

Maximum Simulated Likelihood

A. Colin Cameron
Univ. of Calif. - Davis

May 2021

1. Introduction

- Maximum simulated likelihood (MSL)
 - ▶ for models where the density involves an integral with no closed form solution
 - ▶ so replace the integral with a Monte Carlo integral.
- Leading applications
 - ▶ random parameter models
 - ★ random parameters multinomial logit
 - ▶ random utility models
 - ★ multinomial probit.

Outline

- ① Introduction
- ② Maximum Simulated Likelihood
- ③ Leading Examples
- ④ MSL Details
- ⑤ Numerical Example
- ⑥ Appendix: Numerical Integration
- ⑦ References

2. Maximum Simulated Likelihood

- Problem: MLE (with independent data over i) maximizes

$$\ln L(\boldsymbol{\theta}) = \sum_{i=1}^N \ln f(y_i | \mathbf{x}_i, \boldsymbol{\theta}).$$

- ▶ but $f(y_i | \mathbf{x}_i, \boldsymbol{\theta})$ does not have a closed form solution.
- Example: Random effects where $g(y_i | \mathbf{x}_i, \boldsymbol{\theta}_1, \alpha)$ has a closed form solution but we want to integrate out the random effect α

$$f(y_i | \mathbf{x}_i, \boldsymbol{\theta}) = \int g(y_i | \mathbf{x}_i, \boldsymbol{\theta}_1, \alpha) h(\alpha | \boldsymbol{\theta}_2) d\alpha = ?$$

- Solutions include
 - ▶ numerical integration using Gaussian quadrature (see appendix)
 - ★ a good method if only a one-dimensional integral
 - ▶ Bayesian MCMC with an uninformative prior
 - ▶ maximum simulated likelihood (MSL).

Monte Carlo integration

- Monte Carlo integration is the basis for MSL.
- Suppose X is distributed with density $g(x)$ on (a, b)
- Then

$$E[h(X)] = \int_a^b h(x)g(x)dx.$$

- If not tractable we could approximate by making draws x^1, \dots, x^s from $g(x)$, and average the corresponding values $h(x^1), \dots, h(x^s)$, so

$$\hat{E}[h(X)] = \frac{1}{S} \sum_{s=1}^S h(x^s).$$

- Provided $E[h(X)]$ exists, $\hat{E}[h(X)] \xrightarrow{P} E[h(X)]$ by a LLN.

Monte Carlo integration (continued)

- Problems:
 - ▶ may require many draws
 - ▶ “works” even if $E[h(X)]$ does not exist!
- Variation: Importance sampling instead transforms so that instead of draws from $g(x)$ we make draws from $p(x)$

$$\begin{aligned} E[h(X)] &= \int h(x)g(x)dx \\ &= \int \left(\frac{h(x)g(x)}{p(x)} \right) p(x)dx \\ &= \int w(x)p(x)dx \end{aligned}$$

where it is easier or better to make draws from $p(x)$.

Maximum Simulated Likelihood

- MLE (with independent data over i) maximizes

$$\ln L(\theta) = \sum_{i=1}^N \ln f(y_i | \mathbf{x}_i, \theta).$$

- Maximum simulated likelihood (MSL) estimator maximizes

$$\ln \hat{L}(\theta) = \sum_{i=1}^N \ln \hat{f}(y_i | \mathbf{x}_i, \theta)$$

- ▶ $\hat{f}(y_i | \mathbf{x}_i, \theta)$ is a simulated approximation to $f(\cdot)$ based on S draws
- ▶ the usual gradient methods are used so recompute $\hat{f}(\cdot)$ at each iteration.
- Example using a frequency simulator

$$f(y_i | \mathbf{x}_i, \theta) = \int g(y_i | \mathbf{x}_i, \theta_1, \alpha) h(\alpha | \theta_2) d\alpha$$

$$\hat{f}(y_i | \mathbf{x}_i, \theta) = \frac{1}{S} \sum_{s=1}^S g(y_i | \mathbf{x}_i, \theta, \alpha^{(s)}); \alpha^{(s)} \text{ are draws from } h(\alpha | \theta_2).$$

