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1. Introduction

1. Introduction

e Maximum simulated likelihood (MSL)

» for models where the density involves an integral with no closed form

solution
> so replace the integral with a Monte Carlo integral.

@ Leading applications
» random parameter models
* random parameters multinomial logit

» random utility models

* multinomial probit.
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2. Maximum Simulated Likelihood

@ Problem: MLE (with independent data over /) maximizes
In£(8) = XiLy In £ (y;x;, 6).

> but f(y;|x;, 0) does not have a closed form solution.

e Example: Random effects where g(yi|x;, 61, a) has a closed form
solution but we want to integrate out the random effect &

f(yilxi, 0) = /g(yi\xi,ﬂl,oc)h(a\eg)da =?

@ Solutions include
> numerical integration using Gaussian quadrature (see appendix)

* a good method if only a one-dimensional integral

» Bayesian MCMC with an uninformative prior
» maximum simulated likelihood (MSL).
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2. Maximum Simulated Likelihood Monte Carlo integration

Monte Carlo integration

Monte Carlo integration is the basis for MSL.

Suppose X is distributed with density g(x) on (a, b)
Then

E[A(0] = f h(x)g 0o

1

If not tractable we could approximate by making draws x-, ..., x°* from

g(x), and average the corresponding values h(x!), ..., h(x*), so

E[h(X)] = & Loy h(x°).

Provided E[h(X)] exists, E[h(X)] 2 E[h(X)] by a LLN.
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2. Maximum Simulated Likelihood Monte Carlo integration

Monte Carlo integration (continued)

@ Problems:

> may require many draws
> “works” even if E[h(X)] does not exist!

@ Variation: Importance sampling instead transforms so that instead of
draws from g(x) we make draws from p(x)

E[h(X)] = [ h(x)g(x)dx
= T (5852) ptoax
= [ w(x)p(x)dx

where it is easier or better to make draws from p(x).
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2. Maximum Simulated Likelihood Maximum Simulated Likelihood

Maximum Simulated Likelihood

e MLE (with independent data over i) maximizes
InL(0) = YN, Inf(yi|x;, 0).
o Maximum simulated likelihood (MSL) estimator maximizes

InZ(6) = Ly InF(yilx:, 6)

» 7(yi|x;, 8) is a simulated approximation to f(-) based on S draws
> the usual gradient methods are used so recompute 7(-) at each
iteration.

@ Example using a frequency simulator
f(yilxi,8) = [ g(yilxi 01, a) h(x|62)da

Flyilxi, 0) = L Y21 g(yilxi, 0,al); al®) are draws from h(x|6,).
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3. Leading Examples

Leading Examples

e 1. Random parameters multinomial logit (“mixed” logit)

» Regular multinomial logit except coefficients of alternative-varying
regressors are random (joint normally distributed)

* then the restriction of independence of irrelevant alternatives is relaxed
* Stata cmmixlogit command.

@ 2. Multinomial probit model

> allow underlying errors for utility of each alternative to be correlated
(and normal)

* integral has dimension the number of alternatives less one
* Stata cmmprobit command.

e 3. Mixed models (random coefficient models)
» coefficients of regressors are random and joint normally distributed

* Stata meglm command and more specific commands such as melogit.
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4. MSL details

@ MSLE is consistent with the usual MLE asymptotic distribution if

» 7(-) is an unbiased simulator and satisfies other conditions given below

» S — 00, N — oo and v/N/S — 0 where S is the number of
simulations.

» note that many draws S (to compute (-)) are required

> better to use robust standard errors (sandwich matrix).

@ Assumed properties of the simulator:

» 7(-) is an unbiased simulator with: E[f(y;|x;, 8)] = f(yi|x;, 8)

» 7(-) is differentiable in @ (or smooth simulator) so gradient methods
can be used

> the underlying draws to compute ?() are unchanged so no "chatter".

@ MSL needs S — oo because simulator is nonetheless biased for In ()

o~

EF()] =) # EMnF()] #Inf(.)
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4. MSL details MSL details

MSL further details

o When draws are used to compute 7(-) the same underlying draws
need to be used at each iteration to avoid “chatter”

» for multivariate normal draws retain original i.i.d. standard normal
draws and use Cholesky decomposition.

