Bayesian Methods: Part 2

A. Colin Cameron
Univ. of Calif. - Davis

May 2021

A. Colin Cameron  Univ. of Calif. - Davis . Bayesian Methods: Part 2



1. Introduction

1. Introduction

Consider extensions of Bayesian methods.
1. Code up a Metropolis example in Mata.

2. Code up a Gibbs example in Mata.

3. Multiple Imputation.
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Outline

@ Introduction

@ Metropolis Algorithm for probit in Mata
O Gibbs for probit in Mata

© Multiple Imputation

@ Some references
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2. Metropolis Algorithm for probit in Mata

@ Consider probit model.
@ The likelihood is

L(y|B. X) = TTiL; @(xiB)” (1 — @(xiB))"

@ Use an uninformative prior (all values of B equally likely)

t(B) o 1

> even though improper the posterior will be proper.

@ The posterior is

p(Bly,X) o L(y|B, X) x 7t(B)
oo T, D(xIB) (1 —D(xiB)) 7 x 1
o T, D(xIB)" (1 — (xiB))

> Note: we know p(Bly, X) only up to a scale factor.
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2. Metropolis Algorithm for probit in Mata Random walk Metropolis draws

Random walk Metropolis draws

@ We use Metropolis algorithm to make draws from this posterior.
o The random walk MH uses a draw from N [B*~Y), cl] where ¢ is set.
» So we draw B* = BV v where v is draw from N[0, cl]

@ For u ~ uniform[0, 1] draw and acceptance probability
paccept = p(B*)/p(B° 1)

> set B1) = B* if u < paccept
> set ﬁ(s) = ,8(5_1) if u > paccept

o Taking logs, equivalent to

> ﬁ(s) = B* if Inu < In(paccept) where
> In(paccept) = [L; y; In@(xiB") + (1 - y;) In(1 — P(x{"))]
~ (S @) + (11— y) (1~ @ ()]
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2. Metropolis Algorithm for probit in Mata FETISENENEES

Generated data

.B*BGenerateldatalNE=01002EPr [y=1|x]@=BPHI(0.58+01.0%x)BandExE~EN(0,1)
.Bsetlobsk100
NumberBofBobservationsB(_N)BwasEo,nowl100.

.BsetBseedd1234567

.BgenerateBxB=Brnormal(o,1)
.Bgeneratelystark=E0.58+21*xE+Brnormal(0,1)

.BgeneratelyB=E(ystar>E0)

.Bgenerateliconsk= B/ /BMataBcodeBbelowlrequiresBalregressoriforthe@intercept

.Bsummarize

BVariable

PIRIRIRIRIRIRIRIRIERIRIX

ERRRRIREIcons
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2. Metropolis Algorithm for probit in Mata Probit MLE

Probit MLE

.B*REstimatelprobitEmodelEbyEMLE
.EprobitBy&x,Enolog

ProbitBregressionBRERERRERRRRERRRRERRERERRRRERRRRERRERENumbe rRlofBobsE

LogBlikelihood@= B46.350193FERRERERRRRRERRRREERRRRERRRREPseud

BCoefficientBBStd.err.

P>|z|®

.2236915CERERS . 09ERE0 . 00OREREER . 699467 7C
.1591173CREER3 . 02ERE0 . 003EEREER . 169154
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2. Metropolis Algorithm for probit in Mata Probit MLE

Stata estimation using bayesmh with flat prior

@ bayesmh y x, likelihood(probit) prior({y: cons x}, flat) rseed(10101)

BayesianBprobitBregressionZEHEEEEEEREREEEREEEREREMCMCEi terationst F12,500
RandomBwalkEMetropolis-HastingsksamplingBREEEERERBUrnEinERERRERERE= ERERE2, 500

MCMCRsampleBlsiz 0,000
FRRRRREEERRRR R RRRRRRRR R R R R R R RRRRRRRRRRRRRENUMbe rElofRlob sk 21100
FRRREEEEEEEEEEEEERRRRREEEEE R EEERRRRREEEREEEERRACceptancelratel 2081
PRRRERE R R R R R R R R R R R R R RRRRRRRERREf ficiency : BEmi 09261

av
LogPmarginal@likelihoodl= B47.855029 maxe

el ] e U W A N B K=Y

PEREERRERRRY | BREREEMean

BE1.172479C
BIE. 49127710
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Ceiz up (Tsieze
Code up instead

o Code up example in Mata with

> uninformative (flat) prior
> random walk MH with g* = g1 4y
where v is draw from A/[0, 0.251]

