
Bootstrap methods

A. Colin Cameron
U.C.-Davis

July, 2022

A. Colin Cameron U.C.-Davis () Bootstrap methods July, 2022 1 / 35



1. Introduction

1. Introduction

The bootstrap is a method for obtaining properties of statistics
through resampling.

There are many ways to construct bootstrap resamples.

There are many uses of the bootstrap.

The most common use of the bootstrap in econometrics is
I to obtain standard errors of estimates.

Occasionally use a more advanced bootstrap to potentially enable
better �nite sample inference

I con�dence intervals with better coverage
I tests with true size closer to nominal size.
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1. Introduction

Summary

1 Introduction
2 Bootstrap (without asymptotic re�nement)
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A. Colin Cameron U.C.-Davis () Bootstrap methods July, 2022 3 / 35



2. Bootstrap Estimate of standard error

2. Bootstrap pairs estimate of standard error

The most common bootstrap is the pairs bootstrap
I views the sample as the f(y1, x1), ..., (yN , xN )g as the population
I assumes that (yi , xi ) are i.i.d.
I obtains B random samples from this population by resampling with
replacement

F e.g. in bootstrap resample 1 observation may appear once, observation
2 not at all, observation 2 times, ....

This yields B estimates bθ1, ...,bθB .
I so estimate Var[bθ] using the usual variance of the B estimates.

For scalar θ we have

bV[bθ] = 1
B�1 ∑B

b=1(
bθb � bθ)2, where bθ = 1

B ∑B
b=1

bθb .
I Square root of this is called a bootstrap standard error.
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2. Bootstrap Regression application

Regression application

Data: Doctor visits (count) and chronic conditions. N = 50.

       _cons    1.031602   .3446734     2.99   0.003     .3560541    1.707149
     chronic    .9833014   .5154894     1.91   0.056    ­.0270391    1.993642

      docvis       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
               Robust

Log pseudolikelihood = ­238.75384               Pseudo R2         =     0.0917
                                                Prob > chi2       =     0.0565
                                                Wald chi2(1)      =       3.64
Poisson regression                              Number of obs     =         50

. poisson docvis chronic, nolog vce(robust)

     chronic          50         .28    .4535574          0          1
         age          50       4.162    1.160382        2.6        6.2
      docvis          50        4.12     7.82106          0         43

    Variable         Obs        Mean    Std. Dev.       Min        Max

. summarize

. * Summmarize and Poisson with robust se's
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2. Bootstrap Standard error estimation

Bootstrap standard errors after Poisson regression

Use option vce(boot)
I Set the seed!
I Set the number of bootstrap repetitions!

       _cons    1.031602   .3536507     2.92   0.004      .338459    1.724744
     chronic    .9833014   .5386575     1.83   0.068    ­.0724478    2.039051

      docvis       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
   Observed   Bootstrap                         Normal­based

Log likelihood = ­238.75384                     Pseudo R2         =     0.0917
                                                Prob > chi2       =     0.0679
                                                Wald chi2(1)      =       3.33
                                                Replications      =        400
Poisson regression                              Number of obs     =         50

. poisson docvis chronic, vce(boot, reps(400) seed(10101) nodots)

. * Compute bootstrap standard errors using option vce(bootstrap) to

Bootstrap se = 0.539 versus White robust se = 0.515.
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2. Bootstrap Standard error estimation

Results vary with seed and number of reps

                                              legend: b/se

  0.37131   0.37533   0.36414   0.34467
       _cons   1.03160   1.03160   1.03160   1.03160

  0.45444   0.59923   0.54178   0.51549
     chronic   0.98330   0.98330   0.98330   0.98330

    Variable   boot50    boot50~f   boot2000    robust

. estimates table boot50 boot50diff boot2000 robust, b(%8.5f) se(%8.5f)

. estimates store robust

. quietly poisson docvis chronic, vce(robust)

. estimates store boot2000

. quietly poisson docvis chronic, vce(boot, reps(2000) seed(10101))

. estimates store boot50diff

. quietly poisson docvis chronic, vce(boot, reps(50) seed(20202))

. estimates store boot50

. quietly poisson docvis chronic, vce(boot, reps(50) seed(10101))

. * Bootstrap standard errors for different reps and seeds

A. Colin Cameron U.C.-Davis () Bootstrap methods July, 2022 7 / 35



2. Bootstrap Leading uses of bootstrap standard errors

Leading uses of bootstrap standard errors
Sequential two-step m-estimator

I First step gives bα used to create a regressor z(bα)
I Second step regresses y on x and z(bα)
I Do a paired bootstrap resampling (x , y , z)
I e.g. Heckman two-step estimator.

