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1. Introduction

1. Introduction

Maximum simulated likelihood (MSL)
I for models where the density involves an integral with no closed form
solution

I so replace the integral with a Monte Carlo integral.

Leading applications
I random parameter models

F random parameters multinomial logit

I random utility models

F multinomial probit.
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2. Maximum Simulated Likelihood

2. Maximum Simulated Likelihood

Problem: MLE (with independent data over i) maximizes

ln L(θ) = ∑N
i=1 ln f (yi jxi , θ).

I but f (yi jxi , θ) does not have a closed form solution.

Example: Random e¤ects where g(yi jxi , θ1, α) has a closed form
solution but we want to integrate out the random e¤ect α

f (yi jxi , θ) =
Z
g(yi jxi , θ1, α)h(αjθ2)dα =?

Solutions include
I numerical integration using Gaussian quadrature (see appendix)

F a good method if only a one-dimensional integral

I Bayesian MCMC with an uninformative prior
I maximum simulated likelihood (MSL).
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2. Maximum Simulated Likelihood Monte Carlo integration

Monte Carlo integration

Monte Carlo integration is the basis for MSL.

Suppose X is distributed with density g(x) on (a, b)

Then

E[h(X )] =
bR
a
h(x)g(x)dx .

If not tractable we could approximate by making draws x1, ..., x s from
g(x), and average the corresponding values h(x1), ..., h(x s ), so

bE[h(X )] = 1
S ∑S

s=1 h(x
s ).

Provided E[h(X )] exists, bE[h(X )] p! E[h(X )] by a LLN.
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2. Maximum Simulated Likelihood Monte Carlo integration

Monte Carlo integration (continued)

Problems:
I may require many draws
I �works� even if E[h(X )] does not exist!

Variation: Importance sampling instead transforms so that instead of
draws from g(x) we make draws from p(x)

E [h(X )] =
R
h(x)g(x)dx

=
R � h(x )g (x )

p(x )

�
p(x)dx

=
R
w(x)p(x)dx

where it is easier or better to make draws from p(x).
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2. Maximum Simulated Likelihood Maximum Simulated Likelihood

Maximum Simulated Likelihood

MLE (with independent data over i) maximizes

ln L(θ) = ∑N
i=1 ln f (yi jxi , θ).

Maximum simulated likelihood (MSL) estimator maximizes

lnbL(θ) = ∑N
i=1 lnbf (yi jxi , θ)

I bf (yi jxi , θ) is a simulated approximation to f (�) based on S draws
I the usual gradient methods are used so recompute bf (�) at each
iteration.

Example using a frequency simulator

f (yi jxi , θ) =
R
g(yi jxi , θ1, α)h(αjθ2)dα

bf (yi jxi , θ) = 1
S ∑S

s=1 g(yi jxi , θ, α(s)); α(s) are draws from h(αjθ2).
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3. Leading Examples

Leading Examples

1. Random parameters multinomial logit (�mixed� logit)
I Regular multinomial logit except coe¢ cients of alternative-varying
regressors are random (joint normally distributed)

F then the restriction of independence of irrelevant alternatives is relaxed
F Stata cmmixlogit command.

2. Multinomial probit model
I allow underlying errors for utility of each alternative to be correlated
(and normal)

F integral has dimension the number of alternatives less one
F Stata cmmprobit command.

3. Mixed models (random coe¢ cient models)
I coe¢ cients of regressors are random and joint normally distributed

F Stata meglm command and more speci�c commands such as melogit.
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4. MSL details

4. MSL details

MSLE is consistent with the usual MLE asymptotic distribution if
I bf (�) is an unbiased simulator and satis�es other conditions given below
I S ! ∞, N ! ∞ and

p
N/S ! 0 where S is the number of

simulations.
I note that many draws S (to compute bf (�)) are required
I better to use robust standard errors (sandwich matrix).

Assumed properties of the simulator:
I bf (�) is an unbiased simulator with: E[bf (yi jxi , θ)] = f (yi jxi , θ)
I bf (�) is di¤erentiable in θ (or smooth simulator) so gradient methods
can be used

I the underlying draws to compute bf (�) are unchanged so no "chatter".
MSL needs S ! ∞ because simulator is nonetheless biased for ln f (�)

E[bf (�)] = f (�) ; E[lnbf (�)] 6= ln f (�).
A. Colin Cameron Univ. of Calif. - Davis () Maximum Simulated Likelihood May 2021 9 / 21



4. MSL details MSL details

MSL further details

When draws are used to compute bf (�) the same underlying draws
need to be used at each iteration to avoid �chatter�

I for multivariate normal draws retain original i.i.d. standard normal
draws and use Cholesky decomposition.

