

Bootstrap methods

A. Colin Cameron
U.C.-Davis

July, 2022

1. Introduction

- The bootstrap is a method for obtaining properties of statistics through resampling.
- There are many ways to construct bootstrap resamples.
- There are many uses of the bootstrap.
- The most common use of the bootstrap in econometrics is
 - ▶ to obtain standard errors of estimates.
- Occasionally use a more advanced bootstrap to potentially enable better finite sample inference
 - ▶ confidence intervals with better coverage
 - ▶ tests with true size closer to nominal size.

Summary

- ① Introduction
- ② Bootstrap (without asymptotic refinement)
- ③ Bootstrap in General
- ④ Bootstrap with asymptotic refinement
- ⑤ Wild Bootstrap
- ⑥ Stata commands

2. Bootstrap pairs estimate of standard error

- The most common bootstrap is the pairs bootstrap
 - ▶ views the sample as the $\{(y_1, \mathbf{x}_1), \dots, (y_N, \mathbf{x}_N)\}$ as the population
 - ▶ assumes that (y_i, \mathbf{x}_i) are i.i.d.
 - ▶ obtains B random samples from this population by resampling with replacement
 - ★ e.g. in bootstrap resample 1 observation may appear once, observation 2 not at all, observation 2 times,
- This yields B estimates $\hat{\theta}_1, \dots, \hat{\theta}_B$.
 - ▶ so estimate $\text{Var}[\hat{\theta}]$ using the usual variance of the B estimates.
- For scalar θ we have

$$\hat{V}[\hat{\theta}] = \frac{1}{B-1} \sum_{b=1}^B (\hat{\theta}_b - \bar{\hat{\theta}})^2, \quad \text{where } \bar{\hat{\theta}} = \frac{1}{B} \sum_{b=1}^B \hat{\theta}_b.$$

- ▶ Square root of this is called a bootstrap standard error.

Regression application

- Data: Doctor visits (count) and chronic conditions. $N = 50$.

- * Summarize and Poisson with robust se's
- summarize

Variable	obs	Mean	Std. Dev.	Min	Max
docvis	50	4.12	7.82106	0	43
age	50	4.162	1.160382	2.6	6.2
chronic	50	.28	.4535574	0	1

. poisson docvis chronic, nolog vce(robust)

Poisson regression

Number of obs	=	50
Wald chi2(1)	=	3.64
Prob > chi2	=	0.0565
Pseudo R2	=	0.0917

Log pseudolikelihood = -238.75384

docvis	Robust					
	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]	
chronic	.9833014	.5154894	1.91	0.056	-.0270391	1.993642
_cons	1.031602	.3446734	2.99	0.003	.3560541	1.707149

Bootstrap standard errors after Poisson regression

- Use option `vce(boot)`

- ▶ Set the seed!
- ▶ Set the number of bootstrap repetitions!

```
. * Compute bootstrap standard errors using option vce(bootstrap) to
. poisson docvis chronic, vce(boot, reps(400) seed(10101) nodots)
```

```
Poisson regression
Number of obs      =      50
Replications      =      400
Wald chi2(1)       =      3.33
Prob > chi2        =     0.0679
Pseudo R2          =     0.0917
Log likelihood = -238.75384
```

	Observed Coef.	Bootstrap Std. Err.	z	P> z	Normal-based [95% Conf. Interval]	
docvis	.9833014	.5386575	1.83	0.068	-.0724478	2.039051
chronic _cons	1.031602	.3536507	2.92	0.004	.338459	1.724744

- Bootstrap $se = 0.539$ versus White robust $se = 0.515$.

