1649868   .005421   .4913284   .1694699   .8135934
           x   1.172479   .2315767   .006817   1.155511   .7693384   1.644086

           y       Mean   Std. dev.     MCSE     Median  [95% cred. interval]
                                                Equal­tailed

Log marginal­likelihood = ­47.855029 max =      .1154
avg =       .104

                                                 Efficiency:  min =     .09261
                                                 Acceptance rate  =      .2081
                                                 Number of obs    =        100

MCMC sample size =     10,000
Random­walk Metropolis–Hastings sampling         Burn­in          =      2,500
Bayesian probit regression                       MCMC iterations  =     12,500
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2. Metropolis Algorithm for probit in Mata Code up instead

Code up instead

Code up example in Mata with
I uninformative (�at) prior
I random walk MH with β� = β(s�1) + v
where v is draw from N [0, 0.25I]

F c = 0.25 chosen after some trial and error

I First 10, 000 MH draws are discarded (burn-in)
I Next 10, 000 draws are kept.
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2. Metropolis Algorithm for probit in Mata Core Mata code

Core Mata code
for (irep=1; irep<=20000; irep++) {

bcandidate = bdraw + 0.25*rnormal(k,1,0,1) // bdraw is previous value of b

probitprob = normal(X*bcandidate)

lpostcandidate = e�( y:*ln(probitprob) + (e-y):*ln(e-probitprob) // e = J(n,1,1)

laccprob = lpostcandidate - lpostdraw // lpostdraw post. prob. from last round

accept = 0

if ( ln(runiform(1,1)) < laccprob ) {

lpostdraw = lpostcandidate

bdraw = bcandidate

accept = 1

}

// Store the draws after burn-in of b

if (irep>10000) {

j = irep-10000

b_all[.,j] = bdraw // These are the posterior draws

}

}
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2. Metropolis Algorithm for probit in Mata Results for slope parameter

Results for slope parameter
Posterior mean is 1.168 versus bayesmh 1.172 and MLE 1.137
Posterior stand. dev. 0.226 versus bayesmh 0.232 and MLE 0.224
A 95% percent Bayesian credible interval for β2 is (0.746, 1.631).

                 97.5    1.631214        1.621459     1.63932
       beta2     10,000        2.5    .7456415        .7262759    .7578553

    Variable        Obs  Percentile    Centile        [95% conf. interval]
                                                          Binom. interp.

. centile beta2, centile(2.5, 97.5)

      accept      10,000       .4302    .4951287          0          1
       beta2      10,000    1.167617    .2263273   .4205724   2.051684
       beta1      10,000    .4868512    .1573034  ­.0620936   1.173329

    Variable         Obs        Mean    Std. dev.       Min        Max

. summarize beta* accept

. * Analyze the posterior draws from probit MH algorithm
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2. Metropolis Algorithm for probit in Mata Correlated draws

Correlated draws

The �rst 100 and �rst 1,000 draws (after burn-in) from the posterior
density of β2
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Flat sections are where the candidate draw was not accepted
I The acceptance rate for 10,000 draws was 0.4302.
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2. Metropolis Algorithm for probit in Mata Correlated draws

Correlations of the 10,000 draws of β2 die out reasonably quickly

12    0.0922  ­0.0109    21593  0.0000
11    0.1174  ­0.0023    21508  0.0000
10    0.1444   0.0035    21370  0.0000
9    0.1762   0.0005    21161  0.0000
8    0.2169  ­0.0083    20850  0.0000
7    0.2671  ­0.0068    20380  0.0000
6    0.3247   0.0041    19666  0.0000
5    0.3917  ­0.0083    18611  0.0000
4    0.4747  ­0.0070    17076  0.0000
3    0.5715   0.0167    14821  0.0000
2    0.6848  ­0.0044    11553  0.0000
1    0.8282   0.8283   6861.7  0.0000

 LAG       AC       PAC      Q     Prob>Q  [Autocorrelation]  [Partial autocor]
                                          ­1       0       1 ­1       0       1

. corrgram beta2, lags(12)

. * Compute the first 12 autocorrelations of beta2

This varies a lot with choice of c in β� = β(s�1) +N [0, cI]
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2. Metropolis Algorithm for probit in Mata Correlated draws

E¢ ciency statistic

This is 1/f1+ 2∑max
k=1 bρ2kg where bρj = Cor [bβ, bβ�s ].

E¢ ciency statistic is 0.1829
I so 10,000 correlated draws equivalent to 1,827 independent draws.