Hausman test where under H0 : bθ� eθ p! 0
I use bootstrap to compute V[bθ� eθ] =Var[bθ]+V[eθ]� 2Cov[bθ,eθ]
I e.g. to test OLS versus IV

F the simpler form of Hausman test assumes i.i.d. errors.

Functions of other estimates e.g. bθ = bα� bβ
I replaces delta method

Clustered data with many small clusters, such as short panels.
I

F Then resample the clusters.
F But be careful if model includes cluster-speci�c �xed e¤ects.

For these in Stata need to use pre�x command bootstrap:
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3. Bootstrap in General Bootstrap algorithm

3. The Bootstrap in General: Bootstrap algorithm

A general bootstrap algorithm is as follows:
I 1. Given data w1, ...,wN

F draw a bootstrap sample of size N (see below for di¤erent ways)
F denote this new sample w�1 , ...,w

�
N .

I 2. Calculate an appropriate statistic using the bootstrap sample.
Examples include:

F (a) estimate bθ� of θ;
F (b) standard error sbθ� of estimate bθ�
F (c) t�statistic t� = (bθ� � bθ)/sbθ� centered at bθ.

I 3. Repeat steps 1-2 B independent times.

F Gives B bootstrap replications of bθ�1 , ...,bθ�B or t�1 , . . . , t�B or .....

I 4. Use these B bootstrap replications to obtain a bootstrapped version
of the statistic (see below).
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3. Bootstrap in General Implementation

Implementation
Number of bootstraps: B high is best but increases computer time.

I CT use 400 for se�s and 999 for tests and con�dence intervals.
I Defaults are often too low. And set the seed!

Various resampling methods
I 1. Paired (or nonparametric or empirical dist. func.) is most common

F w�1 , ...,w
�
N obtained by sampling with replacement from w1, ...,wN .

I 2. Parametric bootstrap for fully parametric models.
F Suppose y jx � F (x, θ0) and generate y �i by draws from F (xi ,bθ)

I 3. Residual bootstrap for regression with additive errors
F Resample �tted residuals bu1, ..., buN to get (bu�1 , ..., bu�N ) and form new
(y �1 , x1), ..., (y

�
N , xN ).

I 4. Moving blocks bootstrap
F for autocorrelated time series data

I 5. Wild bootstrap
F for asymptotic re�nement with heteroskedastic or clustered data.
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3. Bootstrap in General Implementation

Need the underlying resampling to be i.i.d.
I resample over clusters if data are clustered

F But be careful if model includes cluster-speci�c �xed e¤ects.

I resample over moving blocks if data are serially correlated.
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3. Bootstrap in General Bootstraps can fail

Bootstrap failure

The bootstrap always provides estimates even when it makes no sense
I e.g. can always get bootstrap standard errors for the mean of a Cauchy
sample, even though the mean of the Cauchy does not exist.

The following are cases where standard bootstraps fail
I so need to adjust standard bootstraps.

GMM (and empirical likelihood) in over-identi�ed models
I For overidenti�ed models need to recenter or use empirical likelihood.

Nonparametric Regression:
I Nonparametric density and regression estimators converge at rate less
than root-N and are asymptotically biased.

I This complicates inference such as con�dence intervals.

Non-smooth estimators.

A. Colin Cameron U.C.-Davis () Bootstrap methods July, 2022 12 / 35



3. Bootstrap in General Jackknife

Jackknife

The jackknife uses a leave-one-out resampling scheme.

The jackknife estimate of the variance of an estimator bθ is
bV[bθ] = N�1

N ∑N
i=1(

bθ(�i ) � bθ)2, where N�1 ∑i
bθ(�i ).

I where bθ(�i ) is bθ obtained from the sample with observation i omitted.

The jackknife is a �rough and ready�method for bias reduction in
many situations, but not the ideal method in any.

I it can be viewed as a linear approximation of the bootstrap (Efron and
Tibsharani (1993, p.146)).

