

Day 2

Instrumental Variables, Two-stage Least Squares and Generalized Method of Moments

© A. Colin Cameron
Univ. of Calif.- Davis

Advanced Econometrics
Bavarian Graduate Program in Economics

*Based on A. Colin Cameron and Pravin K. Trivedi (2009, 2010),
Microeometrics using Stata (MUS), Stata Press.
and A. Colin Cameron and Pravin K. Trivedi (2005),
Microeometrics: Methods and Applications (MMA), C.U.P.*

July 22-26, 2013

1. Introduction

- Problem: OLS inconsistent in model $y_i = \mathbf{x}'_i \boldsymbol{\beta} + u_i$ if $\text{Cov}[\mathbf{x}_i, u_i] \neq \mathbf{0}$.
- Solution: Assume there are instruments \mathbf{z}_i satisfying $\text{Cov}[\mathbf{z}_i, u_i] = \mathbf{0}$.
- If #instruments = #regressors
 - ▶ instrumental variables (IV) estimator
- If #instruments > #regressors then use
 - ▶ two-stage least squares (2SLS)
 - ▶ generalized method of moments (GMM).
- Complications
 - ▶ test of assumptions (exogeneity, endogeneity)
 - ▶ weak instruments

Overview

- ① Introduction.
- ② IV, 2SLS, GMM: Definitions
- ③ Data Example
- ④ Instrumental variable methods in practice
- ⑤ IV Estimator Properties
- ⑥ Nonlinear GMM
- ⑦ Endogeneity in nonlinear models
- ⑧ Stata
- ⑨ Appendix: Instrumental Variables Intuition

2. IV, 2SLS and GMM estimators: Definitions

- Model is $y_i = \mathbf{x}'_i \boldsymbol{\beta} + u_i$
 - ▶ OLS is inconsistent as $\text{Cov}[\mathbf{x}_i, u_i] \neq \mathbf{0}$.
- Assume there are instruments \mathbf{z}_i such that $\text{Cov}[\mathbf{z}_i, u_i] = \mathbf{0}$.
 - ▶ Then $\text{Cov}[\mathbf{z}_i, u_i] = 0 \Rightarrow E[\mathbf{z}_i u_i] = \mathbf{0}$ given $E[u_i | \mathbf{z}_i] = 0$.
- We have the population moment condition

$$E[\mathbf{z}_i(y_i - \mathbf{x}'_i \boldsymbol{\beta})] = \mathbf{0}.$$

- Method of moments: solve the corresponding sample moment condition

$$\frac{1}{N} \sum_{i=1}^N \mathbf{z}_i(y_i - \mathbf{x}'_i \boldsymbol{\beta}) = \mathbf{0}.$$

Instrumental variables (IV) estimator

- In just-identified case ($\# \text{ instruments} = \# \text{ regressors}$)
 - ▶ solve k equations in k unknowns $\frac{1}{N} \sum_i \mathbf{z}_i (y_i - \mathbf{x}'_i \boldsymbol{\beta}) = \mathbf{0}$
 - ▶ gives the instrumental variables (IV) estimator.

$$\begin{aligned}\hat{\boldsymbol{\beta}}_{\text{IV}} &= \left(\sum_{i=1}^N \mathbf{z}_i \mathbf{x}'_i \right)^{-1} \left(\sum_{i=1}^N \mathbf{z}_i y_i \right) \\ &= (\mathbf{Z}' \mathbf{X})^{-1} \mathbf{Z}' \mathbf{y}\end{aligned}$$

- ▶ estimate using Stata 10 command `ivregress 2sls`
- Often just one regressor in \mathbf{x}_i is endogenous (i.e. correlated with u_i).
 - ▶ Then one variable in \mathbf{z}_i is the instrument for this endogenous regressor.
 - ▶ the remaining entries in \mathbf{z}_i are the exogenous variables
 - ▶ i.e. exogenous variables are instruments for themselves.

Generalized method of moments estimator

- In over-identified case (# instruments > # regressors)
 - ▶ Cannot solve $\frac{1}{N} \sum_i \mathbf{z}_i (y_i - \mathbf{x}'_i \beta) = \mathbf{0}$.
 - ▶ Instead generalized method of moments (GMM) estimator minimizes the quadratic form in $\frac{1}{N} \sum_{i=1}^N \mathbf{z}_i (y_i - \mathbf{x}'_i \beta)$

$$\begin{aligned} Q(\beta) &= \left[\frac{1}{N} \sum_i (y_i - \mathbf{x}'_i \beta) \mathbf{z}_i \right]' \times \mathbf{W}_N \times \left[\frac{1}{N} \sum_i (y_i - \mathbf{x}'_i \beta) \mathbf{z}_i \right] \\ &= (\mathbf{Z}' \mathbf{u})' \mathbf{W} (\mathbf{Z}' \mathbf{u}) \end{aligned}$$