* ¢ = 0.25 chosen after some trial and error

» First 10,000 MH draws are discarded (burn-in)
» Next 10,000 draws are kept.
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2. Metropolis Algorithm for probit in Mata FEERVETENELIS

Core Mata code
for (irep=1; irep<=20000; irep++) {
bcandidate = bdraw + 0.25*rnormal(k,1,0,1) // bdraw is previous value of b
probitprob = normal(X*bcandidate)
Ipostcandidate = e'( y:*In(probitprob) + (e-y):*In(e-probitprob) // e = J(n,1,1)
laccprob = Ipostcandidate - Ipostdraw  // Ipostdraw post. prob. from last round
accept = 0
if (‘In(runiform(1,1)) < laccprob ) {
Ipostdraw = Ipostcandidate
bdraw = bcandidate

accept =1
}
// Store the draws after burn-in of b
if (irep>10000) {
j = irep-10000
b_all[.,j] = bdraw // These are the posterior draws

}
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2. Metropolis Algorithm for probit in Mata Results for slope parameter

Results for slope parameter

@ Posterior mean is 1.168 versus bayesmh 1.172 and MLE 1.137
@ Posterior stand. dev. 0.226 versus bayesmh 0.232 and MLE 0.224
o A 95% percent Bayesian credible interval for B, is (0.746, 1.631).

B*RAnalyzeBthelposteriorfdrawsBfromiprobitEMHREalgorithm
.BsummarizeBbeta*Faccept

RStd.Edev.ERRRRREMINERRRRRRREMax

EVariable |RRREREREEEObSERRRRREREMean

PERREREEREbetal |EREERE10, 000
BRERREEEbeta2 |EREREEER1O, 000 E
BREEERaccept |ERERERER1O, 000REEEEEER.4302 495128 7RRRRERERRRORERERERERE L

.BcentileBbeta2,Bcentile(2.5,E97.5)

FRRREEEEEEEEEEEERRRRRREE R R R R R R R R R E R RRRREREERREEB inom . Binterp .

BEREEVariable |EREEREEEREObsEREPercentileBRRECentileRRERRRRE[95%Econf.Binterval]

BPEPEEREEbeta2 [Bl.726275908

B11.6214598
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2. Metropolis Algorithm for probit in Mata BETEENE:RIETH

Correlated draws

@ The first 100 and first 1,000 draws (after burn-in) from the posterior
density of B,

Trace Trace

0 20 40 60 80 100 0 200 400 600 800 1000
Draw s Draw s

o Flat sections are where the candidate draw was not accepted

» The acceptance rate for 10,000 draws was 0.4302.
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2. Metropolis Algorithm for probit in Mata Correlated draws

o Correlations of the 10,000 draws of B, die out reasonably quickly

BComputeltheBfirst@l2Bautocorrelationsof@beta2
.Bcorrgramibeta2,@lags(12)

FRERRER1ERRRRRRORRRRRRR1RER 1RO ERRRR 1

BFLAGEEREEEEACERE PProb>QRE[Autocorrelation]BR[PartialBautocor]
1 .828 0.0000

2 .684 0.0000

3 .571 0.0000 —
4 474 0.0000 —
5 .391 0.0000 —
6 324 0.0000 —

7 2671 0.0000 —

8 .216 0.0000 —

9 1762 0.0000 —

10 .144. 0.0000 —

11 1174 0.0000

12 .092 0.0000

o This varies a lot with choice of c in B = B~ + N[0, cl]
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2. Metropolis Algorithm for probit in Mata BETEENE:RIETH

Efficiency statistic

o Thisis 1/{1+2Y7% p;} where 0; = Cor[B.B_.].
o Efficiency statistic is 0.1829

» so 10,000 correlated draws equivalent to 1,827 independent draws.

.B*EComputeltheBefficiencylof@theEMHEalgorithmEforibeta2
.BquiPachbeta2,Blags(100)Bgen(ac)

.BquibgenerateBac_sqB=Rac"2

.BquillsummarizeBlac_sq

.BdiR"EfficiencyB=E"E1/(1+2*r(sum))

Efficiencyl=0.18277753
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2. Metropolis Algorithm for probit in Mata Posterior density

Posterior density

@ Kernel density estimate of the 10,000 draws of S,

» centered around approx. 1.2 with standard deviation of 0.2 or so.