I it requires less computation than the bootstrap in small samples, as
then N < B is likely

I but it is outperformed by the bootstrap as B ! ∞.

E.g. poisson docvis chronic, vce(jackknife)
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4. Bootstrap inference without asymptotic re�nement

4. Bootstrap Con�dence Intervals (no re�nement)
�Normal-based� con�dence intervals

I 95% CI is bθ � 1.96� seboot (bθ)
I asymptotically equivalent to bθ � 1.96� se(bθ)
I what Stata vce(boot) gives.

Percentile bootstrap con�dence intervals
I 95% CI is (bθ�0.025, bθ�0.975)
I from the 2.5 to 97.5 percentiles of the bootstrap bθb , b = 1, ...,B
I asymptotically equivalent to bθ � 1.96� se(bθ).

Validity of bootstrap con�dence intervals and tests requires
convergence of the bootstrap distribution.
Validity of bootstrap standard errors requires stronger uniform
integrability conditions, because convergence in distribution does not
imply convergence in moments.
So percentile method requires weaker assumptions than the
�normal-based�method.

A. Colin Cameron U.C.-Davis () Bootstrap methods July, 2022 14 / 35



4. Bootstrap inference without asymptotic re�nement

Bootstrap Wald Test (no re�nement)

Consider test of H0 : θ = θ0 against H0 : θ 6= θ0 at level α.

�Normal-based�Wald test
I t = (bθ � θ0)/se(bθ)
I p = Pr[jtj > z1�α/2 ] = 2� (1�Φ(jtj)
I what Stata vce(boot) gives.

Percentile bootstrap symmetric two-sided Wald test

I p = 1
B ∑Bb=1 1fjbθ�b � bθj > jbθ � θjg

I reject at level α if p < α.
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5. Bootstrap with asymptotic re�nement Asymptotic re�nement

5. Bootstrap with asymptotic re�nement

The simplest bootstraps are no better than usual asymptotic theory
I advantage is easy to implement, e.g. standard errors.

More complicated bootstraps provide asymptotic re�nement
I this may provide a better �nite-sample approximation.

Several methods have for asymptotic re�nement have been proposed
I econometricians use the percentile-t method,
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5. Bootstrap with asymptotic re�nement Asymptotic re�nement

Asymptotic re�nement (continued)

Let T denote the Wald test t-ratio.

Most conventional asymptotic tests
I α = nominal size for a test, e.g. α = 0.05.
I actual size= α+O(N�1/2) for T or α+O(N�1) for jT j
I e.g. see Hansen (2022), Probability and Statistics, p.186.

Most tests with asymptotic re�nement
I actual size= α+O(N�1) for T or α+O(N�1/2) for jT j.

Asymptotic bias of size O(N�1) < O(N�1/2) is smaller
asymptotically.

I but need simulation studies to con�rm �nite sample gains.

F e.g. if N = 100 then 100/N = O(N�1) > 5/
p
N = O(N�1/2).
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5. Bootstrap with asymptotic re�nement Asymptotically pivotal statistic and studentized t-statistic

Asymptotically pivotal statistic and studentized t-statistic

Econometricians rarely use asymptotic re�nement.

Asymptotic re�nement bootstraps an asymptotically pivotal statistic
I this means limit distribution does not depend on unknown parameters.

An estimator bθ � θ0
a� N [0, σ2bθ ] is not asymptotically pivotal

I since σ2bθ is an unknown parameter.
But the studentized t�statistic is asymptotically pivotal

I since t = (bθ � θ0)/sbθ a� N [0, 1] has no unknown parameters.

So bootstrap Wald test statistic to get tests and con�dence intervals
with asymptotic re�nement.

Formally this is an empirical way of implementing an Edgeworth
expansion

I a higher order expansion than the usual one used for asymptotic theory
I analogous to going out extra terms in a Taylor series expansion.
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5. Bootstrap with asymptotic re�nement Asymptotically pivotal statistic and studentized t-statistic

Edgeworth Expansion
Consider ZN = ∑i Xi/

p
N where Xi are i.i.d. [0, 1].

The usual CLT leads to ZN
d! N(0, 1). More precisely ZN has c.d.f.