- ▶ The symmetric full-rank weighting matrix \mathbf{W} does not depend on β .
- Then $\partial Q(\beta) / \partial \beta = \mathbf{0}$ yields the GMM estimator

$$\begin{aligned} \hat{\beta}_{\text{GMM}} &= \left(\sum_i \mathbf{x}_i \mathbf{z}'_i \times \mathbf{W}_N \times \sum_{i=1}^N \mathbf{z}_i \mathbf{x}'_i \right)^{-1} \left(\sum_i \mathbf{x}_i \mathbf{z}'_i \times \mathbf{W}_N \times \sum_{i=1}^N \mathbf{z}_i y_i \right) \\ &= (\mathbf{X}' \mathbf{Z} \mathbf{W}_N \mathbf{Z}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Z} \mathbf{W}_N \mathbf{Z}' \mathbf{y}. \end{aligned}$$

Optimal GMM and 2SLS

- The variance of $\hat{\beta}_{GMM}$ is smallest when the optimal weighting matrix \mathbf{W}_N is consistent for $(\text{Var}[\mathbf{Z}'\mathbf{u}])^{-1}$
 - ▶ Though in the just-identified ($r = K$) GMM = IV for any \mathbf{W}_N .
- For homoskedastic errors $\text{Var}[\mathbf{Z}'\mathbf{u}] = \sigma^2 \sum_{i=1}^N \mathbf{z}_i \mathbf{z}'_i$
 - ▶ Two-stage least squares (2SLS) estimator sets $\mathbf{W}_N = (\sum_{i=1}^N \mathbf{z}_i \mathbf{z}'_i)^{-1}$
 - ▶ Yields $\hat{\beta}_{2SLS} = (\mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X})^{-1} \times \mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$
 - ▶ Estimate using Stata 10 command `ivregress 2sls`
 - ▶ but use robust VCE to guard against errors not homoskedastic.
- For heteroskedastic errors $\text{Var}[\mathbf{Z}'\mathbf{u}] = \sum_{i=1}^N \sigma_i^2 \mathbf{z}_i \mathbf{z}'_i$
 - ▶ “Optimal” GMM estimator if errors are heteroskedastic errors sets

$$\mathbf{W}_N = (\sum_{i=1}^N \hat{u}_i^2 \mathbf{z}_i \mathbf{z}'_i)^{-1}, \hat{u}_i = y_i - \mathbf{x}'_i \hat{\beta}_{2SLS}$$

- ▶ estimate using Stata 10 command `ivregress gmm`.

More on 2SLS

- 2SLS gets its name because it can be computed in two-stages.
- Suppose y_1 depends in part on scalar y_2 which is endogenous

Structural equation for y_1 $y_{1i} = \beta_1 y_{2i} + \mathbf{x}'_{1i} \boldsymbol{\beta}_2 + u_i$

First-stage equation for y_2 $y_{2i} = \mathbf{x}'_{1i} \boldsymbol{\pi}_1 + \mathbf{x}'_{2i} \boldsymbol{\pi}_2 + v_i$

- ▶ where \mathbf{x}_2 is one or more instruments for y_2
- ▶ in earlier notation $\mathbf{x}_i = (y_{2i} \ \mathbf{x}'_{1i})'$ and $\mathbf{z}_i = (\mathbf{x}'_{1i} \ \mathbf{x}'_{2i})'$.
- OLS of y_1 on y_2 and \mathbf{x}_1 is inconsistent.
- 2SLS can be computed as follows
 - ▶ 1. First-stage: \hat{y}_2 as prediction from OLS of y_2 on \mathbf{x}_1 and \mathbf{x}_2 .
 - ▶ 2. Structural: Do OLS of y_1 on \hat{y}_2 and \mathbf{x}_1 .
- But this method does not generalize to nonlinear models.

3. Data Example: Drug expenditures

- Example from MUS chapter 6.
- Drug expenditures for U.S. elderly (ldrugexp) regressed on
 - ▶ endogenous private health insurance dummy (hi_empunion) and
 - ▶ exogenous regressors defined by global x2list.

```

. * Read data, define global x2list (exogenous regressors), and summarize
. use mus06data.dta

. global x2list totchr age female blhisp linc

. keep if linc != .
(302 observations deleted)

. describe ldrugexp hi_empunion $x2list

```

variable	name	storage	display	value	variable	label
		type	format	label		
ldrugexp		float	%9.0g		log(drugexp)	
hi_empunion		byte	%8.0g		Insured thro emp/union	
totchr		byte	%8.0g		Total chronic cond	
age		byte	%8.0g		Age	
female		byte	%8.0g		Female	
blhisp		float	%9.0g		Black or Hispanic	
linc		float	%9.0g		log(income)	

- Summary statistics

```
. summarize ldrugexp hi_empunion $x2list
```

Variable	Obs	Mean	Std. Dev.	Min	Max
ldrugexp	10089	6.481361	1.362052	0	10.18017
hi_empunion	10089	.3821984	.4859488	0	1
totchr	10089	1.860938	1.292858	0	9
age	10089	75.05174	6.682109	65	91
female	10089	.5770641	.4940499	0	1
<hr/>					
blhisp	10089	.1635445	.36988	0	1
linc	10089	2.743275	.9131433	-6.907755	5.744476

- Sample is 65+.