Efficiency = .18277753
. di "Efficiency = " 1/(1+2*r(sum))

. qui summarize ac_sq

. qui generate ac_sq = ac^2

. qui ac beta2, lags(100) gen(ac)

. * Compute the efficiency of the MH algorithm for beta2
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2. Metropolis Algorithm for probit in Mata Posterior density

Posterior density

Kernel density estimate of the 10,000 draws of β2
I centered around approx. 1.2 with standard deviation of 0.2 or so.
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2. Metropolis Algorithm for probit in Mata Various diagnostics

Various diagnostics

Stata code

>     iscale(0.7) ysize(5) xsize(6) rows(2)
. graph combine graph1.gph graph2.gph graph3.gph graph4.gph, ///

>     legend(off) note(" ", ring(0) pos(3)) saving(graph4.gph, replace)
>     (kdensity beta2 if s>5000), title("Density: all, 1st half, 2nd half") ///
. qui graph twoway (kdensity beta2) (kdensity beta2 if s<=5000)             ///

. qui line beta2 s, title("Trace") saving(graph3.gph, replace)

>     saving(graph2.gph, replace)
. qui line beta2 s if s < 100, title("Trace: first 100 draws") ///

>     note(" ", ring(0) pos(3)) saving(graph1.gph, replace)
. qui ac beta2, title("Autocorrelations") lags(100)        ///
. * Plot various diagnostics for the posterior draws of b2
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2. Metropolis Algorithm for probit in Mata Various diagnostics

Various diagnostics
Graph
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3. Data Augmentation for Probit Model Summary of Data Augmentation

3. Data Augmentation: Summary

Latent variable models (probit, Tobit, ...) observe y1, ..., yN based on
latent variables y �1 , ..., y

�
N .

Bayesian data augmentation introduces y �1 , ..., y
�
N as additional

parameters
I then posterior is p(y�1 , ...., y

�
N , θ)

I which includes p(θ) the desired posterior for θ.

Use Gibbs sampler
I alternating draws between p(θjy�1 , ...., y�N ) and p(y�1 , ...., y�N jθ).

Draws of θjy �1 , ...., y �N can use known results for linear regression
I since regular regression once y�1 , ...., y

�
N are known

Draws from p(y �1 , ...., y
�
N jθ) are called data augmentation

I since we augment observed y1, ..., yN with unobserved y�1 , ..., y
�
N .
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3. Data Augmentation for Probit Model Data Augmentation for Probit Model

Probit Model

Likelihood: Probit model with latent variable formulation
I y�i = x

0
i β+ εi , εi � N [0, 1].

I yi =
�
1 y�i > 0
0 y�i � 0

Since y �i jxi , β � N [x0iβ,1] we have
I p(y�jβ,X) = �N2 ln(2π)� 1

2 ∑ni=1(y
�
i � x0i β)2.

Prior: uniform prior (all values equally likely)
I π(β) = 1

We have �parameters� β, y� and data (y,X)
I posterior is p(β, y�jy,X).

We will make alternating draws from
I p(βjy�, y,X) and p(y�jβ, y,X)
I data want the posterior density p(β, y�jy,X)
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3. Data Augmentation for Probit Model Data Augmentation for Probit Model

Probit Model (continued)

Make alternating draws from p(βjy�, y,X) and p(y�jβ, y,X)
p(βjy�, y,X) = p(βjy�,X) since knowledge of y� ) y is known

I the normal distribution is symmetric in the mean
I since y�jXβ � N [Xβ, I] we have Xβjy� � N [y�, I]

F density is (2π)�N/2 expf(y� �Xβ)(y� �Xβ)/2g
I so (X0X)�1X0Xβjy� � N [(X0X)�1X0y�, (X0X)�1X0IX(X0X)�1 ]
I or βjy� � N [eβ, (X0X)�1 ] where eβ = (X0X)�1X0y.

p(y�jβ, y,X) = p(y �1 , ..., y �N jβ, y,X) is truncated normal so
I

F If yi = 1 draw from N [x0i β, 1] left truncated at 0
F If yi = 0 draw from N [x0i β, 1] right truncated at 0

Posterior step: draw β(s) from p(βjy �(s�1)1 , ..., y �(s�1)N ,X)
Augmentation step: draw y �(s)1 , ..., y �(s)N from p(y �1 , ..., y

�
N jβ

(s), y,X).
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3. Data Augmentation for Probit Model Core Mata code