Density
4
wn
—
2
2 i
[
a
LD_ .
o4
T T T T
5 1 15 2
beta2
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2. Metropolis Algorithm for probit in Mata BAVETIITENCIEY Al ale

Various diagnostics

@ Stata code

.B*EPlotBvarious@diagnosticsBforBthefposteriorfdrawsBofib2
uiBacBbeta2,Btitle("Autocorrelations")Blags(100)
note("R",Bring(0)Bpos(3))Bsaving(graphl.gph,Breplace)

/1/

.BquiPlineBbeta2BsPifEsEE100,Btitle("Trace:Bfirst@100Bdraws" )&/ //
>EERERsaving(graph2.gph,Breplace)

.BquiPlineBbeta2ls,Btitle("Trace")Bsaving(graph3.gph,@replace)

uibgraphBtwowayl(kdensityBbeta2)B(kdensityBbeta2Rifls<=5000)Cl B///
(kdensityBbeta2BifRs>5000),Btitle("Density:@all,BlstBhalf,B@2ndBhalf" )&/ //
legend(off)Bnote("B",Bring(@)Bpos(3))Bsaving(graph4.gph,Breplace)

.BgraphBcombineRgraphl.gphBgraph2.gphiigraph3.gphkgraph4.gph,d///

SPRERERiscale(0.7)Bysize(5)Bxsize(6)Brows(2)

A. Colin Cameron  Univ. of Calif. - Davis . Bayesian Methods: Part 2 May 2021 16 / 33



2. Metropolis Algorithm for probit in Mata BAVETIITENCIEY Al ale

Various diagnostics
o Graph

Autocorrelations Trace: first 100 draws
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SRDEVEWANTTG T ET R TR M Summary of Data Augmentation

3. Data Augmentation: Summary

@ Latent variable models (probit, Tobit, ...) observe yi, ..., yny based on
latent variables y{, ..., yy.

@ Bayesian data augmentation introduces y;, ..., yy as additional
parameters

> then posterior is p(y;, ..., yp. 0)
» which includes p(0) the desired posterior for 6.

@ Use Gibbs sampler

> alternating draws between p(8|y;, ..., y5) and p(y{, ..., yy0).

o Draws of 0]y;, ...., yj; can use known results for linear regression
> since regular regression once y{, ...., yy are known
e Draws from p(y;, ...., y;;|0) are called data augmentation

> since we augment observed y1, ..., yy with unobserved y{', ..., yy.
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D3tz AugmaTtEdon (o Pt skl
Probit Model

@ Likelihood: Probit model with latent variable formulation
> yl.* = X:~,B+€,', g~ N[O, 1]

1 y*>o0

e Since y*|xj, B ~ N[x.B,1] we have

> p(y'|B.X) = =% In(27) = 3 L1, (v — xB)°.
@ Prior: uniform prior (all values equally likely)

> (B) =1
e We have “parameters” B,y* and data (y, X)

> posterior is p(B,y"|y, X).

@ We will make alternating draws from

> p(Bly".y. X) and p(y*|B.y. X)
» data want the posterior density p(B,y*|y, X)
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Data Augmentation for Probit Model
Probit Model (continued)

o Make alternating draws from p(B|y*.y, X) and p(y*|B,y. X)
e p(Bly*,y,X) = p(Bly*, X) since knowledge of y* =y is known

» the normal distribution is symmetric in the mean
> since y*|XB ~ N[XB, 1] we have XB|y* ~ N[y* 1]

* density is (277) " N/2 exp{(y* — XB)(y* — XB)/2}
» so (X'X)"IX/XBly* ~ N[(X'X)~1X'y*, (X'X)~IXIX(X'X) 1]
> or Bly* ~ N[B, (X'X)~!] where B = (X'X)~!X'y.

o p(y*|B.y. X) = p(yi, ... yi|B.y, X) is truncated normal so

>
* If y; = 1 draw from N[x;B, 1] left truncated at 0
* If y; = 0 draw from N[xB, 1] right truncated at 0
@ Posterior step: draw ,3(5) from p(ﬁ’yl*(s—l)’ '--vY;\F/(s_l),X)
(s)