38% have employer or union-sponsored health insurance.

OLS estimates

- OLS is inconsistent if `hi_empunion` endogenous

```
. * OLS
. regress ldrugexp hi_empunion $x2list, vce(robust)
```

Linear regression

Number of obs = 10089
 F(6, 10082) = 376.85
 Prob > F = 0.0000
 R-squared = 0.1770
 Root MSE = 1.236

ldrugexp	Robust					
	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
hi_empunion	.0738788	.0259848	2.84	0.004	.0229435	.1248141
totchr	.4403807	.0093633	47.03	0.000	.4220268	.4587346
age	-.0035295	.001937	-1.82	0.068	-.0073264	.0002675
female	.0578055	.0253651	2.28	0.023	.0080848	.1075262
blhisp	-.1513068	.0341264	-4.43	0.000	-.2182013	-.0844122
linc	.0104815	.0137126	0.76	0.445	-.0163979	.037361
_cons	5.861131	.1571037	37.31	0.000	5.553176	6.169085

- Drug expenditure increases by 7.4% if have private insurance.

Instruments

- A valid instrument for private health insurance (`hi_empunion`) must
 - ▶ not be directly a cause of `ldrugexp` (so uncorrelated with u_i)
 - ▶ i.e. must not belong in the model for `ldrugexp`
 - ▶ and to be relevant should be correlated with `hi_empunion`
- Possible instrument 1
 - ▶ $ssiratio = \text{social security income} \div \text{income from all other sources}$
 - ▶ need to assume that the direct role of income is adequately captured by the regressor `linc`
- Possible instrument 2
 - ▶ $multlc = 1$ if firm has multiple locations
 - ▶ need to assume that firm size does not effect `ldrugexp`

- Two possible instruments `ssiratio` and `multlc`

```
. * Two available instruments for hi_empunion
. describe ssiratio multlc
```

variable	name	storage	display	value	label	variable	label
ssiratio		float	%9.0g		SSI/Income ratio		
multlc		byte	%8.0g		Multiple locations		

. summarize ssiratio multlc

Variable	Obs	Mean	Std. Dev.	Min	Max
ssiratio	10089	.5365438	.3678175	0	9.25062
multlc	10089	.0620478	.2412543	0	1

```
. correlate hi_empunion ssiratio multlc
(obs=10089)
```

	hi_emp~n	ssiratio	multlc
hi_empunion	1.0000		
ssiratio	-0.2124	1.0000	
multlc	0.1198	-0.1904	1.0000

- Correlation between z and x is low

- e.g. $\text{Cor}[z, x] = -0.21$ for `ssiratio`

IV estimates

- IV estimates using the single instrument `ssiratio` for `hi_empunion`

```
. * IV estimator with ssiratio as single instrument for hi_empunion
. ivregress 2sls ldrugexp (hi_empunion = ssiratio) $x2list, vce(robust)
```

Instrumental variables (2SLS) regression

Number of obs = 10089
 Wald chi2(6) = 2000.86
 Prob > chi2 = 0.0000
 R-squared = 0.0640
 Root MSE = 1.3177

		Robust				
	Coef.	Std. Err.		z	P> z	[95% Conf. Interval]
hi_empunion	-.8975913	.2211268		-4.06	0.000	-1.330992 -.4641908
totchr	.4502655	.0101969		44.16	0.000	.43028 .470251
age	-.0132176	.0029977		-4.41	0.000	-.0190931 -.0073421
female	-.020406	.0326114		-0.63	0.531	-.0843232 .0435113
blhisp	-.2174244	.0394944		-5.51	0.000	-.294832 -.1400167
linc	.0870018	.0226356		3.84	0.000	.0426368 .1313668
_cons	6.78717	.2688453		25.25	0.000	6.260243 7.314097

Instrumented: `hi_empunion`

Instruments: `totchr age female blhisp linc ssiratio`

- Coefficient even changes sign, from 0.074 (OLS) to -0.898 (IV).
 Standard error increases from 0.026 (OLS) to 0.221 (IV).