Core Mata code
for (irep=1; irep<=s; irep++) {

// Posterior-step: draw from beta j y* ~N[bols*, (X�X)^-1]
bols = Xtxinvchol*cross(X,ystar)

b1 = bols

bdraw = b1 + Xtxinvchol*rnormal(k,1,0,1) //invnormal(uniform(k,1))

// Imputation step: make one draw of vector ystar

// where for ith observation ystar_i j y,b is truncated normal
for (i=1; i<=n; i++) {

mu = X[i,.]*bdraw

if (y[i,1]==0) {

uright = normal(-mu)*uniform(1,1)

ystar[i,1] = mu + invnormal(uright)

}

else {

uleft = normal(-mu) + (1-normal(-mu))*uniform(1,1)

ystar[i,1] = mu + invnormal(uleft)

}

}
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3. Data Augmentation for Probit Model Results for slope parameter

Results for slope parameter

Posterior mean is 1.174 versus bayesmh 1.172 and MLE 1.137

Posterior stand. dev. 0.226 versus bayesmh 0.232 and MLE 0.224

A 95% percent Bayesian credible interval for β2 is (0.7516, 1.645).

                 97.5    1.646951        1.629367    1.660316
       beta2     10,000        2.5    .7512463        .7392763    .7636364

    Variable        Obs  Percentile    Centile        [95% conf. interval]
                                                          Binom. interp.

. centile beta2, centile(2.5, 97.5)

       beta2      10,000    1.173542    .2259341   .4758451   2.346783
       beta1      10,000    .4842779    .1582509  ­.2082249   1.158187

    Variable         Obs        Mean    Std. dev.       Min        Max

. summarize beta*

. * Analyze the posterior draws from probit Gibbs sampler algorithm
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3. Data Augmentation for Probit Model Correlated draws

E¢ ciency statistic

This is 1/f1+ 2∑max
k=1 bρ2kg where bρj = Cor [bβ, bβ�s ].

E¢ ciency statistic is 0.205

Efficiency = .20486695
. di "Efficiency = " 1/(1+2*r(sum))

. qui summarize ac_sq

. qui generate ac_sq = ac^2

. qui ac beta2, lags(100) gen(ac)

        Delta: 1 unit
Time variable: s, 1 to 10000

. tsset s

. generate s= _n

. * Compute the efficiency of the Gibbs sampler algorithm
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3. Data Augmentation for Probit Model Various diagnostics

Diagnostics plot
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3. Data Augmentation for Probit Model Multinomial Probit

More complicated example: Multinomial probit

Likelihood: Multinomial probit model (MLE has high-dimensional
integral)

I U�ij = x
0
ijβ+ εij , εi � N [0,Σε]

I yij = 1 if U�ij > U
�
ik all k 6= j

Prior for β and Σ�1ε may be normal and Wishart

Data augmentation
I Latent utilities Ui = (Ui1, ...,Uim) are introduced as auxiliary variables
I Let U = (U1, ...,UN ) and y = (y1, ..., yN )

Gibbs sampler for joint posterior p(β,U,Σεjy,X) cycles between
I 1. Conditional posterior for βjU,Σε, y,X
I 2. Conditional posterior for Σεjβ,U, y,X, and
I 3. Conditional posterior for Ui jβ,Σε, y,X.

Albert and Chib (1993) provide a quite general treatment.

McCulloch and Rossi (1994) provide a substantive MNP application.
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4. Multiple Imputation Missingness Mechanisms

4. Multiple Imputation: Missingness Mechanisms

De�ne data W =Wobs [Wmiss and selection matrix S

W N � p Complete data
Wobs Observed data
Wmiss Missing data
S N � p Selection matrix of 1�s and 0�s

Missing data mechanisms

MCAR Pr(SjWobs ,Wmiss ) = Pr(S) Missing completely at random
MAR Pr(SjWobs ,Wmiss ) = Pr(SjWobs) Missing at random
MNAR Pr(SjWobs ,Wmiss ) 6= Pr(SjWobs) Missing not at random
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4. Multiple Imputation Missingness Mechanisms

Missingness Mechanisms

MCAR (Missing completely at random) Pr(SjWobs ,Wmiss ) = Pr(S)
I can validly use only nonmissing data
I but imputation can improve e¢ ciency

MAR (Missing at random) Pr(SjWobs ,Wmiss ) = Pr(SjWobs)

I regression case where only missing data is exogenous regressors
I then can use e.g. case deletion
I but imputation can improve e¢ ciency

MNAR (Missing not at random) Pr(SjWobs ,Wmiss ) 6= Pr(SjWobs)

I regression case where data on endogenous regressors or the dependent
variable is missing

I then problems - selection on unobservables
I much stronger stochastic assumptions will be needed e.g. tobit model.

