Day 1
 Ordinary Least Squares and GLS

(C) A. Colin Cameron
Univ. of Calif.- Davis

Advanced Econometrics
Bavarian Graduate Program in Economics

Based on A. Colin Cameron and Pravin K. Trivedi $(2009,2010)$,
Microeconometrics using Stata (MUS), Stata Press.
and A. Colin Cameron and Pravin K. Trivedi (2005),
Microeconometrics: Methods and Applications (MMA), C.U.P.
July 22-26, 2013

1. Introduction

- OLS for the linear model is the building block for other regression.
- Here we provide
- model in matrix notation
- statistical properties
- hypothesis testing
- simulations to show consistency and asymptotic normality.
- Additionally
- More efficient FGLS with heteroskedastic data

Overview

(1) Introduction
(2) OLS: Data example
(3) OLS: Matrix Notation
(1) OLS: Properties
(6) GLS: Generalized Least Squares
(0) Tests of linear hypotheses (Wald tests)
(0) Simulations: OLS Consistency and Asymptotic Normality
(B) Stata commands
(0) Appendix: OLS in matrix notation example

2. Data Example: OLS for doctor visits

- Cross-section data on individuals (from MUS chapter 10).
- Dependent variable docvis is a count. Here do OLS (later Poisson).
- Begin with data description and summary statistics.
. use mus10data.dta, clear
. quietly keep if year02==1
. describe docvis private chronic female income

variable name	storage type	display format	value labe1	variable labe1
docvis	int	$\% 8.0 \mathrm{~g}$		number of doctor visits
private	byte	$\% 8.0 \mathrm{~g}$		$=1$ if private insurance
chronic	byte	$\% 8.0 \mathrm{~g}$		$=1$ if a chronic condition
female	byte	$\% 8.0 \mathrm{~g}$		$=1$ if female
income	float	$\% 9.0 \mathrm{~g}$		Income in $\$ / 1000$

. summarize docvis private chronic female income

Variable	Obs	Mean	Std. Dev.	Min	Max
docvis	4412	3.957389	7.947601	0	134
private	4412	.7853581	.4106202	0	1
chronic	4412	.3263826	.4689423	0	1
female	4412	.4718948	.4992661	0	1
income	4412	34.34018	29.03987	-49.999	280.777

- OLS regression with default standard errors: assumes i.i.d error.
. * Ols regression with default standard errors
. regress docvis private chronic female income

Source	SS	$d f$	MS
Mode1	35771.7188	4	8942.92971
Residua1	242846.27	4407	55.1046676
Tota1	278617.989	4411	63.1643594

| Number of obs | $=4412$ |
| ---: | :--- | ---: |
| $\mathrm{~F}(4,4407)$ | $=162.29$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.1284$ |
| Adj R-squared | $=0.1276$ |
| Root MSE | $=7.4233$ |

docvis	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interva]]	
private	1.916263	.2881911	6.65	0.000	1.351264	2.481263
chronic	4.826799	.2419767	19.95	0.000	4.352404	5.301195
fema1e	1.889675	.2286615	8.26	0.000	1.441384	2.337967
income	.016018	.004071	3.93	0.000	.0080367	.0239993
_cons	-.5647368	.2746696	-2.06	0.040	-1.103227	-.0262465

- Overall fit poor as $R^{2}=0.13$. Often the case for cross-section data.
- Yet all regressors are stat. significant and have large impact.
- For income: annual income $\uparrow \$ 10,000 \Rightarrow$ income $\uparrow 10$ units \Rightarrow docvis $\uparrow 10 \times 0.016=0.16$.
- OLS regression with robust standard errors for OLS estimator
- preferred at this permits model error to be heteroskedastic

```
. * OLS regression with robust standard errors
. regress docvis private chronic female income, vce(robust)
```

Linear regre					Number of obs F(4, 4407) Prob > F R-squared Root MSE	$\begin{aligned} & =4412 \\ & =107.01 \\ & =0.0000 \\ & =0.1284 \\ & =7.4233 \end{aligned}$
docvis	Coef.	Robust Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
private	1.916263	. 2347443	8.16	0.000	1.456047	2.37648
chronic	4.826799	. 3001866	16.08	0.000	4.238283	5.415316
female	1.889675	. 2154463	8.77	0.000	1.467292	2.312058
income	. 016018	. 005606	2.86	0.004	. 0050275	. 0270085
_cons	-. 5647368	. 2069188	-2.73	0.006	-. 9704017	-. 159072

- Same coefficient estimates. Different standard errors.
. * Comparison of standard errors
- quietly regress docvis private chronic female income
- estimates store DEFAULT
. quietly regress docvis private chronic female income, vce(robust)
. estimates store ROBUST
. estimates table DEFAULT ROBUST, b(\%9.4f) se stats(N r2 f)

Variable	DEFAULT	ROBUST
private	1.9163	1.9163
chronic	0.2882	0.2347
	4.8268	4.8268
female	0.2420	0.3002
income	0.8897	1.8897
	0.0160	0.2154
_cons	0.0041	0.0160
	0.5647	-0.5646
	0.2747	0.2069
N	4412.0000	4412.0000
r 2	0.1284	0.1284
F	162.2899	107.0104

- The preferred heteroskedastic-robust standard errors are within 25% of default, sometimes more and sometimes less.
- Hypothesis tests can be implemented using Stata command test

$$
\begin{aligned}
& H_{0}: \beta_{\text {private }}=0, \beta_{\text {chronic }}=0 \\
& H_{a}: \text { at least one of } \beta_{\text {private }} \neq 0, \beta_{\text {chronic }} \neq 0 .
\end{aligned}
$$

- Stata post-estimation command test yields
. * Wald test of restrictions
. quietly regress docvis private chronic female income, vce(robust) noheader
. test (private $=0)($ chronic $=0)$
(1) private $=0$
(2) chronic $=0$

F(2,4407$)=165.11$

- Reject H_{0} at level 0.05 since $p<0.05$ or $165.11>F_{.05}(2,4407)=3.00$ using $\operatorname{invFtail}(2,4407, .05)$.