2SLS Estimates

- Overidentified as two instruments `ssiratio` and `multlc`

```
. * 2SLS estimator with ssiratio and multlc as instruments for hi_empunion
. ivregress 2sls ldrugexp (hi_empunion = ssiratio multlc) $x2list, vce(robust)
```

Instrumental variables (2SLS) regression

Number of obs = 10089
 Wald chi2(6) = 1955.36
 Prob > chi2 = 0.0000
 R-squared = 0.0414
 Root MSE = 1.3335

ldrugexp	Coef.	Robust Std. Err.	z	P> z	[95% Conf. Interval]
hi_empunion	-.9899269	.2045907	-4.84	0.000	-1.390917 -.5889365
totchr	.4512051	.0103088	43.77	0.000	.4310001 .47141
age	-.0141384	.0029	-4.88	0.000	-.0198223 -.0084546
female	-.0278398	.0321743	-0.87	0.387	-.0909002 .0352207
blhisp	-.2237087	.0395848	-5.65	0.000	-.3012934 -.1461239
linc	.0942748	.0218841	4.31	0.000	.0513828 .1371668
_cons	6.875188	.2578855	26.66	0.000	6.369741 7.380634

Instrumented: hi_empunion

Instruments: totchr age female blhisp linc ssiratio multlc

- Coefficient changes from -0.898 (IV) to -0.990 (2SLS).
 Standard error decreases from 0.221 (IV) to 0.205 (2SLS).

Optimal GMM

- Two instruments `ssiratio` and `multlc`
 - optimal GMM if errors are heteroskedastic and start with $E[\mathbf{z}\mathbf{u}] = \mathbf{0}$.

```
. * GMM estimator with ssiratio and multlc as instruments for hi_empunion
. ivregress gmm ldrugexp (hi_empunion = ssiratio multlc) $x2list, vce(robust)
```

Instrumental variables (GMM) regression

Number of obs	=	10089
Wald chi2(6)	=	1952.65
Prob > chi2	=	0.0000
R-squared	=	0.0406
Root MSE	=	1.3341

GMM weight matrix: Robust

ldrugexp	Coef.	Robust		z	P> z	[95% Conf. Interval]	
		Std. Err.					
hi_empunion	-.9932795	.2046731	-4.85	0.000		-1.394431	-.5921275
totchr	.4509508	.0103104	43.74	0.000		.4307428	.4711588
age	-.0141509	.0029014	-4.88	0.000		-.0198375	-.0084644
female	-.0281716	.0321881	-0.88	0.381		-.0912592	.034916
blhisp	-.2231048	.0395972	-5.63	0.000		-.3007139	-.1454957
linc	.0944632	.0218959	4.31	0.000		.0515481	.1373783
_cons	6.877821	.2579974	26.66	0.000		6.372155	7.383486

Instrumented: hi_empunion

Instruments: totchr age female blhisp linc ssiratio multlc

- Estimate and standard error for `hi_empunion` are very similar to 2SLS
 - Little efficiency gain compared to 2SLS.

Estimator comparison

- Compare OLS, IV, 2SLS (over-identified), GMM (over-identified)

```

. * Compare estimators
. quietly regress ldrugexp hi_empunion $x2list, vce(robust)
. estimates store OLS

. quietly ivregress 2sls ldrugexp (hi_empunion = ssiratio multlc) $x2list, vce(robust)
. estimates store IV

. quietly ivregress 2sls ldrugexp (hi_empunion = ssiratio) $x2list, vce(robust)
. estimates store TWOALS

. quietly ivregress gmm ldrugexp (hi_empunion = ssiratio multlc) $x2list, vce(robust)
. estimates store GMM

. estimates table OLS IV TWOALS GMM, b(%9.4f) se(%9.3f) stats(N r2 F)

```

Variable	OLS	IV	TWOALS	GMM
hi_empunion	0.0739 0.026	-0.9899 0.205	-0.8976 0.221	-0.9933 0.205
totchr	0.4404 0.009	0.4512 0.010	0.4503 0.010	0.4510 0.010
age	-0.0035 0.002	-0.0141 0.003	-0.0132 0.003	-0.0142 0.003
female	0.0578 0.025	-0.0278 0.032	-0.0204 0.033	-0.0282 0.032
blhisp	-0.1513 0.034	-0.2237 0.040	-0.2174 0.039	-0.2231 0.040
linc	0.0105 0.014	0.0943 0.022	0.0870 0.023	0.0945 0.022
_cons	5.8611 0.157	6.8752 0.258	6.7872 0.269	6.8778 0.258
N	10089	10089	10089	10089
r2	0.1770	0.0414	0.0640	0.0406
F	376.8458			

Legend: b/se

4. Instrumental variables methods in practice

- Do we need to use instruments?
 - ▶ Hausman test of endogeneity.
- Is the instrument valid (uncorrelated with the error)?
 - ▶ If model is over-identified can do over-identifying restrictions test.
- What if the instrument is weakly correlated with regressor instrumented
 - ▶ Lose efficiency
 - ▶ If really weak can have finite-sample bias and wrong test size.
- How many instruments?
 - ▶ Need $\#$ instruments $\geq \#$ endogenous regressors.
 - ▶ In theory more is better but too many can have finite-sample bias.