Results vary with seed and number of reps

```

. * Bootstrap standard errors for different reps and seeds
. quietly poisson docvis chronic, vce(boot, reps(50) seed(10101))

. estimates store boot50

. quietly poisson docvis chronic, vce(boot, reps(50) seed(20202))

. estimates store boot50diff

. quietly poisson docvis chronic, vce(boot, reps(2000) seed(10101))

. estimates store boot2000

. quietly poisson docvis chronic, vce(robust)

. estimates store robust

. estimates table boot50 boot50diff boot2000 robust, b(%8.5f) se(%8.5f)

```

variable	boot50	boot50~f	boot2000	robust
chronic	0.98330	0.98330	0.98330	0.98330
	0.45444	0.59923	0.54178	0.51549
_cons	1.03160	1.03160	1.03160	1.03160
	0.37131	0.37533	0.36414	0.34467

Legend: b/se

Leading uses of bootstrap standard errors

- Sequential two-step m-estimator
 - ▶ First step gives $\hat{\alpha}$ used to create a regressor $z(\hat{\alpha})$
 - ▶ Second step regresses y on x and $z(\hat{\alpha})$
 - ▶ Do a paired bootstrap resampling (x, y, z)
 - ▶ e.g. Heckman two-step estimator.
- Hausman test where under $H_0 : \hat{\theta} - \tilde{\theta} \xrightarrow{P} 0$
 - ▶ use bootstrap to compute $V[\hat{\theta} - \tilde{\theta}] = \text{Var}[\hat{\theta}] + V[\tilde{\theta}] - 2\text{Cov}[\hat{\theta}, \tilde{\theta}]$
 - ▶ e.g. to test OLS versus IV
 - ★ the simpler form of Hausman test assumes i.i.d. errors.
- Functions of other estimates e.g. $\hat{\theta} = \hat{\alpha} \times \hat{\beta}$
 - ▶ replaces delta method
- Clustered data with many small clusters, such as short panels.
 - ▶
 - ★ Then resample the clusters.
 - ★ But be careful if model includes cluster-specific fixed effects.
- For these in Stata need to use prefix command **bootstrap**:

3. The Bootstrap in General: Bootstrap algorithm

- A general bootstrap algorithm is as follows:
 - ▶ 1. Given data $\mathbf{w}_1, \dots, \mathbf{w}_N$
 - ★ draw a **bootstrap sample** of size N (see below for different ways)
 - ★ denote this new sample $\mathbf{w}_1^*, \dots, \mathbf{w}_N^*$.
 - ▶ 2. Calculate an **appropriate statistic** using the bootstrap sample.
Examples include:
 - ★ (a) estimate $\hat{\theta}^*$ of θ ;
 - ★ (b) standard error $s_{\hat{\theta}^*}$ of estimate $\hat{\theta}^*$
 - ★ (c) t -statistic $t^* = (\hat{\theta}^* - \hat{\theta}) / s_{\hat{\theta}^*}$ centered at $\hat{\theta}$.
 - ▶ 3. Repeat steps 1-2 B independent times.
 - ★ Gives B bootstrap replications of $\hat{\theta}_1^*, \dots, \hat{\theta}_B^*$ or t_1^*, \dots, t_B^* or
 - ▶ 4. Use these B bootstrap replications to obtain a bootstrapped version of the statistic (see below).

Implementation

- Number of bootstraps: B high is best but increases computer time.
 - ▶ CT use 400 for se's and 999 for tests and confidence intervals.
 - ▶ Defaults are often too low. And set the seed!
- Various resampling methods
 - ▶ 1. Paired (or nonparametric or empirical dist. func.) is most common
 - ★ $\mathbf{w}_1^*, \dots, \mathbf{w}_N^*$ obtained by sampling with replacement from $\mathbf{w}_1, \dots, \mathbf{w}_N$.
 - ▶ 2. Parametric bootstrap for fully parametric models.
 - ★ Suppose $y|\mathbf{x} \sim F(\mathbf{x}, \theta_0)$ and generate y_i^* by draws from $F(\mathbf{x}_i, \hat{\theta})$
 - ▶ 3. Residual bootstrap for regression with additive errors
 - ★ Resample fitted residuals $\hat{u}_1, \dots, \hat{u}_N$ to get $(\hat{u}_1^*, \dots, \hat{u}_N^*)$ and form new $(y_1^*, \mathbf{x}_1), \dots, (y_N^*, \mathbf{x}_N)$.
 - ▶ 4. Moving blocks bootstrap
 - ★ for autocorrelated time series data
 - ▶ 5. Wild bootstrap
 - ★ for asymptotic refinement with heteroskedastic or clustered data.