3. OLS: Definition in matrix notation

- For the $i^{\text {th }}$ observation

$$
y_{i}=\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{K} x_{K i}+u_{i}
$$

- Usually $x_{1 i}=1$ (an intercept).
- Introduce vector and matrix representation.
- Regressor vector \mathbf{x}_{i} and parameter vector β are $K \times 1$ column vectors.

$$
\begin{gathered}
\mathbf{x}_{i} \\
(K \times 1)
\end{gathered}=\left[\begin{array}{c}
x_{1 i} \\
\vdots \\
x_{K i}
\end{array}\right] \quad \text { and } \underset{(K \times 1)}{\beta}=\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{K}
\end{array}\right] .
$$

- Note that all vectors are defined to be column vectors
- For the $i^{\text {th }}$ observation

$$
y_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+u_{i} .
$$

- Now combine all N observations from sample $\left\{\left(y_{i}, \mathbf{x}_{i}\right), i=1, \ldots, N.\right\}$
- The linear regression model is

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{1}^{\prime} \beta \\
\vdots \\
\mathbf{x}_{N}^{\prime} \beta
\end{array}\right]+\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{N}
\end{array}\right]
$$

- This is

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}
$$

where

$$
\underset{(N \times 1)}{\mathbf{y}}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right] \quad \underset{(N \times K)}{\mathbf{X}}=\left[\begin{array}{c}
\mathbf{x}_{1}^{\prime} \\
\vdots \\
\mathbf{x}_{N}^{\prime}
\end{array}\right] \quad \underset{(N \times 1)}{\mathbf{u}}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{N}
\end{array}\right]
$$

- The OLS estimator derived below is

$$
\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

OLS: matrix notation example

- Example: $N=4$ with (x, y) equal to $(1,1),(2,3),(2,4)$, and $(3,4)$.
- Then \mathbf{y} is 4×1 and \mathbf{X} is 4×2 with

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
4 \\
4
\end{array}\right] ; \quad \mathbf{X}=\left[\begin{array}{l}
\mathbf{x}_{1}^{\prime} \\
\mathbf{x}_{2}^{\prime} \\
\mathbf{x}_{3}^{\prime} \\
\mathbf{x}_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
x_{11} & x_{21} \\
x_{12} & x_{22} \\
x_{13} & x_{23} \\
x_{14} & x_{24}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 2 \\
1 & 3
\end{array}\right] .
$$

- So (see appendix for detailed computation)

$$
\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\left[\begin{array}{rr}
4 & 8 \\
8 & 18
\end{array}\right]^{-1}\left[\begin{array}{l}
12 \\
27
\end{array}\right]=\left[\begin{array}{r}
0 \\
1.5
\end{array}\right]
$$

- Intercept $\widehat{\beta}_{1}=0$ and slope coefficient $\widehat{\beta}_{2}=1.5$.

Derivation of formula for OLS estimator

- The OLS estimator minimizes the sum of squared errors

$$
Q(\boldsymbol{\beta})=\sum_{i=1}^{N} u_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)^{2} .
$$

- The first-order conditions (f.o.c.) are

$$
\frac{\partial Q(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=-2 \sum_{i=1}^{N} \mathbf{x}_{i}\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)=-2 \mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=\mathbf{0}
$$

- Then

$$
\begin{array}{lcc}
& \mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=\mathbf{0} & \text { from f.o.c. } \\
\Rightarrow & \mathbf{X}^{\prime} \mathbf{y}=\mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} & K \text { linear equations in } K \text { unknowns } \beta \\
\Rightarrow & \boldsymbol{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} & \text { if the inverse exists (i.e. rank }[X]=K)
\end{array}
$$

- So

$$
\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} y_{i}
$$

4. OLS Properties: Summary

- $\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}}$ is always estimable, provided $\operatorname{rank}[X]=K$.
- But properties of $\widehat{\beta}_{\text {OLS }}$ depend on the true model
- called the data generating process (d.g.p.)
- Essential result:
- If the d.g.p. is correctly specified and the error u_{i} is uncorrelated with regressors \mathbf{x}_{i}
- Then
(1) $\widehat{\beta}$ is consistent for $\boldsymbol{\beta}$
(2) $\widehat{\beta}$ is normally distributed in large samples ("asymptotically")
(3) Variance of $\widehat{\boldsymbol{\beta}}$ varies with assumptions on error u_{i}
* default: u_{i} are independent $\left(0, \sigma^{2}\right)$
\star heteroskedastic: u_{i} are independent $\left(0, \sigma_{i}^{2}\right)$
\star clustered: u_{i} are correlated within cluster, uncorrelated across cluster
\star HAC: u_{i} are serially correlated (u_{i} are correlated with u_{i-1})

OLS Properties

- If the d.g.p. is $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$ then

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\mathbf{u}) \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u} \\
& =\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u} \\
& =\boldsymbol{\beta}+\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \sum_{i} \mathbf{x}_{i} u_{i}
\end{aligned}
$$

- So assumptions on \mathbf{x}_{i} and u_{i} are crucial.