Hausman test

- In general a Hausman test considers two different estimators $\hat{\theta}$ and $\tilde{\theta}$ that have the same plim under H_0 and different plim's under H_a .
 - ▶ $H_0 : \text{plim}(\hat{\theta} - \tilde{\theta}) = \mathbf{0}$ versus $H_a : \text{plim}(\hat{\theta} - \tilde{\theta}) \neq \mathbf{0}$.
- We reject H_0 if the difference is large, using

$$H = (\hat{\theta} - \tilde{\theta})'(\hat{V}[\hat{\theta} - \tilde{\theta}])^{-1}(\hat{\theta} - \tilde{\theta}) \stackrel{a}{\sim} \chi^2(q).$$

- Tricky bit is estimating $V[\hat{\theta} - \tilde{\theta}] = V[\hat{\theta}] + V[\tilde{\theta}] - 2 \times \text{Cov}[\hat{\theta}, \tilde{\theta}]$
 - ▶ usual Hausman test implementation assumes one of $\hat{\theta}$ and $\tilde{\theta}$ is fully efficient under the null. Say $\tilde{\theta}$: then $V[\hat{\theta} - \tilde{\theta}] = V[\hat{\theta}] - V[\tilde{\theta}]$
 - ▶ such efficiency is not usually the case in practice
 - ★ e.g. if errors are heteroskedastic then OLS is inefficient
 - ▶ instead need to use a robust form of the Hausman test.

- Hausman test of endogeneity: 2SLS ($\widehat{\theta}$) versus OLS ($\widetilde{\theta}$)

- ▶ $H_0 : \text{plim}(\widehat{\theta}_{2SLS} - \widetilde{\theta}_{OLS}) = \mathbf{0}$ if exogeneity
vs. $H_a : \text{plim}(\widehat{\theta}_{2SLS} - \widetilde{\theta}_{OLS}) \neq \mathbf{0}$ if endogeneity

- Use heteroskedasticity-robust version of Hausman test

- ▶ this is command `estat endogenous` and not `hausman`

```

. * Robust version of Hausman test using augmented regression
. quietly ivregress 2sls ldrugexp (hi_empunion = ssiratio) $x2list, vce(robust)
. estat endogenous

```

Tests of endogeneity
Ho: variables are exogenous

```

Robust score chi2(1)      =  24.935  (p = 0.0000)
Robust regression F(1,10081) = 26.4333 (p = 0.0000)

```

- Reject H_0 as $p = 0.000$.

Conclude that `hi_empunion` is endogenous. Need to do IV.

Test of instrument validity

- Cannot test validity in a just identified model
 - ▶ Intuition: Test based on $\text{Cov}[\mathbf{z}_i, \hat{u}_i] \simeq 0$ requires \hat{u}_i based on a consistent estimator of β which requires at least just-identified model.
- Test of overidentifying restrictions (for over-identified model)
 - ▶ Test $H_0 : E[\mathbf{z}_i' \mathbf{u}_i] = \mathbf{0}$ by testing if $N^{-1} \sum_i \mathbf{z}_i' \hat{\mathbf{u}}_i \simeq \mathbf{0}$.
 - ▶ Limited test as assumes instruments in just-identified model are valid.
- In Stata command `estat overid` after command `ivregress gmm`.
 - ▶ Here one over-identifying restriction (2 instruments for 1 endogenous)

```

. * Test of overidentifying restrictions following ivregress gmm
. quietly ivregress gmm ldrugexp (hi_empunion = ssiratio multlc) $x2list, wmatrix(robust)
. estat overid

Test of overidentifying restriction:
Hansen's J chi2(1) = 1.04754 (p = 0.3061)

```

- Do not reject H_0 as $p = 0.31 < 0.05$.
 Conclude that, assuming the just-identifying restriction is valid, then the over-identifying restriction is also valid.

Weak instruments

- Weak instrument means that instrument(s) are weakly correlated with endogenous regressor(s), after controlling for exogenous regressors.
- Then
 - ▶ 1. standard errors ↑ greatly as 2SLS much less efficient than OLS.
 - ▶ 2. even slight correlation between error and the instrument can lead to 2SLS more inconsistent than OLS.
 - ▶ 3. even if instrument(s) are valid so 2SLS is inconsistent, in typical sample sizes usual asymptotic theory can provide a poor approximation e.g. bias.
- Consequences
 - ▶ 1. key coefficient estimate(s) can become statistically insignificant.
 - ▶ 2. even more important to ensure that the instrument is valid.
 - ▶ 3. focus of the weak instrument literature.
- In Stata for 3. use
 - ▶ command `estat firststage` after command `ivregress`
 - ▶ add-on commands `condivreg` and `ivreg2`