- Need the underlying resampling to be i.i.d.
 - ▶ resample over clusters if data are clustered
 - ★ But be careful if model includes cluster-specific fixed effects.
 - ▶ resample over moving blocks if data are serially correlated.

Bootstrap failure

- The bootstrap always provides estimates even when it makes no sense
 - ▶ e.g. can always get bootstrap standard errors for the mean of a Cauchy sample, even though the mean of the Cauchy does not exist.
- The following are cases where standard bootstraps fail
 - ▶ so need to adjust standard bootstraps.
- GMM (and empirical likelihood) in over-identified models
 - ▶ For overidentified models need to recenter or use empirical likelihood.
- Nonparametric Regression:
 - ▶ Nonparametric density and regression estimators converge at rate less than $\text{root-}N$ and are asymptotically biased.
 - ▶ This complicates inference such as confidence intervals.
- Non-smooth estimators.

Jackknife

- The jackknife uses a leave-one-out resampling scheme.
- The jackknife estimate of the variance of an estimator $\hat{\theta}$ is

$$\hat{V}[\hat{\theta}] = \frac{N-1}{N} \sum_{i=1}^N (\hat{\theta}_{(-i)} - \bar{\hat{\theta}})^2, \quad \text{where } N^{-1} \sum_i \hat{\theta}_{(-i)}.$$

- ▶ where $\hat{\theta}_{(-i)}$ is $\hat{\theta}$ obtained from the sample with observation i omitted.
- The jackknife is a “rough and ready” method for bias reduction in many situations, but not the ideal method in any.
 - ▶ it can be viewed as a linear approximation of the bootstrap (Efron and Tibsharani (1993, p.146)).
 - ▶ it requires less computation than the bootstrap in small samples, as then $N < B$ is likely
 - ▶ but it is outperformed by the bootstrap as $B \rightarrow \infty$.
- E.g. `poisson docvis chronic, vce(jackknife)`

4. Bootstrap Confidence Intervals (no refinement)

- **“Normal-based”** confidence intervals

- ▶ 95% CI is $\hat{\theta} \pm 1.96 \times se_{boot}(\hat{\theta})$
- ▶ asymptotically equivalent to $\hat{\theta} \pm 1.96 \times se(\hat{\theta})$
- ▶ what Stata `vce(boot)` gives.

- **Percentile bootstrap** confidence intervals

- ▶ 95% CI is $(\hat{\theta}_{0.025}^*, \hat{\theta}_{0.975}^*)$
- ▶ from the 2.5 to 97.5 percentiles of the bootstrap $\hat{\theta}_b$, $b = 1, \dots, B$
- ▶ asymptotically equivalent to $\hat{\theta} \pm 1.96 \times se(\hat{\theta})$.

- Validity of bootstrap confidence intervals and tests requires convergence of the bootstrap distribution.
- Validity of bootstrap standard errors requires stronger uniform integrability conditions, because convergence in distribution does not imply convergence in moments.
- So percentile method requires weaker assumptions than the “normal-based” method.

Bootstrap Wald Test (no refinement)

- Consider test of $H_0 : \theta = \theta_0$ against $H_0 : \theta \neq \theta_0$ at level α .
- **“Normal-based”** Wald test
 - ▶ $t = (\hat{\theta} - \theta_0) / se(\hat{\theta})$
 - ▶ $p = \Pr[|t| > z_{1-\alpha/2}] = 2 \times (1 - \Phi(|t|))$
 - ▶ what Stata `vce(boot)` gives.
- **Percentile bootstrap** symmetric two-sided Wald test
 - ▶ $p = \frac{1}{B} \sum_{b=1}^B \mathbf{1}\{|\hat{\theta}_b^* - \hat{\theta}| > |\hat{\theta} - \theta_0|\}$
 - ▶ reject at level α if $p < \alpha$.