Augmentation step: draw yl*
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3. Data Augmentation for Probit Model [NEEHYETERL:S

Core Mata code
for (irep=1; irep<=s; irep++) {
// Posterior-step: draw from beta | y* “N[bols*, (X'X)"-1]
bols = Xtxinvchol*cross(X,ystar)
bl = bols
bdraw = bl + Xtxinvchol*rmormal(k,1,0,1) //invnormal(uniform(k,1))
// Imputation step: make one draw of vector ystar
// where for ith observation ystar_i | y,b is truncated normal
for (i=1; i<=n; i++) {
mu = X[i,.]*bdraw
if (v[i,1]==0) {
uright = normal(-mu)*uniform(1,1)
ystar[i,1] = mu + invnormal(uright)
}

else {

uleft = normal(-mu) + (1-normal(-mu))*uniform(1,1)
ystar[i,1] = mu + invnormal(uleft)
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LS (37 e PRETCE
Results for slope parameter
@ Posterior mean is 1.174 versus bayesmh 1.172 and MLE 1.137

@ Posterior stand. dev. 0.226 versus bayesmh 0.232 and MLE 0.224
e A 95% percent Bayesian credible interval for B, is (0.7516, 1.645).

.B*RAnalyzeBthelposterior@drawsBfromEprobitlGibbskEsamplerBalgorithm
.BsummarizeBbeta*

Variable ‘ ERERERRROb sERRRRRREMeanBRRRIS td . Bidev . BRRRRREML nERERRRREEMax
BIRR Bbetal |GREER1O,000R
BEREREEbeta2 |EERRE10, 000H

.Bcentilelbeta2,Bcentile(2.5,097.5)

BERREBinom.RBinterp.
[95%Bconf.Binterval]
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3. Data Augmentation for Probit Model RGN NCENE

Efficiency statistic

o Thisis 1/{1+2Y7% p;} where p; = Cor[B.B_.].
o Efficiency statistic is 0.205

.B*BComputelthelefficiencyRofBEthelGibbskisamplerfalgorithm
.Bgeneratels=0E_n

.Btssetlls

TimeBvariable: s, 1@to 10000
Bl PDelta: 1Runit

.Bquilackbeta2,lags(100)kgen(ac)
.BquiligenerateBac_sqB=Eac”"2

.BquilBsummarizellac_sq

.BdiR"Efficiency@=E"01/(1+2*r(sum))
Efficiencyl=0.20486695
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3. Data Augmentation for Probit Model EAYETHITERCIErA TS

Diagnostics plot

Autocorrelations Trace: first 100 draws

Autocorrelations of beta2
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3. Data Augmentation for Probit Model Multinomial Probit

More complicated example: Multinomial probit

o Likelihood: Multinomial probit model (MLE has high-dimensional
integral)
> U,-J*- = xf-j,B-i-S,j, g ~ N0, %]
> yUZIifUij->U;;(a”k7éj

Prior for B and ;1 may be normal and Wishart

Data augmentation

> Latent utilities U; = (U1, ..., Ui are introduced as auxiliary variables
> Let U = (Ul, e UN) and y = (yl, ...,yN)

Gibbs sampler for joint posterior p(B, U, Z,|y, X) cycles between

» 1. Conditional posterior for B|U, X¢, y, X
» 2. Conditional posterior for |8, U, y, X, and
» 3. Conditional posterior for U;|ﬂ,2€,y,X.

Albert and Chib (1993) provide a quite general treatment.
McCulloch and Rossi (1994) provide a substantive MNP application.
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4. Multiple Imputation: Missingness Mechanisms

@ Define data W = W, U W ;s and selection matrix S

w N x p Complete data

W ps Observed data
W s Missing data
S N X p Selection matrix of 1's and 0's

@ Missing data mechanisms

MCAR  Pr(S|Wops, Wiss) = Pr(S) Missing completely at ran
MAR  Pr(S|Wops, Whiss) = Pr(S|Wops) Missing at random
MNAR  Pr(S|Wops, Wiss) 7 Pr(S|Wops) Missing not at random
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4. Multiple Imputation Missingness Mechanisms

Missingness Mechanisms

e MCAR (Missing completely at random) Pr(S|Wps, Wpiss) = Pr(S)

» can validly use only nonmissing data
> but imputation can improve efficiency

e MAR (Missing at random) Pr(S|Wops, W iss) = Pr(S|Wops)

> regression case where only missing data is exogenous regressors
> then can use e.g. case deletion
» but imputation can improve efficiency

e MNAR (Missing not at random) Pr(S|Wops, Wpiss) 7 Pr(S|Wobs)

> regression case where data on endogenous regressors or the dependent
variable is missing

> then problems - selection on unobservables

» much stronger stochastic assumptions will be needed e.g. tobit model.
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Imputation Methods

@ Simple methods such as replace missing values with nonmissing mean
values can lead to inconsistent estimation and invalid statistical
inference.