5. IV estimator properties: consistency

- Stacking all observations

$$\hat{\beta}_{IV} = (\mathbf{Z}' \mathbf{X})^{-1} \mathbf{Z}' \mathbf{y}.$$

- Substitute $\mathbf{y} = \mathbf{X}\beta + \mathbf{u}$ for \mathbf{y} yields

$$\begin{aligned}\hat{\beta}_{IV} &= (\mathbf{Z}' \mathbf{X})^{-1} \mathbf{Z}' [\mathbf{X}\beta + \mathbf{u}] \\ &= \beta + (\mathbf{Z}' \mathbf{X})^{-1} \mathbf{Z}' \mathbf{u} \\ &= \beta + \left(\frac{1}{N} \mathbf{Z}' \mathbf{X}\right)^{-1} \frac{1}{N} \mathbf{Z}' \mathbf{u}\end{aligned}$$

- So $\hat{\beta}_{IV} \xrightarrow{P} \beta$ and $\hat{\beta}_{IV}$ is consistent for β if

- ▶ $\text{plim } \frac{1}{N} \mathbf{Z}' \mathbf{u} = \mathbf{0}$ (instruments are valid) and
- ▶ $\text{plim } \frac{1}{N} \mathbf{Z}' \mathbf{X} \neq \mathbf{0}$ (instruments are relevant).

IV estimator: asymptotic distribution

- Informal derivation:

$$\begin{aligned}
 \hat{\beta}_{\text{GMM}} - \beta &= (\mathbf{Z}' \mathbf{X})^{-1} \times \mathbf{Z}' \mathbf{u} \\
 &\stackrel{a}{\sim} (\mathbf{Z}' \mathbf{X})^{-1} \times \mathcal{N}[\mathbf{0}, \mathbf{V}[\mathbf{Z}' \mathbf{u}]] \\
 &\stackrel{a}{\sim} (\mathbf{Z}' \mathbf{X})^{-1} \times \mathcal{N}[\mathbf{0}, \mathbf{Z}' \mathbf{V}[\mathbf{u} | \mathbf{Z}] \mathbf{Z}] \\
 &\stackrel{a}{\sim} (\mathbf{Z}' \mathbf{X})^{-1} \times \mathcal{N}[\mathbf{0}, \mathbf{Z}' \Omega \mathbf{Z}]
 \end{aligned}$$

- Thus

$$\hat{\beta}_{\text{IV}} \stackrel{a}{\sim} \mathcal{N}[\beta, (\mathbf{Z}' \mathbf{X})^{-1} \mathbf{Z}' \Omega \mathbf{Z} (\mathbf{X}' \mathbf{Z})^{-1}]; \quad \Omega = \mathbf{V}[\mathbf{u} | \mathbf{Z}].$$

- With independent heteroskedastic errors (Stata option `vce(robust)`)

$$\hat{\mathbf{V}}[\hat{\beta}_{\text{IV}}] = (\mathbf{Z}' \mathbf{X})^{-1} \mathbf{Z}' \hat{\Omega} \mathbf{Z} (\mathbf{X}' \mathbf{Z})^{-1}; \quad \hat{\Omega} = \text{Diag}[\hat{u}_i^2].$$

- Note: $\text{Cor}[\mathbf{Z}, \mathbf{X}] \Rightarrow \mathbf{Z}' \mathbf{X}$ small $\Rightarrow (\mathbf{Z}' \mathbf{X})^{-1}$ large $\Rightarrow \hat{\beta}_{\text{IV}}$ is imprecise.

Asymptotic Distribution of GMM

- Informal derivation:

$$\begin{aligned}
 \hat{\beta}_{\text{GMM}} &= (\mathbf{X}' \mathbf{Z} \mathbf{W} \mathbf{Z}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Z} \mathbf{W} \mathbf{Z}' (\mathbf{X} \beta + \mathbf{u}) \\
 \hat{\beta}_{\text{GMM}} - \beta &= (\mathbf{X}' \mathbf{Z} \mathbf{W} \mathbf{Z}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Z} \mathbf{W} \mathbf{Z}' \mathbf{u} \\
 &\stackrel{a}{\sim} (\mathbf{X}' \mathbf{Z} \mathbf{W} \mathbf{Z}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Z} \mathbf{W} \times \mathcal{N}[\mathbf{0}, \mathbf{V}[\mathbf{Z}' \mathbf{u}]] \\
 &\stackrel{a}{\sim} (\mathbf{X}' \mathbf{Z} \mathbf{W} \mathbf{Z}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Z} \mathbf{W} \times \mathcal{N}[\mathbf{0}, \mathbf{Z}' \mathbf{V}[\mathbf{u} | \mathbf{Z}] \mathbf{Z}] \\
 &\stackrel{a}{\sim} (\mathbf{X}' \mathbf{Z} \mathbf{W} \mathbf{Z}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Z} \mathbf{W} \times \mathcal{N}[\mathbf{0}, \mathbf{Z}' \Omega \mathbf{Z}]
 \end{aligned}$$