GN (z) = Pr[ZN � z ] = Φ(z) +O(N�1/2),

I where Φ(�) is the standard normal c.d.f.
The CLT uses an approximation of E [e isZN ], the characteristic
function of ZN , , where i =

p
�1.

A better approximation expands E [e isZN ] in powers of N�1/2.
The usual Edgeworth Expansion adds two additional terms, so

GN (z) = Pr[ZN � z ] = Φ(z) + g1(z )p
N
+ g2(z )

N +O(N�3/2),

I where g1(z) = �(z2 � 1)φ(z)κ3/6
I φ(�) is the standard normal density
I κ3 is the third cumulant of ZN

F the 3rd coe¢ cient in the expansion ln(E[e isZN ]) = ∑∞
r=0 κr (is)r/r !

I g2(�) is given in Rothenberg (1984, p.895) or Amemiya (1985, p.93).
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5. Bootstrap with asymptotic re�nement Asymptotically pivotal statistic and studentized t-statistic

Bootstrap and Edgeworth Expansion

We have

GN (z) = Pr[ZN � z ] = Φ(z) + g1(z )p
N
+ g2(z )

N +O(N�3/2),

Using this directly is problematic as g1(z) depends on κ3.

Instead, the bootstrap for an asymptotically pivotal statistic can be
shown to eliminate the term g1(z)/

p
N

I see P. Hall (1982), The Bootstrap and Edgeworth Expansions,
Springer-Verlag.

I or Cameron and Trivedi (2005), Microeconometrics Methods and
Applications, pp.371-372.

I or Hansen (2022), Econometrics, p.285.

This leads to actual size= α+O(N�1).
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5. Bootstrap with asymptotic re�nement Percentile-t pairs bootstrap

Percentile-t pairs bootstrap
Bootstrap t = (bθ � θ0)/sbθ a� N [0, 1]

I by recomputing t�b = (
bθb � bθ)/sbθb where bθ = original sample estimate

F the original sample is now the population and the population θ = bθ.

       tstar           0   1.288018     0.00   1.000     ­2.52447     2.52447

      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
   Observed   Bootstrap                         Normal­based

        tstar: (_b[chronic]­.9833014421442415)/_se[chronic]
      command:  poisson docvis chronic, vce(robust)

                                                Replications      =        999
Bootstrap results                               Number of obs     =         50

(note: file percentilet.dta not found)
>   vce(robust)
>   reps(999) nodots saving(percentilet, replace): poisson docvis chronic, ///
. bootstrap tstar=((_b[chronic]­`theta')/_se[chronic]), seed(10101)        ///

. local setheta = _se[chronic]

. local theta = _b[chronic]

. quietly poisson docvis chronic, vce(robust)

. use bootdata.dta, clear

. * Percentile­t for a single coefficient: Bootstrap the t statistic
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5. Bootstrap with asymptotic re�nement Percentile-t pairs bootstrap

Percentile-t pairs bootstrap (continued)

The 999 values of tstar (= t�b = (bθb � bθ)/sbθb ) trace the bootstrap
estimated density of the t-statistic .

The plot is of the kernel density estimate and T (48)

0
.1

.2
.3

.4
De

ns
ity

­5 0 5
tstar

Kernel density estimate
t density, df = 48

kernel = epanechnikov, bandwidth = 0.2687

Density of tsar
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5. Bootstrap with asymptotic re�nement Percentile-t pairs bootstrap

Percentile-t Wald test

Let t be the original full sample test statistic.

For an equal-tailed test
I p-value = the proportion of times that t < t�b or t > t

�
b , b = 1, ...,B.

For a symmetric two-sided test
I p-value = the proportion of times that jt�b j > jtj, t = 1, ...,B,
I where t is the original full sample test statistic.
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5. Bootstrap with asymptotic re�nement Percentile-t pairs bootstrap

Percentile-t Con�dence Interval

Let bθ and se(bθ) be from the original full sample.

Let t�0.025 and t
�
0.975 denote the 2.5 and 97.5 percentiles of t

�
b ,

b = 1, ...,B.

For a symmetric 95% con�dence interval we use
I bθ � jt�j0.95 � se(bθ)

For an equal-tailed 95% con�dence interval we use
I [bθ � t�0.975 � se(bθ), bθ � t�0.025 � se(bθ)].
I For explanation see Efron and Tibsharani (1993, 173-174) or Hansen
(2022, 283-284).
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5. Bootstrap with asymptotic re�nement Percentile-t pairs bootstrap

Percentile-t Wald test

Let t be se(bθ) be from the original full sample.