OLS Finite Sample Properties

- If $\mathbf{u} \sim \mathcal{N}[\mathbf{0}, \Omega]$ and regressors \mathbf{X} are fixed (nonstochastic) then

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}} & =\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u} \\
& \sim \boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \times \mathcal{N}[\mathbf{0}, \Omega] \\
& \sim \mathcal{N}\left[\boldsymbol{\beta},\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]
\end{aligned}
$$

- using linear transformation of the normal is normal

$$
\mathbf{z} \sim \mathcal{N}[\mu, \Omega] \Longrightarrow \mathbf{A z}+\mathbf{b} \sim \mathcal{N}\left[\mathbf{A} \mu+\mathbf{b}, \mathbf{A} \Omega \mathbf{A}^{\prime}\right] .
$$

- We instead use asumptotic theory
- this permits \mathbf{u} to be nonnormal distributed.
- but does require a large sample so $N \rightarrow \infty$.

OLS Consistency

- Consistency
- Means that the probability limit (plim) of $\widehat{\beta}$ equals β
- That is: $\lim _{N \rightarrow \infty} \operatorname{Pr}[|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}|<\varepsilon]=1$ for any $\varepsilon>0$.
- We have (using results below)

$$
\begin{aligned}
\operatorname{plim} \widehat{\boldsymbol{\beta}} & =\operatorname{plim}\left\{\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u}\right\} \\
& =\operatorname{plim} \boldsymbol{\beta}+\operatorname{plim}\left\{\left(\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \sum_{i} \mathbf{x}_{i} u_{i}\right\} \\
& =\operatorname{plim} \boldsymbol{\beta}+\operatorname{plim}\left(\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \times \operatorname{plim} \frac{1}{N} \sum_{i} \mathbf{x}_{i} u_{i} \\
& =\boldsymbol{\beta}+\left(\operatorname{plim} \frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \times \mathbf{0} \\
& =\boldsymbol{\beta}
\end{aligned}
$$

- $\operatorname{plim}\left\{\mathbf{A}_{N} \times \mathbf{b}_{N}\right\}=\operatorname{plim} \mathbf{A}_{N} \times \operatorname{plim} \mathbf{b}_{N}$ if the plim's are constants
- The plim's exist using laws of large numbers (as averages)
- For plim $\frac{1}{N} \sum_{i} \mathbf{x}_{i} u_{i}=\mathbf{0}$ the key assumption is $\mathrm{E}\left[u_{i} \mid \mathbf{x}_{i}\right]=0$.

OLS Limit Distribution

- $\widehat{\beta}$ has limit distribution with all mass at β (since $\widehat{\beta} \xrightarrow{p} \beta$).
- To get a nondegenerate distribution inflate $\widehat{\beta}$ by \sqrt{N}.
- Then limit normal distribution is

$$
\begin{aligned}
\sqrt{N}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}) & =\left(\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \frac{1}{\sqrt{N}} \sum_{i} \mathbf{x}_{i} u_{i} \\
& \xrightarrow{d} \operatorname{plim}\left(\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \times \mathcal{N}[\mathbf{0}, \mathbf{B}] \text { for some } \mathbf{B} \\
& \xrightarrow{d} \mathcal{N}\left[\mathbf{0}, \operatorname{plim}\left(\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \times \mathbf{B} \times \operatorname{plim}\left(\frac{1}{N} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1}\right]
\end{aligned}
$$

- If $\mathbf{H}_{N} \xrightarrow{p} \mathbf{H}$ and $\mathbf{b}_{N} \xrightarrow{d} \mathcal{N}[\boldsymbol{\mu}, \Omega]$ then $\mathbf{H}_{N} \mathbf{b}_{N} \xrightarrow{p} \mathcal{N}\left[\mathbf{H} \boldsymbol{\mu}, \mathbf{H} \Omega \mathbf{H}^{\prime}\right]$
- $\frac{1}{\sqrt{N}} \sum_{i} \mathbf{x}_{i} u_{i} \xrightarrow{d} \mathcal{N}[\mathbf{0}, \mathbf{B}]$ by a central limit theorem
- $\mathbf{B}=\operatorname{plim}\left(\frac{1}{\sqrt{N}} \sum_{i} \mathbf{x}_{i} u_{i}\right)\left(\frac{1}{\sqrt{N}} \sum_{i} \mathbf{x}_{i} u_{i}\right)^{\prime}=\operatorname{plim} \frac{1}{N} \sum_{i} \sum_{j} u_{i} u_{j} \mathbf{x}_{i} \mathbf{x}_{j}^{\prime}$

OLS Asymptotic Distribution

- All we need for theory is the previous result.
- but rescale from $\sqrt{N}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})$ to $\widehat{\boldsymbol{\beta}}$ for "friendlier" looking results
- drop plims and replace B by a consistent estimate $\widehat{\mathbf{B}}$
- The so-called "asymptotic distribution" is

$$
\widehat{\boldsymbol{\beta}} \stackrel{a}{\sim} \mathcal{N}\left[\beta,\left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \times N \widehat{\mathbf{B}} \times\left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1}\right]
$$

- Usually $\mathbf{B}=\operatorname{Var}\left[\frac{1}{\sqrt{N}} \mathbf{X}^{\prime} \mathbf{u}\right]=\operatorname{Var}\left[\frac{1}{\sqrt{N}} \sum_{i} \mathbf{x}_{i} u_{i}\right]$
- For independent heteroskedastic errors $\widehat{\mathbf{B}}=\frac{1}{N} \sum_{i} \widehat{u}_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}$.