More e¢ cient to use antithetic draws (negatively correlated pairs),
rather than independent draws.

Generate uniform numbers using Halton or Hammersley sequences.

The (obvious) frequency simulator averages
I e.g. earlier example with bf (�) = 1

S ∑Ss=1 g(yi jxi , θ, α(s)).

But better simulators exist in speci�c circumstances
I for multinomial probit use the Geweke-Hajivassiliou-Keane (GHK)
simulator.
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4. MSL details Method of Simulated Moments

Method of Simulated Moments (MSM)
Rather than ML, use moment conditions that allow an unbiased
simulator.
Suppose bθ is a method of moments estimator that solves

∑N
i=1m(yi jxi , θ) = 0.

Assume there exists an unbiased simulator such that
E[ bm(yi jxi , θ)] = m(yi jxi , θ).
Then the MSM solves

∑N
i=1 bm(yi jxi , θ) = 0.

Computational advantage
I consistent for θ even for small number of draws S .

Disadvantages
I e¢ ciency loss for low S

F when bm(�) is the frequency simulator V[bθMSM ] = (1+ 1
S )V[bθMSL ].

I and e¢ ciency loss because not the MLE.
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5. Example: Random Parameters Logit

5. Example: Random Parameters Logit (�shing mode
choice)

Explain the multinomial variable y with outcome one of
I y = 1 if �sh from beach
I y = 2 if �sh from pier
I y = 3 if �sh from private boat
I [y = 4 if �sh from charter boat is dropped below]

Regressors are
I price: varies by alternative and individual
I catch rate: varies by alternative and individual
I income: varies by individual but not alternative
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5. Example: Random Parameters Logit Alternative-speci�c Conditional Logit

Alternative-speci�c Conditional Logit

Data on individual i and alternative j for m alternatives.

Two types of regressors
I xij are alternative-varying regressors (price, catch rate)
I zi are alternative-invariant or case-speci�c (income)

Specify

pij (β,γ) = Pr[yi = j ] =
ex

0
ij β+z

0
iγj

∑m
k=1 e

x0ik β+z0iγk
, j = 1, ...,m.

I parameters γj can vary across alternatives and normalize γ1 = 0.

MLE maximizes

ln L(β,γ) = ∑N
i=1 ∑m

j=1 yij ln pij (β,γ).

A. Colin Cameron Univ. of Calif. - Davis () Maximum Simulated Likelihood May 2021 13 / 21



5. Example: Random Parameters Logit Random parameters Logit

Random Parameters Logit

Allow coe¢ cient of alternative-varying regressors to di¤er across
individuals.

I βi = β+ vi where vi � N [0,Σβ]
I x0ijβi = x

0
ijβ+ x

0
ijvi where vi � N [0,Σβ]

Given knowledge of vi

pij (β,γjvi ) =
ex

0
ij β+z

0
iγj+v

0
i β

∑m
k=1 e

x0ik β+z0iγk+v
0
i β
, j = 1, ...,m.

But we need to integrate out vi

pij (β,γ,Σβ) =
Z ex

0
ij β+z

0
iγj+v

0
i β

∑m
k=1 e

x0ik β+z0iγk+v
0
i β
dφ(vi jΣβ)dvi , j = 1, ...,m.
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5. Example: Random Parameters Logit Application

Application

Here just βprice varies across individuals

I Hammersley sequence is used with 613 integration points (�draws�).

Log simulated­pseudolikelihood = ­433.92078 Prob > chi2     =     0.0000
Integration points:             613       Wald chi2(4)    =      28.40
Integration sequence: Hammersley

max =          3
avg =        3.0

Alternatives variable: fishmode                Alts per case: min =          3

Case ID variable: id                           Number of cases    =        730
Mixed logit choice model                       Number of obs      =      2,190

>     vce(robust) nolog
. cmmixlogit d q, casevars(income) random(p) basealternative(pier) ///

Alternatives variable: fishmode
     Case ID variable: id

. cmset id fishmode

. * Alternative­specific mixed logit or random parameters logit estimation
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5. Example: Random Parameters Logit Application

Estimates - utility is decreasing in price and increasing in catch rate
I standard deviation of βprice,i (0.059) is large relative to mean (�0.107)