For an equal-tailed 95% con�dence interval test at 5% the critical
t-values are the 2.5 and 97.5 percentiles of t�.

For a symmetric two-sided test the p-value is the proportion of times
that jt�j > jtj
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5. Bootstrap with asymptotic re�nement BC and BCa con�dence intervals with Pairs bootstrap

BC and BCa con�dence interval

(N) is observed coe¢ cient � 1.96 � bootstrap s.e.

(P) is 2.5 to 97.5 percentile of the bootstrap estimates bβ�1, ..., bβ�B .
(BC bias-corrected) and (BCa) also have asymptotic re�nement

I not used in practice - instead use percentile-t method.

(BCa)  bias­corrected and accelerated confidence interval
(BC)   bias­corrected confidence interval
(P)    percentile confidence interval
(N)    normal confidence interval

    .386773   1.771351 (BCa)
    .268264   1.641356  (BC)
    .186586   1.582409   (P)

       _cons    1.0316016  ­.0769223   .35685342    .3321817   1.731021   (N)
   .0295944    2.08349 (BCa)
   ­.079079   2.019438  (BC)
  ­.0139438   2.061742   (P)

     chronic    .98330144   .0132307   .54137854    ­.077781   2.044384   (N)

      docvis        Coef.       Bias    Std. Err.  [95% Conf. Interval]
    Observed               Bootstrap

                                                Replications      =        999
Poisson regression                              Number of obs     =         50

. estat bootstrap, all

. quietly poisson docvis chronic, vce(boot, reps(999) seed(10101) bca)

. * Bootstrap confidence intervals: normal­based, percentile, BC, and BCa
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6. Percentile-t con�dence intervals with Wild bootstrap

6. Percentile-t con�dence intervals with Wild bootstrap

The wild bootstrap was proposed for some non-i.i.d. models
I C.F.J. Wu (1986), �Jackknife, Bootstrap and Other Resampling
Methods in Regression Analysis,�Ann. Statist. 14(4), 1261-1295.

I Regina Y. Liu (1988), �Bootstrap Procedures under some Non-I.I.D.
Models,�Ann. Statist., 16(4), 1696 - 1708.

Initially used in econometrics for OLS regression with heteroskedastic
errors

I but few applications as usually N is reasonably large.

Then used for clustered data
I A. Colin Cameron, Douglas Miller and Jonah Gelbach (2008),
�Bootstrap-Based Improvements for Inference with Clustered Errors,�
R.E.Stat, 90, 414-427

I great need as asymptotics work poorly with few clusters
I and does better than percentile-t with cluster pairs bootstrap.
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6. Percentile-t con�dence intervals with Wild bootstrap

Wild bootstrap for OLS and independent observations
The wild bootstrap for linear regression

I conditions on the sample value of the x0s.
I only y is resampled. x is not resampled.

In original sample do restricted OLS of yi on xi where impose
H0 : β = 0 on the coe¢ cient of interest

I get residual bui = yi � x0i bβ.
In the bth resample

I set yi ,b = x0i bβ+ bu�i
where bu�i = agbui and � ag = 1 with probability 0.5

ag = �1 with probability 0.5
I do OLS regression using sample (y1,b , x1), ...., (yN ,b , xN ) gives
t�b = (

bβb � bβ)/sbβb .
I seems "wild" as yi ,b can only take one of two values
I but with N observations possibly as many as 2N distinct samples.

Gives an asymptotic re�nement for OLS with heteroskedastic errors.
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6. Percentile-t con�dence intervals with Wild bootstrap

Wild bootstrap (continued)
Not used much in practice for independent observations.

I usually if N is low then estimates are statistically insigni�cant.

But with clustered data and the number of clusters G is small
I estimates may be highly statistically signi�cant if many observations
per cluster

I yet tests have poor size

In theory one could instead use a simpler pairs cluster bootstrap
I where resample clusters (yg ,Xg ) with replacement
I but this worked poorly in Monte Carlos.