- Thus

$$\begin{aligned}
 \hat{\beta}_{\text{GMM}} &\stackrel{a}{\sim} \mathcal{N}[\beta, (\mathbf{X}' \mathbf{Z} \mathbf{W} \mathbf{Z}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Z} \mathbf{W} \mathbf{Z}' \Omega \mathbf{Z} \mathbf{W} \mathbf{Z}' \mathbf{X} (\mathbf{X}' \mathbf{Z} \mathbf{W} \mathbf{Z}' \mathbf{X})^{-1}] \\
 \Omega &= \mathbf{V}[\mathbf{u} | \mathbf{Z}].
 \end{aligned}$$

- Optimal \mathbf{W} is a consistent estimate of Ω^{-1} . Then

$$\hat{\beta}_{\text{OptGMM}} \stackrel{a}{\sim} \mathcal{N}[\beta, (\mathbf{X}' \mathbf{Z} \Omega^{-1} \mathbf{Z}' \mathbf{X})^{-1}]$$

6. Nonlinear GMM estimator: Definition

- Nests LS, MLE, IV, GMM, The way to view estimation.
- Population unconditional moment condition

$$E[\mathbf{h}(\mathbf{w}, \theta_0)] = \mathbf{0}; \quad \mathbf{w} = (\mathbf{y}, \mathbf{x}, \mathbf{z}) \text{ is all observables.}$$

- $\hat{\theta}$ solves the corresponding sample moment condition

$$\frac{1}{N} \sum_{i=1}^N \mathbf{h}(\mathbf{w}_i, \hat{\theta}) = \mathbf{0}.$$

- ▶ just-identified case ($r = q$) can solve for β
- ▶ over-identified case ($r > q$) cannot as r equations in k unknowns.
- The generalized method of moments (GMM) estimator (for $r > q$) minimizes the quadratic form in $N^{-1} \sum_i \mathbf{h}(\mathbf{w}_i, \theta)$

$$\begin{aligned} Q(\theta) &= \left[\frac{1}{N} \sum_{i=1}^N \mathbf{h}(\mathbf{w}_i, \theta) \right]' \mathbf{W}_N \left[\frac{1}{N} \sum_{i=1}^N \mathbf{h}(\mathbf{w}_i, \theta) \right] \\ &= \mathbf{g}(\theta)' \mathbf{W}_N \mathbf{g}(\theta) \end{aligned}$$

- ▶ where $\mathbf{g}(\theta) = \sum_{i=1}^N \mathbf{h}_i(\theta)$ and $\frac{1}{N} \sum_{i=1}^N \mathbf{W}_N$ is a symmetric full-rank weighting matrix that does not depend on θ .

Nonlinear GMM estimator: Properties

- $\hat{\theta}_{\text{GMM}}$ is asymptotically normally distributed with

$$\text{V}[\hat{\theta}_{\text{GMM}}] = N(\mathbf{G}'\mathbf{W}\mathbf{G})^{-1}\mathbf{G}'\mathbf{W}\mathbf{S}\mathbf{W}\mathbf{G}(\mathbf{G}'\mathbf{W}\mathbf{G})^{-1}.$$

where

$$\begin{aligned}\mathbf{G} &= \lim E\left[\frac{\partial \mathbf{g}_N(\theta)'}{\partial \theta}\right] = \lim E\left[\frac{1}{N} \sum_{i=1}^N \frac{\partial \mathbf{h}_i(\theta)'}{\partial \theta}\right] \\ \mathbf{S} &= \text{Var}[\sqrt{N}\mathbf{g}_N(\theta)] = \text{Var}\left[\frac{1}{\sqrt{N}} \sum_{i=1}^N \mathbf{h}(\mathbf{w}_i, \theta)\right].\end{aligned}$$

- Optimal GMM: $\mathbf{W}_N = \hat{\mathbf{S}}^{-1}$ where $\hat{\mathbf{S}} \xrightarrow{P} \mathbf{S}$.
- Similar issues as for weighted LS in the linear model.
 - ▶ Model choice: specify moment conditions for estimation.
 - ▶ Estimator choice: specify a weighting function.
 - ▶ Statistical inference: use robust standard errors.
 - ▶ Most efficient estimator: a particular choice of weighting function.
 - ▶ In Stata 11 use the new command `gmm`.