5. Bootstrap with asymptotic refinement

- The simplest bootstraps are no better than usual asymptotic theory
 - ▶ advantage is easy to implement, e.g. standard errors.
- More complicated bootstraps provide asymptotic refinement
 - ▶ this may provide a better finite-sample approximation.
- Several methods have for asymptotic refinement have been proposed
 - ▶ econometricians use the percentile-t method,

Asymptotic refinement (continued)

- Let T denote the Wald test t -ratio.
- Most conventional asymptotic tests
 - α = nominal size for a test, e.g. $\alpha = 0.05$.
 - actual size = $\alpha + O(N^{-1/2})$ for T or $\alpha + O(N^{-1})$ for $|T|$
 - e.g. see Hansen (2022), *Probability and Statistics*, p.186.
- Most tests with asymptotic refinement
 - actual size = $\alpha + O(N^{-1})$ for T or $\alpha + O(N^{-1/2})$ for $|T|$.
- Asymptotic bias of size $O(N^{-1}) < O(N^{-1/2})$ is smaller asymptotically.
 - but need simulation studies to confirm finite sample gains.
 - ★ e.g. if $N = 100$ then $100/N = O(N^{-1}) > 5/\sqrt{N} = O(N^{-1/2})$.

Asymptotically pivotal statistic and studentized t-statistic

- Econometricians rarely use asymptotic refinement.
- Asymptotic refinement bootstraps an asymptotically pivotal statistic
 - ▶ this means limit distribution does not depend on unknown parameters.
- An estimator $\hat{\theta} - \theta_0 \xrightarrow{a} \mathcal{N}[0, \sigma_{\hat{\theta}}^2]$ is not asymptotically pivotal
 - ▶ since $\sigma_{\hat{\theta}}^2$ is an unknown parameter.
- But the studentized t -statistic is asymptotically pivotal
 - ▶ since $t = (\hat{\theta} - \theta_0) / s_{\hat{\theta}} \xrightarrow{a} \mathcal{N}[0, 1]$ has no unknown parameters.
- So bootstrap Wald test statistic to get tests and confidence intervals with asymptotic refinement.
- Formally this is an empirical way of implementing an Edgeworth expansion
 - ▶ a higher order expansion than the usual one used for asymptotic theory
 - ▶ analogous to going out extra terms in a Taylor series expansion.

Edgeworth Expansion

- Consider $Z_N = \sum_i X_i / \sqrt{N}$ where X_i are i.i.d. $[0, 1]$.
- The usual CLT leads to $Z_N \xrightarrow{d} N(0, 1)$. More precisely Z_N has c.d.f.

$$G_N(z) = \Pr[Z_N \leq z] = \Phi(z) + O(N^{-1/2}),$$

- ▶ where $\Phi(\cdot)$ is the standard normal c.d.f.
- The CLT uses an approximation of $E[e^{isZ_N}]$, the **characteristic function** of Z_N , where $i = \sqrt{-1}$.
- A better approximation expands $E[e^{isZ_N}]$ in powers of $N^{-1/2}$.
- The usual **Edgeworth Expansion** adds two additional terms, so

$$G_N(z) = \Pr[Z_N \leq z] = \Phi(z) + \frac{g_1(z)}{\sqrt{N}} + \frac{g_2(z)}{N} + O(N^{-3/2}),$$

- ▶ where $g_1(z) = -(z^2 - 1)\phi(z)\kappa_3/6$
- ▶ $\phi(\cdot)$ is the standard normal density
- ▶ κ_3 is the third cumulant of Z_N
 - ★ the 3rd coefficient in the expansion $\ln(E[e^{isZ_N}]) = \sum_{r=0}^{\infty} \kappa_r (is)^r / r!$
- ▶ $g_2(\cdot)$ is given in Rothenberg (1984, p.895) or Amemiya (1985, p.93).