Leading Examples

- 1. Random parameters multinomial logit (“mixed” logit)
 - ▶ Regular multinomial logit except coefficients of alternative-varying regressors are random (joint normally distributed)
 - ★ then the restriction of independence of irrelevant alternatives is relaxed
 - ★ Stata `cmmixlogit` command.
- 2. Multinomial probit model
 - ▶ allow underlying errors for utility of each alternative to be correlated (and normal)
 - ★ integral has dimension the number of alternatives less one
 - ★ Stata `cmmprobit` command.
- 3. Mixed models (random coefficient models)
 - ▶ coefficients of regressors are random and joint normally distributed
 - ★ Stata `meglm` command and more specific commands such as `melogit`.

4. MSL details

- MSLE is **consistent** with the usual MLE asymptotic distribution if
 - ▶ $\hat{f}(\cdot)$ is an unbiased simulator and satisfies other conditions given below
 - ▶ $S \rightarrow \infty$, $N \rightarrow \infty$ and $\sqrt{N}/S \rightarrow 0$ where S is the number of simulations.
 - ▶ note that many draws S (to compute $\hat{f}(\cdot)$) are required
 - ▶ better to use robust standard errors (sandwich matrix).
- Assumed properties of the simulator:
 - ▶ $\hat{f}(\cdot)$ is an **unbiased simulator** with: $E[\hat{f}(y_i|\mathbf{x}_i, \theta)] = f(y_i|\mathbf{x}_i, \theta)$
 - ▶ $\hat{f}(\cdot)$ is differentiable in θ (or **smooth simulator**) so gradient methods can be used
 - ▶ the underlying draws to compute $\hat{f}(\cdot)$ are unchanged so no "chatter".
- MSL needs $S \rightarrow \infty$ because simulator is nonetheless **biased** for $\ln f(\cdot)$

$$E[\hat{f}(\cdot)] = f(\cdot) \quad \Rightarrow \quad E[\ln \hat{f}(\cdot)] \neq \ln f(\cdot).$$

MSL further details

- When draws are used to compute $\hat{f}(\cdot)$ the same underlying draws need to be used at each iteration to avoid “chatter”
 - for multivariate normal draws retain original i.i.d. standard normal draws and use Cholesky decomposition.
- More efficient to use antithetic draws (negatively correlated pairs), rather than independent draws.
- Generate uniform numbers using Halton or Hammersley sequences.
- The (obvious) **frequency simulator** averages
 - e.g. earlier example with $\hat{f}(\cdot) = \frac{1}{S} \sum_{s=1}^S g(y_i | \mathbf{x}_i, \theta, \alpha^{(s)})$.
- But better simulators exist in specific circumstances
 - for multinomial probit use the Geweke-Hajivassiliou-Keane (GHK) simulator.

Method of Simulated Moments (MSM)

- Rather than ML, use moment conditions that allow an unbiased simulator.
- Suppose $\hat{\theta}$ is a method of moments estimator that solves

$$\sum_{i=1}^N \mathbf{m}(y_i | \mathbf{x}_i, \theta) = \mathbf{0}.$$

- Assume there exists an unbiased simulator such that $E[\hat{\mathbf{m}}(y_i | \mathbf{x}_i, \theta)] = \mathbf{m}(y_i | \mathbf{x}_i, \theta)$.
- Then the MSM solves

$$\sum_{i=1}^N \hat{\mathbf{m}}(y_i | \mathbf{x}_i, \theta) = \mathbf{0}.$$

- Computational advantage
 - ▶ consistent for θ even for small number of draws S .
- Disadvantages
 - ▶ efficiency loss for low S
 - ★ when $\hat{\mathbf{m}}(\cdot)$ is the frequency simulator $V[\hat{\theta}_{MSM}] = (1 + \frac{1}{S})V[\hat{\theta}_{MSL}]$.
 - ▶ and efficiency loss because not the MLE.