@ Single imputation uses a model to obtain imputation W 55 jmp of
W iss and form complete data Win, = (Wops, Wniss imp)-

» standard inference on consequent 9 obtained using W, is invalid as
it ignores the additional randomness in imputing W iss jmp-
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D1 [mpiEion
Multiple Imputation

@ Multiple imputation accounts for this by imputing W iss jmp m
independent times.

> impute Wp,iss imp,r, r = 1,...m, leading to W, ,, r=1,...,m.

» obtain 0,, r = 1, .., m, with usual variance estimates V,, r=1,..,m

e O is the average of the m 0,s

° \75r(§) is the average of the m \7, plus the variability in the m ﬁ,s
around 6

Var@) = Ly v+ My 6 6@, -y

m&—r=1"" m—1

r=1
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4. Multiple Imputation Regression-based imputation

Regression-based Imputation

@ Example where a single regressor x, a count, has some missing values.
e Data W = (x,2Z)

> with observed and missing x = (X0, Xm) and Z = (Z,,Z,).

Imputation

> Assume x; ~ Poisson(z;B)

» Estimate B and robust \A/([AS) from Poisson regression of x, on Z, (uses
observed data)

» Draw B* from N[B, V(B)] and for each missing observation x,; make
draw from Poisson(z/ .").

@ For multiple imputation make more draws.

Since x is a regressor z should include y (as x and y are then related).

The MAR assumption is made (fine if y is completely observed).
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e [y D AV e
Imputation by Data Augmentation

e Partition w = (x, z)

» where z is completely observed and x is partially observed.

o Assume x; ~ N[I1z;, X where IT and X are unknown.

» may need to first transform transform variables such as right-skewed.

e Goal is impute X,,, given X, and Z where partition X = (X,, Xp,).

o Use data augmentation where X,,, are additional parameters

> posterior density p(I1, %, X |Xo, Z)
> use Gibbs sampler

* P step (posterior step) p(I1,Z|X,,, X0, Z)
* | step (imputation step) p(Xm|I1, X, X0, Z)

» uniform prior for IT and Wishart prior for X.
» use the draws X}, and discard the draws of I1, X.

A. Colin Cameron
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4. Multiple Imputation Example Stata code

Example Stata code - variable x2 has some missing values

* Declare dataset type (long) and summarize missingness

mi set mlong

mi misstable summarize

mi misstable patterns

* Register imputed variables and perform ten imputations

mi register imputed x2

mi register regular y x3

mi impute mvn x2 = y x3, add(10) rseed(10101) burnin(100) burnbetween(100)
* Multiple imputation creates the following data and variables
summarize

* Describe the imputed data

mi describe

* Estimate the model with imputed data

mi estimate, dots: regress y x2 x3
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5. Some References

5. Some References

@ Chapter 13 “Bayesian Methods” in A. Colin Cameron and Pravin K. Trivedi,

Microeconometrics: Methods and Applications, Cambridge University Press.

@ Chapter 30 “Bayesian Methods: MCMC Algorithms” in A. Colin Cameron and

Pravin K. Trivedi, Microeconometrics using Stata, Second edition, forthcoming.
@ Bayesian books by econometricians that feature MCMC are

> Geweke, J. (2003), Contemporary Bayesian Econometrics and Statistics,
Wiley.

> Koop, G., Poirier, D.J., and J.L. Tobias (2007), Bayesian Econometric
Methods, Cambridge University Press.

> Koop, G. (2003), Bayesian Econometrics, Wiley.

> Lancaster, T. (2004), Introduction to Modern Bayesian Econometrics, Wiley.

@ Most useful (for me) book by statisticians

» Gelman, A., J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari and D.B.
Rubin (2013), Bayesian Data Analysis, Third Edition, Chapman & Hall/CRC.
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