White Estimate of VCE

- Most often used: requires data to be independent over i.
- Then $\mathbf{B}=\operatorname{plim} \frac{1}{N} \sum_{i} \sum_{j} u_{i} u_{j} \mathbf{x}_{i} \mathbf{x}_{j}^{\prime}=\operatorname{plim} \frac{1}{N} \sum_{i} u_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}$.
- White (1980) showed that can use $\widehat{\mathbf{B}}=\frac{1}{N} \sum_{i} \widehat{u}_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}$.
- Yields the heteroskedastic-consistent estimate of the variance-covariance matrix of the OLS estimator (VCE)

$$
\widehat{\mathrm{V}}_{\text {robust }}[\widehat{\boldsymbol{\beta}}]=\left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} \sum_{i=1}^{N} \widehat{u}_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1}
$$

- $\widehat{u}_{i}=y_{i}-\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}$
- Leads to "heteroskedastic robust" or "robust" standard errors.
- In Stata this is option vce(robust) for cross-section commands

Other Estimates of VCE

- Default: Independent homoskedastic errors: $\mathrm{V}\left[u_{i} \mid \mathbf{x}_{i}\right]=\sigma^{2}$

$$
\widehat{\mathrm{V}}[\widehat{\boldsymbol{\beta}}]=s^{2}\left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1} ; s^{2}=\frac{1}{N-K} \sum_{i} \widehat{u}_{i}^{2}
$$

- Simplification as then $\mathbf{B}=\operatorname{plim} \frac{1}{N} \sum_{i} u_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}=\sigma^{2} \operatorname{plim} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}$
- Cluster robust: Errors correlated within cluster but independent across cluster.

$$
\widehat{\mathrm{V}}[\widehat{\boldsymbol{\beta}}]=\left(\sum_{g=1}^{G} \mathbf{X}_{g} \mathbf{X}_{g}{ }^{\prime}\right)^{-1} \sum_{g=1}^{G} \mathbf{X}_{g} \widehat{\mathbf{u}}_{g} \widehat{\mathbf{u}}_{g}{ }^{\prime} \mathbf{X}_{g}\left(\sum_{g=1}^{G} \mathbf{X}_{g} \mathbf{X}_{g}^{\prime}\right)^{-1}
$$

- Here observations are stacked in cluster g as $\mathbf{y}_{g}=\mathbf{X}_{g} \boldsymbol{\beta}+\mathbf{u}_{g}$.
- In Stata this is option vce(cluster id) for cross-section commands
- and is option vce(robust) for most xt panel commands.
- Heteroskedasticity and autocorrelation (HAC) robust: time series
- Not covered here but extends White to an MA(q) error.

5. Generalized least squares (GLS) Overview

- OLS is efficient (best linear unbiased estimator) if errors are i.i.d. so that $\mathrm{V}[\mathbf{u} \mid \mathbf{X}]=\sigma^{2} \mathbf{I}$.
- In practice errors are rarely i.i.d.
- So we usually do OLS and obtain robust VCE that permits $\mathrm{V}[\mathbf{u} \mid \mathbf{X}] \neq \sigma^{2} \mathbf{I}$
- could be heteroskedastic robust, cluster-robust, HAC,
- More efficient feasible GLS (FGLS) assumes a model for $\mathrm{V}[\mathbf{u} \mid \mathbf{X}]$
- yields more precise estimates (smaller standard errors and bigger t-statistics)
- but then obtain robust VCE that allows for misspecified model for $\vee[\mathbf{u} \mid \mathbf{X}]$.
- called weighted LS or working matrix LS.

Generalized least squares (GLS)

- Suppose $\mathrm{V}[\mathbf{u} \mid \mathbf{X}]=\Omega$ where Ω is known
- and $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}, \mathrm{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$ as before.
- The generalized least squares estimator is efficient:

$$
\widehat{\boldsymbol{\beta}}_{\mathrm{GLS}}=\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega^{-1} \mathbf{y}
$$

- Derivation:
- Premultiply $\mathbf{y}=\mathbf{X} \beta+\mathbf{u}$ by $\Omega^{-1 / 2}$ so

$$
\Omega^{-1 / 2} \mathbf{y}=\Omega^{-1 / 2} \mathbf{x} \beta+\Omega^{-1 / 2} \mathbf{u}
$$

- This model has i.i.d. errors since

$$
\mathrm{V}\left[\Omega^{-1 / 2} \mathbf{u} \mid \mathbf{X}\right]=\mathrm{E}\left[\left(\Omega^{-1 / 2} \mathbf{u}\right)\left(\Omega^{-1 / 2} \mathbf{u}\right)^{\prime} \mid \mathbf{X}\right]=\Omega^{-1 / 2} \Omega \Omega^{-1 / 2}=\mathbf{I}_{N}
$$

- Then GLS is OLS in this transformed model:

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}_{\mathrm{GLS}} & =\left[\left(\Omega^{-1 / 2} \mathbf{X}\right)^{\prime}\left(\Omega^{-1 / 2} \mathbf{X}\right)\right]\left(\Omega^{-1 / 2} \mathbf{X}\right)^{\prime}\left(\Omega^{-1 / 2} \mathbf{y}\right) \\
& =\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega^{-1} \mathbf{y}
\end{aligned}
$$

Feasible generalized least squares (FGLS)

- To implement GLS we need a consistent estimate of Ω. Assume a model for $\Omega=\Omega(\gamma)$, estimate $\hat{\gamma} \xrightarrow{p} \gamma$, and form $\widehat{\Omega}=\Omega(\widehat{\gamma}) \xrightarrow{p} \Omega$.
- The feasible GLS estimator (FGLS) is

$$
\widehat{\boldsymbol{\beta}}_{\mathrm{FGLS}}=\left(\mathbf{X}^{\prime} \widehat{\Omega}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \widehat{\Omega}^{-1} \mathbf{y}
$$

and then

$$
\widehat{\beta}_{\mathrm{FGLS}} \stackrel{a}{\sim} \mathcal{N}\left[\beta,\left(\mathbf{X}^{\prime} \widehat{\Omega}^{-1} \mathbf{X}\right)^{-1}\right]
$$

- Examples:
- Heteroskedasticity: $\mathrm{V}\left[u_{i} \mid \mathbf{x}_{i}\right]=\exp \left(\mathbf{z}_{i}^{\prime} \boldsymbol{\gamma}\right)$
- Seemingly unrelated equations: $y_{i g}=\mathbf{x}_{i g}^{\prime} \beta_{g}+u_{i g}, g=1, \ldots, G$. $u_{i g}$ independent over i and homoskedastic with $\operatorname{Cov}\left[u_{i g}, u_{i h}\right]=\sigma_{g h}$.
- Systems of equations: SUR with $\beta_{g}=\beta$.
- Panel data: random effects estimator.

Weighted least squares (WLS)

- Now do FGLS but allow for possibility that model for $\mathrm{V}[\mathbf{u} \mid \mathbf{X}]$ is incorrectly specified
- So then obtain robust VCE for FGLS.
- Distinguish between
- the assumed (working) error variance matrix, denoted $\Sigma=\Sigma(\gamma)$ with estimate $\widehat{\Sigma}=\Sigma(\widehat{\gamma})$.
- the true (unknown) error variance matrix Ω
- The weighted least squares (WLS) estimator is

$$
\widehat{\boldsymbol{\beta}}_{\mathrm{WLS}}=\left(\mathbf{X}^{\prime} \widehat{\Sigma}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \widehat{\Sigma}^{-1} \mathbf{y}
$$

- Asymptotically $\widehat{\boldsymbol{\beta}}_{\text {WLS }} \stackrel{a}{\sim} \mathcal{N}[\boldsymbol{\beta}, \mathrm{~V}[\widehat{\boldsymbol{\beta}}]]$ where robust VCE is

$$
\widehat{\mathrm{V}}[\widehat{\boldsymbol{\beta}}]=\left(\mathbf{X}^{\prime} \widehat{\Sigma}^{-1} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \widehat{\Sigma}^{-1} \widehat{\Omega} \widehat{\Sigma}^{-1} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \widehat{\Sigma}^{-1} \mathbf{X}\right)^{-1}
$$

- for cross-section data $\widehat{\Omega}=\operatorname{Diag}\left[\left(y_{i}-\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}_{\mathrm{WLS}}\right)^{2}\right]$.

Hypothesis test of single restriction

- Consider test of a single restriction, for notational simplicity β

$$
\begin{aligned}
& H_{0}: \beta=\beta^{*} \\
& H_{a}: \beta \neq \beta^{*} .
\end{aligned}
$$

- A Wald test rejects H_{0} if $\widehat{\beta}$ differs greatly from β^{*}.
- Define $\sigma_{\widehat{\beta}}$ to be the asymptotic standard deviation of $\widehat{\beta}$. Then

$$
\begin{array}{lrll}
& \widehat{\beta} & \stackrel{a}{\sim} \mathcal{N}\left[\beta, \sigma_{\widehat{\beta}}^{2}\right] & \text { for unknown } \beta \\
\Rightarrow & \frac{\widehat{\beta}-\beta}{\sigma_{\widehat{\beta}}} \stackrel{a}{\sim} \mathcal{N}[0,1] & \text { standardizing } \\
\Rightarrow & z_{j}=\frac{\widehat{\beta}-\beta^{*}}{\sigma_{\widehat{\beta}}} & \stackrel{a}{\sim} \mathcal{N}[0,1] & \text { under } H_{0}: \beta=\beta^{*}
\end{array}
$$

- To implement this, replace $\sigma_{\widehat{\beta}}$ by $s_{\widehat{\beta}}$, the standard error of $\widehat{\beta}$.
- This makes no difference asymptotically (so still $\mathcal{N}[0,1]$).
- The Wald z-statistic is

$$
z_{j}=\frac{\widehat{\beta}-\beta^{*}}{s_{\widehat{\beta}}} \stackrel{a}{\sim} \mathcal{N}[0,1] \quad \text { under } H_{0}: \beta=\beta^{*}
$$

- Implementation by two equivalent methods
- Test using p-values: reject H_{0} at level 0.05 if

$$
p=\operatorname{Pr}\left[|Z|>\left|z_{j}\right|\right]<0.05, \quad \text { where } Z \sim \mathcal{N}[0,1] .
$$

- Test using critical values: reject H_{0} at level 0.05 if

$$
\left|z_{j}\right|>z_{.025}=1.96
$$

- Many packages such as Stata use $T(N-k)$ rather than $\mathcal{N}[0,1]$
- More conservative (less likely to reject H_{0})
- Exact in unlikely special case that $u_{i} \sim \mathcal{N}\left[0, \sigma^{2}\right]$.