5. Example: Random Parameters Logit (fishing mode choice)

- Explain the multinomial variable y with outcome one of
 - ▶ $y = 1$ if fish from beach
 - ▶ $y = 2$ if fish from pier
 - ▶ $y = 3$ if fish from private boat
 - ▶ [$y = 4$ if fish from charter boat is dropped below]
- Regressors are
 - ▶ price: varies by alternative and individual
 - ▶ catch rate: varies by alternative and individual
 - ▶ income: varies by individual but not alternative

Alternative-specific Conditional Logit

- Data on individual i and alternative j for m alternatives.
- Two types of regressors
 - ▶ x_{ij} are alternative-varying regressors (price, catch rate)
 - ▶ z_i are alternative-invariant or case-specific (income)
- Specify

$$p_{ij}(\beta, \gamma) = \Pr[y_i = j] = \frac{e^{x'_{ij}\beta + z'_i\gamma_j}}{\sum_{k=1}^m e^{x'_{ik}\beta + z'_i\gamma_k}}, \quad j = 1, \dots, m.$$

- ▶ parameters γ_j can vary across alternatives and normalize $\gamma_1 = \mathbf{0}$.
- MLE maximizes

$$\ln L(\beta, \gamma) = \sum_{i=1}^N \sum_{j=1}^m y_{ij} \ln p_{ij}(\beta, \gamma).$$

Random Parameters Logit

- Allow coefficient of alternative-varying regressors to differ across individuals.
 - $\beta_i = \beta + \mathbf{v}_i$ where $\mathbf{v}_i \sim N[\mathbf{0}, \Sigma_\beta]$
 - $\mathbf{x}'_{ij}\beta_i = \mathbf{x}'_{ij}\beta + \mathbf{x}'_{ij}\mathbf{v}_i$ where $\mathbf{v}_i \sim N[\mathbf{0}, \Sigma_\beta]$
- Given knowledge of \mathbf{v}_i

$$p_{ij}(\beta, \gamma | \mathbf{v}_i) = \frac{e^{\mathbf{x}'_{ij}\beta + \mathbf{z}'_i\gamma_j + \mathbf{v}'_i\beta}}{\sum_{k=1}^m e^{\mathbf{x}'_{ik}\beta + \mathbf{z}'_i\gamma_k + \mathbf{v}'_i\beta}}, \quad j = 1, \dots, m.$$

- But we need to integrate out \mathbf{v}_i

$$p_{ij}(\beta, \gamma, \Sigma_\beta) = \int \frac{e^{\mathbf{x}'_{ij}\beta + \mathbf{z}'_i\gamma_j + \mathbf{v}'_i\beta}}{\sum_{k=1}^m e^{\mathbf{x}'_{ik}\beta + \mathbf{z}'_i\gamma_k + \mathbf{v}'_i\beta}} d\phi(\mathbf{v}_i | \Sigma_\beta) d\mathbf{v}_i, \quad j = 1, \dots, m.$$

Application

- Here just β_{price} varies across individuals
 - Hammersley sequence is used with 613 integration points ("draws").

. * Alternative-specific mixed logit or random parameters logit estimation
 . cmset id fishmode

Case ID variable: id
 Alternatives variable: fishmode

. cmmixlogit d q, casevars(income) random(p) basealternative(pier) ///
 > vce(robust) nolog

Mixed logit choice model
 Case ID variable: id
 Number of obs = 2,190
 Number of cases = 730

Alternatives variable: fishmode
 Alts per case: min = 3
 avg = 3.0
 max = 3

Integration sequence: Hammersley
 Integration points: 613 Wald chi2(4) = 28.40
 Log simulated-pseudolikelihood = -433.92078 Prob > chi2 = 0.0000

- Estimates - utility is decreasing in price and increasing in catch rate

- standard deviation of $\beta_{\text{price},i}$ (0.059) is large relative to mean (-0.107)

(Std. err. adjusted for clustering on id)

d	Coefficient	Robust		z	P> z	[95% conf. interval]	
		std. err.					
fishmode							
q	.8633073	.8872554	0.97	0.331	-.8756813	2.602296	
p	-.107416	.0287078	-3.74	0.000	-.1636823	-.0511497	
/Normal							
sd(p)	.0595192	.0187898			.0320582	.1105035	
beach							
income	.1203331	.0519823	2.31	0.021	.0184497	.2222165	
_cons	-.7802862	.2304865	-3.39	0.001	-1.232031	-.328541	
pier	(base alternative)						
private							
income	.1733836	.0773131	2.24	0.025	.0218526	.3249146	
_cons	-.2199922	.318053	-0.69	0.489	-.8433647	.4033802	