7. Endogeneity in nonlinear models

- Example is $y_i = \exp(\mathbf{x}'_i \boldsymbol{\beta}) + u_i$ and $\text{Cov}[\mathbf{x}_i, u_i] \neq 0$.
- Several very different methods (and associated models) exist.
- 1. Nonlinear IV (often called nonlinear 2SLS) is nonlinear GMM based on $E[\mathbf{z}_i u_i] = \mathbf{0}$ and $\mathbf{W} = (\mathbf{Z}' \mathbf{Z})^{-1}$.
- 2. Control function: add estimated first-stage error \hat{v}_i as regressor.
 - ▶ differs from 1. in nonlinear models
- 3. Fully structural approach adds an equation for endogenous regressors and estimates the model
 - ▶ Differs from 1. and 2. in most nonlinear models and is computationally difficult.
- 4. The following is inconsistent in nonlinear models: get $\hat{\mathbf{x}}_i$ from first stage regressions and estimate $y_i = \exp(\hat{\mathbf{x}}'_i \boldsymbol{\beta}) + \text{error}$.
 - ▶ The two-stage LS interpretation of 2SLS does not carry over to nonlinear models.

8. Stata commands

IV (just-identified)

ivregress 2sls

2SLS (over-identified)

ivregress 2sls

GMM (over-identified)

ivregress gmm

Overidentifying restrictions test

xtoverid

Hausman test (if i.i.d. error)

hausman

Hausman test (if heteroskedastic error)

estat endogenous

Weak instruments

estat firststage

(plus user written commands)

condivreg; ivreg2

Static panel IV

xtivreg; xthauastaylor

Dynamic panel IV

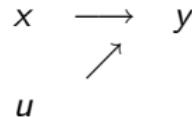
xtabond; xtdpdsys; xtdpd

Nonlinear GMM (new in Stata 11)

gmm

9. Appendix: Instrumental variables Intuition

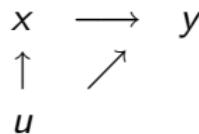
- Simplify to scalar regression of y on single regressor x (no intercept).
- Linear regression model
 - ▶ $y = \beta x + u$ where u is an error term.
- In general
 - ▶ $E[y|x] = \beta x + E[u|x]$.
- Standard regression:
 - ▶ assume $E[u|x] = 0$ i.e. regressors uncorrelated with error
 - ▶ implies the following path analysis diagram



where there is no association between x and u .

- But there may be an association between regressors and errors.
- Example: regression of earnings (y) on years of schooling (x).
- The error u embodies all factors other than schooling that determine earnings, such as ability.
- Suppose a person has high u , due to high (unobserved) ability.
 - ▶ This increases earnings, since $y = \beta x + u$.
 - ▶ But it may also increase x , since schooling is likely to be higher for those with high ability.
- So high u
 - ▶ (1) directly increases y and
 - ▶ (2) indirectly increases y via higher x .

- The path analysis diagram becomes



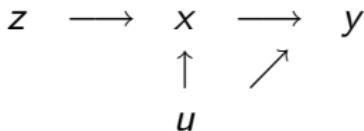
where now there is an association between x and u .

- Then $y = \beta x + u(x)$ implies

$$\frac{dy}{dx} = \beta + \frac{du}{dx}.$$

- OLS is inconsistent for β as it measures dy/dx , not just β .

- Assume there exists an **instrument** z that has the properties
 - ▶ changes in z do not directly lead to changes in y
 - ▶ changes in z are associated with changes in x
- The path analysis diagram becomes



- Note: z does not directly cause y , though z and y are correlated via indirect path of z being correlated with x which in turn determines y .
- Formally, z is an instrument for regressor x if
 - ▶ (1) z is uncorrelated with the error u ; and
 - ▶ (2) z is correlated with the regressor x .

- Example: a one unit change in the instrument z is associated with
 - ▶ 0.2 more years of schooling (x) and
 - ▶ \$500 increase in annual earnings (y) (due to $z \uparrow \Rightarrow x \uparrow \Rightarrow y \uparrow$.)
- Then 0.2 years extra schooling is associated with \$500 extra earnings.
 - ▶ So a one year increase in schooling is associated with a $\$500/0.2 = \$2,500$ increase in earnings.
- The causal estimate of β is therefore 2500.

- Mathematically we estimated changes dx/dz and dy/dz and calculated the causal estimator as

$$\beta_{IV} = \frac{dy/dz}{dx/dz}.$$

- dy/dz estimated by OLS of y on z with slope estimate $(\mathbf{z}'\mathbf{z})^{-1}\mathbf{z}'\mathbf{y}$
- dx/dz estimated by OLS of x on z with slope estimate $(\mathbf{z}'\mathbf{z})^{-1}\mathbf{z}'\mathbf{x}$.

- The IV estimator is

$$\begin{aligned}\hat{\beta}_{IV} &= \frac{(\mathbf{z}'\mathbf{z})^{-1}\mathbf{z}'\mathbf{y}}{(\mathbf{z}'\mathbf{z})^{-1}\mathbf{z}'\mathbf{x}} \\ &= (\mathbf{z}'\mathbf{x})^{-1}\mathbf{z}'\mathbf{y} \\ &= \left(\sum_{i=1}^N z_i x_i\right)^{-1} \sum_{i=1}^N z_i y_i.\end{aligned}$$