Confidence interval

- A $100(1-\alpha) \%$ confidence interval for β is

$$
\widehat{\beta} \pm z_{\alpha / 2} \times s_{\widehat{\beta}} .
$$

- in particular a 95% confidence interval is $\widehat{\beta} \pm 1.96 s_{\hat{\beta}}$.
- can replace $z_{\alpha / 2}$ by $T_{N-k ; \alpha / 2}$ for better finite sample performance

Hypothesis test of multiple linear restrictions

- Now consider test of several restrictions
- e.g. Test $H_{0}: \beta_{2}=0, \beta_{3}=0$ against H_{a} : at least one $\neq 0$.
- In matrix algebra we test

$$
\begin{array}{ll}
& H_{0}: \mathbf{R} \boldsymbol{\beta}=\mathbf{r} \\
\text { against } & H_{a}: \mathbf{R} \boldsymbol{\beta} \neq \mathbf{r} .
\end{array}
$$

- Example: Test $H_{0}: \beta_{2}=0, \beta_{3}=0$ against H_{a} : at least one $\neq 0$

$$
\left[\begin{array}{l}
\beta_{2} \\
\beta_{3}
\end{array}\right]=\left[\begin{array}{lllll}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\vdots \\
\beta_{k}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\text { or } \underset{(2 \times K)}{\mathbf{R}} \times \underset{(K \times 1)}{\beta}=\underset{(2 \times 1)}{\boldsymbol{r}}
$$

- A Wald test rejects $H_{0}: \mathbf{R} \boldsymbol{\beta}=\mathbf{r}$ if $\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r}$ differs greatly from $\mathbf{0}$.
- Now $\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r}$ is normal as linear combination of normals is normal.

$$
\begin{array}{rlrl}
& & \widehat{\boldsymbol{\beta}} & \stackrel{a}{\sim} \mathcal{N}[\boldsymbol{\beta}, \mathrm{~V}[\widehat{\boldsymbol{\beta}}]] \\
\Rightarrow & \mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r} & \stackrel{a}{\sim} \mathcal{N}\left[\mathbf{R} \boldsymbol{\beta}-\mathbf{r}, \mathbf{R} V[\widehat{\boldsymbol{\beta}}] \mathbf{R}^{\prime}\right] \\
\Rightarrow & \quad \mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r} & \stackrel{a}{\sim} \mathcal{N}\left[\mathbf{0}, \mathbf{R} V[\widehat{\boldsymbol{\beta}}] \mathbf{R}^{\prime}\right] \quad \text { under } H_{0} \\
\Rightarrow \quad(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r})^{\prime}\left[\mathbf{R} \bigvee[\widehat{\boldsymbol{\beta}}] \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r}) & \sim \chi^{2}(h) \text { under } H_{0}
\end{array}
$$

- The last step converts to chi-square using the result

$$
\mathbf{z} \sim \mathcal{N}[\mathbf{0}, \Omega] \quad \Rightarrow \quad \mathbf{z}^{\prime} \Omega^{-1} \mathbf{z} \sim \chi^{2}(\operatorname{dim}[\Omega])
$$

- To implement this test, replace $\mathrm{V}[\widehat{\boldsymbol{\beta}}]$ by $\widehat{\mathrm{V}}[\widehat{\boldsymbol{\beta}}]$.
- This makes no difference asymptotically.
- The Wald chi-squared statistic is

$$
W=(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r})^{\prime}\left[\mathbf{R} \widehat{\mathrm{V}}[\widehat{\boldsymbol{\beta}}] \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \widehat{\boldsymbol{\beta}}-\mathbf{r}) \stackrel{a}{\sim} \chi^{2}(h) \text { under } H_{0}
$$

- Implementation by two equivalent methods
- Test using p-values: reject H_{0} at level 0.05 if

$$
p=\operatorname{Pr}\left[\chi^{2}(h)>\mathrm{W}\right]<0.05 .
$$

- Test using critical-values: reject H_{0} at level 0.05 if

$$
w>\chi_{.05}^{2}(h)
$$

- The alternative Wald F-test statistic is

$$
\mathrm{F}=\frac{\mathrm{W}}{h} \sim F(h, N-k) \text { under } H_{0}
$$

- Makes no difference asymptotically as $F(h, N) \rightarrow \chi^{2}(h) / h$ as $N \rightarrow \infty$.
- More conservative (less likely to reject H_{0})
- Exact in unlikely special case that $u_{i} \sim \mathcal{N}\left[0, \sigma^{2}\right]$.

Further test details

- Wald test is the commonly-used method to test H_{0} against H_{a}.
- Estimate β without imposing H_{0}.
- Then ask does $\widehat{\beta}$ approximately satisfy H_{0} ?
- The other two test methods used at times are
- Likelihood ratio test: Estimate under both H_{0} \& H_{a} and compare $\ln L$.
- Lagrange multiplier or score test: Estimate under H_{a} only.
- Asymptotically equivalent to Wald under H_{0} and local alternatives
- Choice is mainly one of convenience, though Wald does have the weakness of lack of invariance to reparameterization.
- Also as already noted for Wald test
- asymptotic theory: use Z and $\chi^{2}(q)$
- better finite sample approximation: use $T(N-k)$ and $F(q, N-k)$
- even better still: bootstrap with asymptotic refinement.