AME of $\text{Pr}(\text{choose mode } j)$ for change in price of mode k

```
. * Average marginal effects with respect to price
. margins, dydx(p)
```

Average marginal effects Number of obs = 2,190
 Model VCE: Robust

Expression: $\text{Pr}(\text{fishmode})$, predict()
 dy/dx wrt: p

	Delta-method					
	dy/dx	std. err.	z	P> z	[95% conf. interval]	
p						
_outcome#fishmode						
beach#beach	-.0122611	.0032902	-3.73	0.000	-.0187099	-.0058123
beach#pier	.0097067	.0028752	3.38	0.001	.0040714	.0153421
beach#private	.0025544	.0004443	5.75	0.000	.0016835	.0034252
pier#beach	.0097067	.0028752	3.38	0.001	.0040714	.0153421
pier#pier	-.0131526	.0033724	-3.90	0.000	-.0197624	-.0065428
pier#private	.0034458	.0005343	6.45	0.000	.0023986	.0044931
private#beach	.0025544	.0004443	5.75	0.000	.0016835	.0034252
private#pier	.0034458	.0005343	6.45	0.000	.0023986	.0044931
private#private	-.0060002	.0009187	-6.53	0.000	-.0078007	-.0041996

6. Appendix: Numerical Integration

- Numerical method for computing integral

$$I = \int_a^b f(x) dx$$

- Mid-point rule calculates the Riemann sum at n midpoints

$$\hat{I}_M = \sum_{j=1}^n \frac{b-a}{n} f(\bar{x}_j)$$

- Better variants are trapezoidal rule and Simpson's rule.
- But big problem if range of integration is unbounded
 - ▶ $a = -\infty$ or $b = \infty$!
 - ▶ so use Gaussian quadrature.
- **Gaussian quadrature is the basis for mixed model estimation in Stata.**

Gaussian quadrature (continued)

- Gaussian quadrature re-expresses the integral as

$$I = \int_a^b f(x) dx = \int_c^d w(x)r(x)dx,$$

- ▶ where $w(x)$ is one of the following functions depending on range of x (unbounded from above and below; or unbounded on one side only; or bounded on both sides)
 - ★ $(a, b) = (-\infty, \infty)$: Gauss-Hermite: $w(x) = e^{-x^2}$ & $(c, d) = (-\infty, \infty)$.
 - ★ $[a, b) = [a, \infty)$: Gauss-Laguerre: $w(x) = e^{-x}$ and $(c, d) = (0, \infty)$.
 - ★ $[a, b] = [a, b]$: Gauss-Legendre: $w(x) = 1$ and $(c, d) = [-1, 1]$.
- ▶ In simplest case $r(x) = f(x)/w(x)$, but may need transformation of x .
- Gaussian quadrature approximates the integral by the weighted sum

$$\widehat{I}_G = \sum_{j=1}^m w_j r(x_j),$$

- ▶ the researcher chooses m with often $m = 20$ enough
- ▶ given m , the m points of evaluation x_j and associated weights w_j are given in e.g. computer code of Press et al. (1993).

Gaussian quadrature in higher dimensions

- In higher dimensions Gauss-Hermite quadrature does not always provide an adequate approximation.
- Adaptive Gauss-Hermite quadrature may provide better approximation.
- In Stata the quadrature methods for multivariate normal use a Cholesky decomposition to reduce a multidimensional problem to a series of one-dimensional Gauss-Hermite quadratures
 - ▶ see [ME] `megl` for a detailed discussion.
- For normal integrals a faster though less accurate alternative is to use a Laplacian approximation.

7. References

- The general principles of MSL (and simulation) are covered in
 - ▶ A. Colin Cameron and Pravin K. Trivedi (2005), *Microeconometrics: Methods and Applications*, chapter 13, Cambridge University Press.