Bootstrap and Edgeworth Expansion

- We have

$$G_N(z) = \Pr[Z_N \leq z] = \Phi(z) + \frac{g_1(z)}{\sqrt{N}} + \frac{g_2(z)}{N} + O(N^{-3/2}),$$

- Using this directly is problematic as $g_1(z)$ depends on κ_3 .
- Instead, the bootstrap for an asymptotically pivotal statistic can be shown to eliminate the term $g_1(z)/\sqrt{N}$
 - ▶ see P. Hall (1982), *The Bootstrap and Edgeworth Expansions*, Springer-Verlag.
 - ▶ or Cameron and Trivedi (2005), *Microeconometrics Methods and Applications*, pp.371-372.
 - ▶ or Hansen (2022), *Econometrics*, p.285.
- This leads to actual size = $\alpha + O(N^{-1})$.

Percentile-t pairs bootstrap

- Bootstrap $t = (\hat{\theta} - \theta_0) / s_{\hat{\theta}} \stackrel{a}{\sim} \mathcal{N}[0, 1]$
 - by recomputing $t_b^* = (\hat{\theta}_b - \hat{\theta}) / s_{\hat{\theta}_b}$ where $\hat{\theta}$ = original sample estimate
 - the original sample is now the population and the population $\theta = \hat{\theta}$.

```

. * Percentile-t for a single coefficient: Bootstrap the t statistic
. use bootdata.dta, clear

. quietly poisson docvis chronic, vce(robust)

. local theta = _b[chronic]

. local setheta = _se[chronic]

. bootstrap tstar=(_b[chronic]-`theta')/_se[chronic]), seed(10101)      ///
> reps(999) nodots saving(percentilet, replace): poisson docvis chronic, ///
> vce(robust)
> (note: file percentilet.dta not found)

```

Bootstrap results

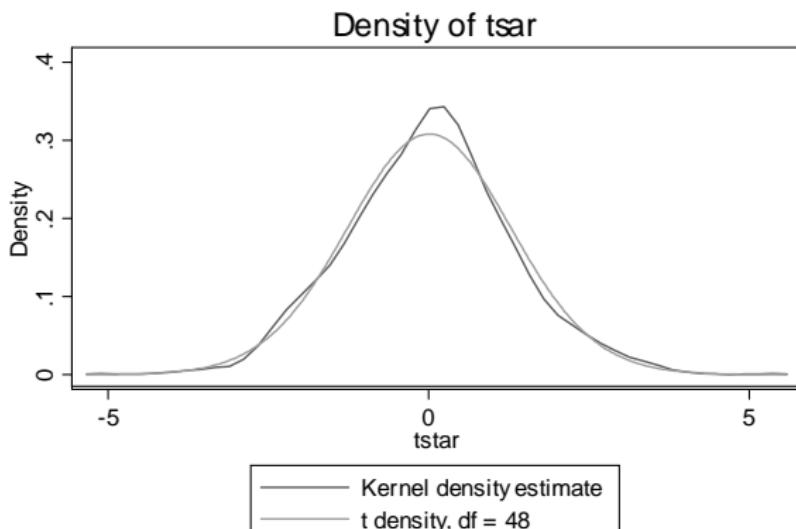
	Number of obs	=	50
	Replications	=	999

command: poisson docvis chronic, vce(robust)
 tstar: (_b[chronic]-.9833014421442415)/_se[chronic]

	Observed Coef.	Bootstrap Std. Err.	z	P> z	Normal-based [95% Conf. Interval]	
tstar	0	1.288018	0.00	1.000	-2.52447	2.52447

Percentile-t pairs bootstrap (continued)

- The 999 values of t_{star} ($= t_b^* = (\hat{\theta}_b - \hat{\theta}) / s_{\hat{\theta}_b}$) trace the bootstrap estimated density of the t-statistic .
- The plot is of the kernel density estimate and $T(48)$



Percentile-t Wald test

- Let t be the original full sample test statistic.
- For an **equal-tailed test**
 - ▶ p -value = the proportion of times that $t < t_b^*$ or $t > t_b^*$, $b = 1, \dots, B$.
- For a **symmetric two-sided test**
 - ▶ p -value = the proportion of times that $|t_b^*| > |t|$, $t = 1, \dots, B$,
 - ▶ where t is the original full sample test statistic.