A. Colin Cameron Univ. of Calif. - Davis . . () Bayesian Methods: Part 2 May 2021 27 / 33



4. Multiple Imputation Imputation Methods

Imputation Methods

Simple methods such as replace missing values with nonmissing mean
values can lead to inconsistent estimation and invalid statistical
inference.

Single imputation uses a model to obtain imputation Wmiss_imp of
Wmiss and form complete data Wimp = (Wobs ,Wmiss_imp).

I standard inference on consequent bθ obtained using Wimp is invalid as
it ignores the additional randomness in imputing Wmiss_imp .
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4. Multiple Imputation Multiple Imputation

Multiple Imputation

Multiple imputation accounts for this by imputing Wmiss_imp m
independent times.

I impute Wmiss_imp,r , r = 1, ...m, leading to Wimp,r , r = 1, ...,m.
I obtain bθr , r = 1, ..,m, with usual variance estimates bVr , r = 1, ..,mbθ is the average of the m bθr s

bθ = 1
m ∑m

r=1
bθr .

cVar(bθ) is the average of the m bVr plus the variability in the m bθr s
around bθ

cVar(bθ) = 1
m ∑m

r=1
bVr + 1+ (1/m)

m� 1 ∑m
r=1(

bθr � bθ)(bθr � bθ)0.
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4. Multiple Imputation Regression-based imputation

Regression-based Imputation

Example where a single regressor x , a count, has some missing values.

Data W = (x,Z)
I with observed and missing x = (xo , xm) and Z = (Zo ,Zm).

Imputation
I Assume xi � Poisson(z0i β)
I Estimate bβ and robust bV(bβ) from Poisson regression of xo on Zo (uses
observed data)

I Draw β� from N [bβ, bV(bβ)] and for each missing observation xmi make
draw from Poisson(z0mi β

�).

For multiple imputation make more draws.

Since x is a regressor z should include y (as x and y are then related).
The MAR assumption is made (�ne if y is completely observed).
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4. Multiple Imputation Imputation by Data Augmentation

Imputation by Data Augmentation

Partition w = (x, z)
I where z is completely observed and x is partially observed.

Assume xi � N [Πzi ,Σ] where Π and Σ are unknown.
I may need to �rst transform transform variables such as right-skewed.

Goal is impute Xm given Xo and Z where partition X = (Xo , Xm).
Use data augmentation where Xm are additional parameters

I posterior density p(Π,Σ,Xm jXo ,Z)
I use Gibbs sampler

F P step (posterior step) p(Π,ΣjXm ,Xo ,Z)
F I step (imputation step) p(Xm jΠ,Σ,Xo ,Z)

I uniform prior for Π and Wishart prior for Σ.
I use the draws X�m and discard the draws of Π,Σ.
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4. Multiple Imputation Example Stata code

Example Stata code - variable x2 has some missing values

* Declare dataset type (long) and summarize missingness

mi set mlong

mi misstable summarize

mi misstable patterns

* Register imputed variables and perform ten imputations

mi register imputed x2

mi register regular y x3

mi impute mvn x2 = y x3, add(10) rseed(10101) burnin(100) burnbetween(100)

* Multiple imputation creates the following data and variables

summarize

* Describe the imputed data

mi describe

* Estimate the model with imputed data

mi estimate, dots: regress y x2 x3
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5. Some References

5. Some References

Chapter 13 �Bayesian Methods� in A. Colin Cameron and Pravin K. Trivedi,

Microeconometrics: Methods and Applications, Cambridge University Press.

Chapter 30 �Bayesian Methods: MCMC Algorithms� in A. Colin Cameron and

Pravin K. Trivedi, Microeconometrics using Stata, Second edition, forthcoming.

Bayesian books by econometricians that feature MCMC are

I Geweke, J. (2003), Contemporary Bayesian Econometrics and Statistics,
Wiley.

I Koop, G., Poirier, D.J., and J.L. Tobias (2007), Bayesian Econometric
Methods, Cambridge University Press.

I Koop, G. (2003), Bayesian Econometrics, Wiley.
I Lancaster, T. (2004), Introduction to Modern Bayesian Econometrics, Wiley.

Most useful (for me) book by statisticians

I Gelman, A., J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari and D.B.
Rubin (2013), Bayesian Data Analysis, Third Edition, Chapman & Hall/CRC.
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