Instead do a Wild bootstrap where resample bug over clusters.
I i.e. yg ,b = Xg bβ+ bug or yg ,b = Xg bβ� bug in cluster g and use the
percentile-t method as before

I important bug imposes H0.
I Cameron, Gelbach and Miller (2008) proposed this
I Webb (2017) proposed six-point resampling when G < 10.

A. Colin Cameron U.C.-Davis () Bootstrap methods July, 2022 29 / 35



6. Percentile-t con�dence intervals with Wild bootstrap

Wild Score bootstraps

Instead do a Wild bootstrap where resample over clusters.
I Wild cluster bootstrap with weights ag (e.g. ag = �1 or 1)
I bβ� = bβ+ (X0X)�1 ∑g Xg (agbug ) resamples residuals bug
I = bβ+ (X0X)�1 ∑g (agXgbug ) resamples score Xgbug

The latter generalizes to score of other estimators such as ML
I Score bootstrap of Kline and Santos (2012).

The Stata boottest command due to Roodman, MacKinnon,
Nielsen and Webb (2018) implements

I regular Wild and score Wild bootstraps
I for independent and clustered data
I for OLS, IV and nonlinear regression.
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6. Percentile-t con�dence intervals with Wild bootstrap

Wild score bootstrap example
For the current Poisson example with independent observations

I Default standard errors are too small giving z = 3.6714
I But the method adjusts for this and yields p = 0.0951.

Prob>|z| =     0.0951
                                           z =     3.6714

chronic
Score bootstrap, null imposed, 999 replications, Wald test, Rademacher weights:

       _cons    1.415853   .0696733    20.32   0.000     1.279296     1.55241
     chronic           0  (omitted)

      docvis       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

( 1)  [docvis]chronic = 0

Log likelihood = ­262.84466                     Prob > chi2       = .
Wald chi2(0)      = .

Poisson regression                              Number of obs     =         50

Iteration 4:   log likelihood = ­262.84466
Iteration 3:   log likelihood = ­262.84466
Iteration 2:   log likelihood =  ­262.8458
Iteration 1:   log likelihood = ­263.56766
Iteration 0:   log likelihood = ­276.04852

Re­running regression with null imposed.

. boottest chronic, seed(10101)

. quietly poisson docvis chronic

. * Wild score bootstrap for Poisson
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6. Percentile-t con�dence intervals with Wild bootstrap

Wild score bootstrap example (continued)
Repeat previous but use heteroskedastic-robust standard errors

I heteroskedastic-robust standard errors yield smaller z = 1.5280
I But the same p = 0.0951.

Prob>|z| =     0.0951
                                           z =     1.5280

chronic
Score bootstrap, null imposed, 999 replications, Wald test, Rademacher weights:

       _cons    1.415853   .0696733    20.32   0.000     1.279296     1.55241
     chronic           0  (omitted)

      docvis       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

( 1)  [docvis]chronic = 0

Log likelihood = ­262.84466                     Prob > chi2       = .
Wald chi2(0)      = .

Poisson regression                              Number of obs     =         50

Iteration 4:   log likelihood = ­262.84466
Iteration 3:   log likelihood = ­262.84466
Iteration 2:   log likelihood =  ­262.8458
Iteration 1:   log likelihood = ­263.56766
Iteration 0:   log likelihood = ­276.04852

Re­running regression with null imposed.

. boottest chronic, seed(10101)

. quietly poisson docvis chronic, vce(robust)

. * Note that with robust se's gives same p­value though different t­stat
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6. Percentile-t con�dence intervals with Wild bootstrap

Wild score con�dence intervals

A better way that imposes a range of H 00s
I similar to procedure for AR con�dence intervals with weak instruments.

A con�dence interval, or more generally a con�dence region, can be
obtained by inverting a test.

Speci�cally, to obtain a 95% con�dence set for a parameter θ we
perform a two-sided test of θ = θ0 for a range of values of θ0.

The con�dence set is then those values of θ0 for which the test has p
> 0.05, since the 95% con�dence interval includes those values that
we do not reject at level 0.05.
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7. Stata Commands

7. Stata commands

Most commands have option vce(bootstrap) and vce(jackknife)

For more complicated bootstraps write a program and use
bootstrap:

For replicability set the seed!!

For published work the more bootstraps the better as the seed
becomes less important

For small clusters use user-written boottest command.
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