Percentile-t Confidence Interval

- Let $\hat{\theta}$ and $se(\hat{\theta})$ be from the original full sample.
- Let $t_{0.025}^*$ and $t_{0.975}^*$ denote the 2.5 and 97.5 percentiles of t_b^* , $b = 1, \dots, B$.
- For a **symmetric 95% confidence interval** we use
 - ▶ $\hat{\theta} \pm |t^*|_{0.95} \times se(\hat{\theta})$
- For an **equal-tailed 95% confidence interval** we use
 - ▶ $[\hat{\theta} - t_{0.975}^* \times se(\hat{\theta}), \hat{\theta} - t_{0.025}^* \times se(\hat{\theta})]$.
 - ▶ For explanation see Efron and Tibsharani (1993, 173-174) or Hansen (2022, 283-284).

Percentile-t Wald test

- Let t be $se(\hat{\theta})$ be from the original full sample.
- For an equal-tailed 95% confidence interval test at 5% the critical t -values are the 2.5 and 97.5 percentiles of t^* .
- For a symmetric two-sided test the p -value is the proportion of times that $|t^*| > |t|$

BC and BCa confidence interval

- (N) is observed coefficient $\pm 1.96 \times$ bootstrap s.e.
- (P) is 2.5 to 97.5 percentile of the bootstrap estimates $\hat{\beta}_1^*, \dots, \hat{\beta}_B^*$.
- (BC bias-corrected) and (BCa) also have asymptotic refinement
 - ▶ not used in practice - instead use percentile-t method.

. * Bootstrap confidence intervals: normal-based, percentile, BC, and BCa
 . quietly poisson docvis chronic, vce(boot, reps(999) seed(10101) bca)

. estat bootstrap, all

Poisson regression		Number of obs	=	50
		Replications	=	999

docvis	Observed Coef.	Bias	Bootstrap Std. Err.	[95% Conf. Interval]	
chronic	.98330144	.0132307	.54137854	-.077781	2.044384 (N)
				-.0139438	2.061742 (P)
				-.079079	2.019438 (BC)
				.0295944	2.08349 (BCa)
_cons	1.0316016	-.0769223	.35685342	.3321817	1.731021 (N)
				.186586	1.582409 (P)
				.268264	1.641356 (BC)
				.386773	1.771351 (BCa)

(N) normal confidence interval

(P) percentile confidence interval

(BC) bias-corrected confidence interval

(BCa) bias-corrected and accelerated confidence interval

6. Percentile-t confidence intervals with Wild bootstrap

- The wild bootstrap was proposed for some non-i.i.d. models
 - ▶ C.F.J. Wu (1986), "Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis," *Ann. Statist.* 14(4), 1261-1295.
 - ▶ Regina Y. Liu (1988), "Bootstrap Procedures under some Non-I.I.D. Models," *Ann. Statist.*, 16(4), 1696 - 1708.
- Initially used in econometrics for OLS regression with heteroskedastic errors
 - ▶ but few applications as usually N is reasonably large.
- Then used for clustered data
 - ▶ A. Colin Cameron, Douglas Miller and Jonah Gelbach (2008), "Bootstrap-Based Improvements for Inference with Clustered Errors," *R.E.Stat.*, 90, 414-427
 - ▶ great need as asymptotics work poorly with few clusters
 - ▶ and does better than percentile-t with cluster pairs bootstrap.