@ More efficient to use antithetic draws (negatively correlated pairs),
rather than independent draws.

@ Generate uniform numbers using Halton or Hammersley sequences.

@ The (obvious) frequency simulator averages
» e.g. earlier example with 7(-) = %Ele g(yilxi, 0, a(9)).

@ But better simulators exist in specific circumstances

» for multinomial probit use the Geweke-Hajivassiliou-Keane (GHK)
simulator.
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UV SIRCEETEE  Method of Simulated Moments

Method of Simulated Moments (MSM)

@ Rather than ML, use moment conditions that allow an unbiased
simulator.
Suppose 0 is a method of moments estimator that solves

°
N
Zizl m(y,-]x,-, 9) =0.
@ Assume there exists an unbiased simulator such that
E[m(yi|xi, 8)] = m(yi[x;, ).
@ Then the MSM solves
N
Y., m(yilx;, 0) =0.
e Computational advantage
» consistent for 0 even for small number of draws S.
o Disadvantages

» efficiency loss for low S
* when m(-) is the frequency simulator V[Oysm] = (1 + %)V[aMSL]-

» and efficiency loss because not the MLE.
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5. Example: Random Parameters Logit

5. Example: Random Parameters Logit (fishing mode
choice)

@ Explain the multinomial variable y with outcome one of

» y = 1 if fish from beach

» y = 2 if fish from pier

» y = 3 if fish from private boat

> [y = 4 if fish from charter boat is dropped below]

@ Regressors are

> price: varies by alternative and individual
> catch rate: varies by alternative and individual
> income: varies by individual but not alternative
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BIN SEY o SRR ENT OT) WEETET RSN TS Alternative-specific Conditional Logit
Alternative-specific Conditional Logit

@ Data on individual i and alternative j for m alternatives.

@ Two types of regressors

> x;; are alternative-varying regressors (price, catch rate)
> z; are alternative-invariant or case-specific (income)

@ Specify
pi(B.v) = Prly; =Jj] = W

> parameters <y; can vary across alternatives and normalize 7y, = 0.

@ MLE maximizes

InL(B,v) = ZIN:]. Zf:ly"flnp"f(ﬁ”)/)'
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A SET T S EN T I Th W FTETN ISR IS8l Random parameters Logit

Random Parameters Logit

o Allow coefficient of alternative-varying regressors to differ across
individuals.

> B; = B+ v, where v; ~ N[0, Xg]
> x;B; = x};B +x;v; where v; ~ N[0, Zg]

@ Given knowledge of v;
ex@-,B+z§'yj+v,’.ﬁ

YT KB VB!

pi(B. vlv;) = j=1,...,m.

@ But we need to integrate out v;

exfj-ﬁ+z§'yj+v§ﬂ

pii(B.v. Ep) = / ST B do(vilZg)dv;,  j=1,..
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AgpliEEiten
Application

@ Here just varies across individuals

price
» Hammersley sequence is used with 613 integration points (“draws”).

.B*RAlternativeBspecificBmixed@logitBorErandomBparametersilogitllestimation
.Bcmset@idBfishmode

6] CaseR@IDRBvariable: id
AlternativesBvariable: fishmode

.Bcmmixlogitl Blcasevars(income)Brandom(p)Bbasealternative(pier)a///
Bvce(robust)Enolog

MixedBlogitBchoicelmodelRRRRRERRRRERERRRRRRERRERNumbertiofEobs
CaseRIDBvariable: idRERRPREFREEREERERERERRERRERREREENumbertBofEicases

AlternativesBvariable: fishmode ltsBperBcase:Bmink=

IntegrationBsequence: Hammersley
Integration@points: PEER613EEEEEEEWaldEchi2 (4)6 28.40
LogBsimulatedBpseudolikelihoodB= E433.92078 ProbBE>Bchi2p 0.0000
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5. Example: Random Parameters Logit Application

o Estimates - utility is decreasing in price and increasing in catch rate

» standard deviation of B, ; (0.059) is large relative to mean (—0.107)