       _cons   ­.2199922    .318053    ­0.69   0.489    ­.8433647    .4033802
      income    .1733836   .0773131     2.24   0.025     .0218526    .3249146
private

pier   (base alternative)

       _cons   ­.7802862   .2304865    ­3.39   0.001    ­1.232031    ­.328541
      income    .1203331   .0519823     2.31   0.021     .0184497    .2222165
beach

        sd(p)    .0595192   .0187898                      .0320582    .1105035
/Normal

           p    ­.107416   .0287078    ­3.74   0.000    ­.1636823   ­.0511497
           q    .8633073   .8872554     0.97   0.331    ­.8756813    2.602296
fishmode

           d  Coefficient  std. err.      z    P>|z|     [95% conf. interval]
               Robust

                                     (Std. err. adjusted for clustering on id)

A. Colin Cameron Univ. of Calif. - Davis () Maximum Simulated Likelihood May 2021 16 / 21



5. Example: Random Parameters Logit Application

AME of Pr(choose mode j) for change in price of mode k

 private#private   ­.0060002   .0009187    ­6.53   0.000    ­.0078007   ­.0041996
    private#pier    .0034458   .0005343     6.45   0.000     .0023986    .0044931
   private#beach    .0025544   .0004443     5.75   0.000     .0016835    .0034252
    pier#private    .0034458   .0005343     6.45   0.000     .0023986    .0044931
       pier#pier   ­.0131526   .0033724    ­3.90   0.000    ­.0197624   ­.0065428
      pier#beach    .0097067   .0028752     3.38   0.001     .0040714    .0153421
   beach#private    .0025544   .0004443     5.75   0.000     .0016835    .0034252
      beach#pier    .0097067   .0028752     3.38   0.001     .0040714    .0153421
     beach#beach   ­.0122611   .0032902    ­3.73   0.000    ­.0187099   ­.0058123
_outcome#fishmode
p

      dy/dx   std. err.      z    P>|z|     [95% conf. interval]
            Delta­method

dy/dx wrt: p
Expression: Pr(fishmode), predict()

Model VCE: Robust
Average marginal effects                                 Number of obs = 2,190

. margins, dydx(p)

. * Average marginal effects with respect to price
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6. Appendix: Numerical integration

6. Appendix: Numerical Integration

Numerical method for computing integral

I =
bR
a
f (x) dx

Mid-point rule calculates the Riemann sum at n midpoints

bIM = ∑n
j=1

b� a
n

f (x̄j )

Better variants are trapezoidal rule and Simpson�s rule.

But big problem if range of integration is unbounded
I a = �∞ or b = ∞!
I so use Gaussian quadrature.

Gaussian quadrature is the basis for mixed model estimation in
Stata.
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6. Appendix: Numerical integration

Gaussian quadrature (continued)
Gaussian quadrature re-expresses the integral as

I =
bR
a
f (x) dx =

dR
c
w(x)r(x)dx ,

I where w(x) is one of the following functions depending on range of x
(unbounded from above and below; or unbounded on one side only; or
bounded on both sides)

F (a, b) = (�∞,∞): Gauss-Hermite: w (x) = e�x
2
& (c , d) = (�∞,∞).

F [a, b) = [a,∞): Gauss-Laguerre: w (x) = e�x and (c , d) = (0,∞).
F [a, b] = [a, b]: Gauss-Legendre: w (x) = 1 and (c , d) = [�1, 1].

I In simplest case r(x) = f (x)/w(x), but may need transformation of x .

Gaussian quadrature approximates the integral by the weighted sumbIG = ∑m
j=1 wj r(xj ),

I the researcher chooses m with often m = 20 enough
I given m, the m points of evaluation xj and associated weights wj are
given in e.g. computer code of Press et al. (1993).
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6. Appendix: Numerical integration

Gaussian quadrature in higher dimensions

In higher dimensions Gauss-Hermite quadrature does not always
provide an adequate approximation.

Adaptive Gauss-Hermite quadrature may provide better
approximation.

In Stata the quadrature methods for multivariate normal use a
Cholesky decomposition to reduce a multidimensional problem to a
series of one-dimensional Gauss-Hermite quadratures

I see [ME] meglm for a detailed discussion.

For normal integrals a faster though less accurate alternative is to use
a Laplacian approximation.
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7. References

7. References

The general principles of MSL (and simulation) are covered in
I A. Colin Cameron and Pravin K. Trivedi (2005), Microeconometrics:
Methods and Applications, chapter 13, Cambridge University Press.
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