Wild bootstrap for OLS and independent observations

- The wild bootstrap for linear regression
 - ▶ conditions on the sample value of the \mathbf{x} 's.
 - ▶ only y is resampled. \mathbf{x} is not resampled.
- In original sample do restricted OLS of y_i on \mathbf{x}_i where impose $H_0 : \beta = 0$ on the coefficient of interest
 - ▶ get residual $\hat{u}_i = y_i - \mathbf{x}'_i \hat{\beta}$.
- In the b^{th} resample
 - ▶ set $y_{i,b} = \mathbf{x}'_i \hat{\beta} + \hat{u}_i^*$
 where $\hat{u}_i^* = a_g \hat{u}_i$ and $\begin{cases} a_g = 1 & \text{with probability 0.5} \\ a_g = -1 & \text{with probability 0.5} \end{cases}$
 - ▶ do OLS regression using sample $(y_{1,b}, \mathbf{x}_1), \dots, (y_{N,b}, \mathbf{x}_N)$ gives $t_b^* = (\hat{\beta}_b - \hat{\beta}) / s_{\hat{\beta}_b}$.
 - ▶ seems "wild" as $y_{i,b}$ can only take one of two values
 - ▶ but with N observations possibly as many as 2^N distinct samples.
- Gives an asymptotic refinement for OLS with heteroskedastic errors.

Wild bootstrap (continued)

- Not used much in practice for independent observations.
 - ▶ usually if N is low then estimates are statistically insignificant.
- But with clustered data and the number of clusters G is small
 - ▶ estimates may be highly statistically significant if many observations per cluster
 - ▶ yet tests have poor size
- In theory one could instead use a simpler pairs cluster bootstrap
 - ▶ where resample clusters $(\mathbf{y}_g, \mathbf{X}_g)$ with replacement
 - ▶ but this worked poorly in Monte Carlos.
- Instead do a Wild bootstrap where resample $\hat{\mathbf{u}}_g$ over clusters.
 - ▶ i.e. $\mathbf{y}_{g,b} = \mathbf{X}_g \hat{\beta} + \hat{\mathbf{u}}_g$ or $\mathbf{y}_{g,b} = \mathbf{X}_g \hat{\beta} - \hat{\mathbf{u}}_g$ in cluster g and use the percentile-t method as before
 - ▶ important $\hat{\mathbf{u}}_g$ imposes H_0 .
 - ▶ Cameron, Gelbach and Miller (2008) proposed this
 - ▶ Webb (2017) proposed six-point resampling when $G < 10$.

Wild Score bootstraps

- Instead do a Wild bootstrap where resample over clusters.
 - ▶ Wild cluster bootstrap with weights a_g (e.g. $a_g = -1$ or 1)
 - ▶ $\hat{\beta}^* = \hat{\beta} + (\mathbf{X}'\mathbf{X})^{-1} \sum_g \mathbf{X}_g (a_g \hat{\mathbf{u}}_g)$ resamples **residuals** $\hat{\mathbf{u}}_g$
 - ▶ $= \hat{\beta} + (\mathbf{X}'\mathbf{X})^{-1} \sum_g (a_g \mathbf{X}_g \hat{\mathbf{u}}_g)$ resamples **score** $\mathbf{X}_g \hat{\mathbf{u}}_g$
- The latter generalizes to score of other estimators such as ML
 - ▶ Score bootstrap of Kline and Santos (2012).
- The Stata `boottest` command due to Roodman, MacKinnon, Nielsen and Webb (2018) implements
 - ▶ regular Wild and score Wild bootstraps
 - ▶ for independent and clustered data
 - ▶ for OLS, IV and nonlinear regression.