PR (Std.Berr.BadjustediforBiclusteringllonid)

obust

BCoefficient@@std.Berr.p P>|z]| 95%Bconf.Binterval]
fishmode
2.602296
.0511497
.05951920ER . 0187898 EERRREEREEEREREREERERER . 0320582REEE . 1105035

2222165

328541
pier
private
.3249146
.4033802
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At
AME of Pr(choose mode j) for change in price of mode k

.B*BAverageBmarginalBeffectsBwithBrespect@tolprice
.Bmargins,Bdydx(p)

AverageBPmarginalBeffectsEEEERRRRRRRRERRRREERRRERRRRERRRERENumbe rofRobsE= 2,190
Model®@VCE: Robust

Expression: Pr(fishmode),Bpredict()
dy/dxBwrt: p

BFEDeltakmethod
EEEEEEdy/deEEStd Berr.REEEERZEREEP> | z | BRRER[ 95%Bconf .Binterval]

_outcome#fishmode

BREEEbeach#beach 0122611FRR. 0032902FREERR3 . 7 3RER0 . 00ORERIRE . 0187099CIRER . 0058123

Bbeachi#tpier 009706 002875 0040714¢l .0153421
each#private 002554 000444 001683 .0034252
Bpier#beach 009706 002875 004071 .0153421
BREREERpier#pier .01315260I017. 00337 24ERRER3 . . O0ORIRIEEIR . 01976 24RRIRE . 0065428
ier#private 003445 000534 26 . . 000 002398 .0044931
rivate#fbeach 002554 000444 . 000 001683 .0034252
rivate#fpier 003445 000534 . 000 002398 .0044931

Bprivate#private . 006000210 . 000918 7ERREIR6 . 53RIEIEI0 . 00RIEEIRE . 007800 7CIFER . 0041996
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6. Appendix: Numerical integration

6. Appendix: Numerical Integration

@ Numerical method for computing integral

@ Mid-point rule calculates the Riemann sum at n midpoints

b—
/M - Zj 1= f(XJ)
@ Better variants are trapezoidal rule and Simpson's rule.
@ But big problem if range of integration is unbounded

» 3= —o0 or b= ool
» so use Gaussian quadrature.

o Gaussian quadrature is the basis for mixed model estimation in
Stata.
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6. Appendix: Numerical integration

Gaussian quadrature (continued)

@ Gaussian quadrature re-expresses the integral as
d
| = ff = [w(x)r(x)dx,
C

» where w(x) is one of the following functions depending on range of x
(unbounded from above and below; or unbounded on one side only; or
bounded on both sides)

* (a,b) = (—00,00): Gauss-Hermite: w(x) = e & (c, d) = (—c0, 00).
* [a, b) = [a,00): Gauss-Laguerre: w(x) = e * and (¢, d) = (0, )
* [a, b] = [a, b]: Gauss-Legendre: w(x) =1 and (c,d) = [-1, 1]

> In simplest case r(x) = f(x)/w(x), but may need transformation of x.

@ Gaussian quadrature approximates the integral by the weighted sum
le = Lily wir(x),

> the researcher chooses m with often m = 20 enough
> given m, the m points of evaluation x; and associated weights w; are
given in e.g. computer code of Press et al. (1993).
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6. Appendix: Numerical integration

Gaussian quadrature in higher dimensions

@ In higher dimensions Gauss-Hermite quadrature does not always
provide an adequate approximation.

@ Adaptive Gauss-Hermite quadrature may provide better
approximation.

@ In Stata the quadrature methods for multivariate normal use a
Cholesky decomposition to reduce a multidimensional problem to a
series of one-dimensional Gauss-Hermite quadratures

> see [ME] meglm for a detailed discussion.

@ For normal integrals a faster though less accurate alternative is to use
a Laplacian approximation.
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7. References

@ The general principles of MSL (and simulation) are covered in

> A. Colin Cameron and Pravin K. Trivedi (2005), Microeconometrics:
Methods and Applications, chapter 13, Cambridge University Press.
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