7. Simulations: OLS consistency and asymptotic normality

- D.g.p.: $y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i}$ where $x_{i} \sim \chi^{2}(1)$ and $\beta_{1}=1, \beta_{2}=2$. Error: $u_{i} \sim \chi^{2}(1)-1$ is skewed with mean 0 and variance 2 .
. * Small sample: parameters differ from dgp values
. clear all
. quietly set obs 30
. set seed 10101
. quietly generate double $x=r c h i 2(1)$
. quietly generate $y=1+2 * x+\operatorname{rchi2}(1)-1 \quad / /$ demeaned chi^2 error
- regress $y \mathrm{x}$, noheader

y	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interva1]	
x	2.713073	.5743189	4.72	0.000	1.536634	3.889512
_cons	1.150439	.6148461	1.87	0.072	-.1090161	2.409894

- For $N=30: \widehat{\beta}_{2}=2.713$ differs appreciably from $\beta_{2}=2.000$.
- This is due to sampling error as se $\left[\widehat{\beta}_{2}\right]=0.574$.
- How to verify consistency: set N very large.
. * Consistency: Large sample: parameters are very close to dgp values
. clear all
. quietly set obs 100000
. set seed 10101
. quietly generate double $x=r c h i 2(1)$
. quietly generate $y=1+2 * x+r c h i 2(1)-1 \quad / / ~ d e m e a n e d ~ c h i \wedge 2 ~ e r r o r ~$
. regress y x, noheader

y	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
x	1.998675	.0031725	630.00	0.000	1.992457	2.004893
_cons	1.005819	.0054945	183.06	0.000	.9950495	1.016588

- For $N=100,000: \widehat{\beta}_{2}=1.999$ is very close to $\beta_{2}=2.000$.

- How to check asymptotic results: compute $\widehat{\boldsymbol{\beta}}$ many times.

```
* Central limit theorem
. * Write program to obtain betas for one sample of size numobs (= 150)
. program chi2data, rclass
    1. version 10.1
    2. drop _al1
    3. set obs $numobs
    4. generate double }x=rchi2(1
    5. generate y = 1 + 2*x + rchi2(1)-1 // demeaned chi^2 error
    6. regress y x
    7. return scalar b2 =_b[x]
    8. return scalar se2 = _se[x]
    9. return scalar t2 = (_b[x]-2)/_se[x]
    10. return scalar r2 = abs(return(t2))>invttail($numobs-2,.025)
    11. return scalar p2 = 2*ttail($numobs-2,abs(return(t2)))
    12. end
. * Run this program 1,000 times to get 1,000 betas etcetera
. * Results differ from MUS (2008) as MUS did not reset the seed to 10101
. * First define global macro numobs for sample size
. globa1 numobs 150
. set seed 10101
. quiet1y simulate b2f=r(b2) se2f=r(se2) t2f=r(t2) reject2f=r(r2) p2f=r(p2), ///
> reps(1000) saving(chi2datares, replace) nolegend nodots: chi2data
```

- Then look at the distribution of these $\widehat{\boldsymbol{\beta}}^{\prime} s$ and test statistics.
* Summarize the 1,000 sample means . summarize b2f se2f t2 reject2f p2f

Variab1e	Obs	Mean	Std. Dev.	Min	Max
b2f	1000	2.000506	.08427	1.719513	2.40565
se2f	1000	.0839776	.0172588	.0415919	.145264
t2f	1000	.0028714	.9932668	-2.824061	4.556576
reject2f	1000	.046	.2095899	0	1
p2f	1000	.5175818	.2890325	.0000108	.9997772

. mean b2f se2f t2 reject2f p2f
Mean estimation Number of obs $=1000$

	Mean	Std. Err.	[95\% Conf. Interval]	
b2f	2.000506	.0026649	1.995277	2.005735
se2f	.0839776	.0005458	.0829066	.0850486
t2f	.0028714	.0314099	-.0587655	.0645082
reject2f	.046	.0066278	.032994	.059006
p2f	.5175818	.00914	.499646	.5355177

- For $S=1,000$ simulations each with sample size $N=150$.
- $\widehat{\beta}_{2}^{(1)}, \widehat{\beta}_{2}^{(2)}, \ldots ., \widehat{\beta}_{2}^{(1000)}$ has distn. with mean 2.001 close to $\beta_{2}=2.000$
- and standard deviation 0.089 close to $\sqrt{1 / 150}=0.082$
\star using $\mathrm{V}\left[\widehat{\beta}_{2}\right] \simeq\left(\sigma_{u}^{2} / \mathrm{V}\left[x_{i}\right]\right) / N=(2 / 2) / 150=1 / 150$.
- Test $\beta_{2}=2$ using $z=\left(\widehat{\beta}_{2}-\beta_{2}\right) / \mathrm{se}\left[\widehat{\beta}_{2}\right]=\left(\widehat{\beta}_{2}-2.0\right) / \mathrm{se}\left[\widehat{\beta}_{2}\right]$ to test $H_{0}: \beta_{2}=2$.
Histogram and kernel density estimate for $z_{1}, z_{2}, \ldots ., z_{1000}$.