Wild score bootstrap example

- For the current Poisson example with independent observations
 - Default standard errors are too small giving $z = 3.6714$
 - But the method adjusts for this and yields $p = 0.0951$.

```
. * wild score bootstrap for Poisson
. quietly poisson docvis chronic
```

```
. boottest chronic, seed(10101)
```

Re-running regression with null imposed.

```
Iteration 0:  log likelihood = -276.04852
Iteration 1:  log likelihood = -263.56766
Iteration 2:  log likelihood = -262.8458
Iteration 3:  log likelihood = -262.84466
Iteration 4:  log likelihood = -262.84466
```

```
Poisson regression
Number of obs      =      50
Wald chi2(0)      =      .
Prob > chi2       =      .
Log likelihood = -262.84466
```

```
( 1) [docvis]chronic = 0
```

docvis	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
chronic	0 (omitted)				
_cons	1.415853	.0696733	20.32	0.000	1.279296 1.55241

Score bootstrap, null imposed, 999 replications, wald test, Rademacher weights:
chronic

$z = 3.6714$
 $Prob > |z| = 0.0951$

Wild score bootstrap example (continued)

- Repeat previous but use heteroskedastic-robust standard errors
 - ▶ heteroskedastic-robust standard errors yield smaller $z = 1.5280$
 - ▶ But the same $p = 0.0951$.

```
. * Note that with robust se's gives same p-value though different t-stat
. quietly poisson docvis chronic, vce(robust)
```

```
. boottest chronic, seed(10101)
```

Re-running regression with null imposed.

```
Iteration 0:  log likelihood = -276.04852
Iteration 1:  log likelihood = -263.56766
Iteration 2:  log likelihood = -262.8458
Iteration 3:  log likelihood = -262.84466
Iteration 4:  log likelihood = -262.84466
```

```
Poisson regression
Number of obs      =      50
Wald chi2(0)      =      .
Prob > chi2        =      .
Log likelihood = -262.84466
```

```
( 1) [docvis]chronic = 0
```

docvis	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
chronic	0 (omitted)				
_cons	1.415853	.0696733	20.32	0.000	1.279296 1.55241

Score bootstrap, null imposed, 999 replications, wald test, Rademacher weights:
chronic

$z = 1.5280$
 $Prob>|z| = 0.0951$

Wild score confidence intervals

- A better way that imposes a range of H_0' s
 - ▶ similar to procedure for AR confidence intervals with weak instruments.
- A confidence interval, or more generally a confidence region, can be obtained by inverting a test.
- Specifically, to obtain a 95% confidence set for a parameter θ we perform a two-sided test of $\theta = \theta_0$ for a range of values of θ_0 .
- The confidence set is then those values of θ_0 for which the test has $p > 0.05$, since the 95% confidence interval includes those values that we do not reject at level 0.05.

7. Stata commands

- Most commands have option `vce(bootstrap)` and `vce(jackknife)`
- For more complicated bootstraps write a program and use `bootstrap`:
- For replicability set the seed!!
- For published work the more bootstraps the better as the seed becomes less important
- For small clusters use user-written `boottest` command.

8. References

- A. Colin Cameron and Pravin K. Trivedi (2005), *Microeconometrics: Methods and Applications* (MMA), chapter 11, Cambridge Univ. Press.
- A. Colin Cameron and Pravin K. Trivedi (2022), *Microeconometrics using Stata* (MUS), Second edition, Volume 1, chapter 12, Stata Press.
- Bruce Hansen (2022), *Econometrics*, chapter 10, Princeton University Press.
- A. Colin Cameron, Jonah Gelbach and Douglas L. Miller (2008), “Bootstrap-Based Improvements for Inference with Clustered Errors”, *Review of Economics and Statistics*, August 2008, Vol. 90, 414-427.
- Patrick Kline and Andres Santos (2012), “A Score Based Approach to Wild Bootstrap Inference”, *Journal of Econometric Methods*, 23-41.
- Davis Roodman, James MacKinnon, Morten Nielsen and Matthew Webb (2019), “Fast and Wild Bootstrap Inference in Stata using boottest,” *The Stata Journal* [<https://ideas.repec.org/p/qed/wpaper/1406.html#download>]