- Not quite standard normal: $N=150$ is still not large enough for CLT.
- How to verify that standard errors are correctly estimated.
- The average of the computed standard errors of $\widehat{\beta}_{2}$ is 0.0839 (see mean of se2f)
- This is close to the simulation estimate of se $\left[\widehat{\beta}_{2}\right]$ of 0.0842 (see Std.Dev. of b2f)
- Aside: Actually for this dgp expect $\sqrt{1 / 150} \simeq 0.082$ using $\left.\mathrm{V}\left[\widehat{\beta}_{2}\right] \simeq\left(\sigma_{u}^{2} / \mathrm{V}\left[x_{i}\right]\right) / N=(2 / 2) / 150=1 / 150\right)$
- How to verify that test has correct size.
- The Wald test of $H_{0}: \beta_{2}=2$ at level 0.05 has actual size 0.046 (see mean of reject2f)
- This is close enough as a 95% simulation interval when $S=1000$ is
$0.05 \pm 1.96 \times \sqrt{0.05 \times 0.95 / 1000}=0.05 \pm 1.96 \times 0.007=(0.046,0.064)$.

8. Stata commands

- Command regress does OLS
- option vce(robust) for heteroskedastic-robust standard errors
- option vce(cluster clid) for cluster-robust standard errors (with cluster on clid)
- For Feasible GLS
- command regress [aweight=] for known or estimated heteroskedasticity
- command sureg for systems of linear equations
- command nlsur for systems of nonlinear equations
- command xtreg, re for panel random effects.
- For hypothesis tests
- command test (and nltest for nonlinear hypotheses)

9. Appendix: OLS matrix notation example

- Example: $N=4$ with (x, y) equal to $(1,1),(2,3),(2,4)$, and $(3,4)$.
- Vector \mathbf{y} and matrix \mathbf{X} are

$$
\begin{gathered}
\underset{(4 \times 1)}{\mathbf{y}}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
4 \\
4
\end{array}\right] \\
\underset{(4 \times 2)}{\mathbf{X}}=\left[\begin{array}{l}
\mathbf{x}_{1}^{\prime} \\
\mathbf{x}_{2}^{\prime} \\
\mathbf{x}_{3}^{\prime} \\
\mathbf{x}_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
x_{11} & x_{21} \\
x_{12} & x_{22} \\
x_{13} & x_{23} \\
x_{14} & x_{24}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 2 \\
1 & 3
\end{array}\right] .
\end{gathered}
$$

and

- Compute $\widehat{\boldsymbol{\beta}}_{\mathrm{OLS}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$:

$$
\left.\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array} 1\right. \\
1
\end{array} 220\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{rr}
4 & 8 \\
8 & 18
\end{array}\right] . .
$$

- OLS estimates:
- intercept $\widehat{\beta}_{1}=0$ and slope coefficient $\widehat{\beta}_{2}=1.5$.
- OLS on intercept and single regressor: $y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i}$.

$$
\begin{aligned}
& \mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{ccc}
1 & \cdots & 1 \\
x_{1} & \cdots & x_{N}
\end{array}\right]\left[\begin{array}{cc}
1 & x_{1} \\
\vdots & \vdots \\
1 & x_{N}
\end{array}\right]=\left[\begin{array}{cc}
N & \sum_{i} x_{i} \\
\sum_{i} x_{i} & \sum_{i} x_{i}^{2}
\end{array}\right] \\
& \Rightarrow\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{1}{N \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}\left[\begin{array}{cc}
\sum_{i} x_{i}^{2} & -\sum_{i} x_{i} \\
-\sum_{i} x_{i} & N
\end{array}\right] \\
& =\frac{1}{\sum_{i} x_{i}^{2}-N \bar{x}^{2}}\left[\begin{array}{cc}
N^{-1} \sum_{i} x_{i}^{2} & -\bar{x} \\
--\bar{x} & 1
\end{array}\right] \\
& -\mathbf{X}^{\prime} \mathbf{y}=\left[\begin{array}{ccc}
1 & \cdots & 1 \\
x_{1} & \cdots & x_{N}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i} y_{i} \\
\sum_{i} x_{i} y_{i}
\end{array}\right]=\left[\begin{array}{c}
N \bar{y} \\
\sum_{i} x_{i} y_{i}
\end{array}\right] \\
& \quad\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\frac{1}{\sum_{i} x_{i}^{2}-N \bar{x}^{2}}\left[\begin{array}{c}
\bar{y} \sum_{i} x_{i}^{2}-\bar{x} \sum_{i} x_{i} y_{i} \\
-\bar{x} N \bar{y}+\sum_{i} x_{i} y_{i}
\end{array}\right] \\
& =\frac{1}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\left[\begin{array}{c}
\bar{y}-\widehat{\beta}_{2} \bar{x} \\
\bar{y} \sum_{i} x_{i}^{2}-\bar{x} \sum_{i} x_{i} y_{i} \\
\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{array}\right]=\left[\begin{array}{c}
\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{x}\right) \\
\sum_{i}\left(x_{i}-\bar{x}\right)^{2}
\end{array}\right]
\end{aligned}
$$

- So $\widehat{\beta}_{1}=\bar{y}-\widehat{\beta}_{2} \bar{x}$ and $\widehat{\beta}_{2}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$ as in introductory course.

