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1. Introduction

1. Introduction

The bootstrap is a method for obtaining properties of statistics
through resampling.

There are many ways to construct bootstrap resamples.

There are many uses of the bootstrap.
@ The most common use of the bootstrap in econometrics is

» to obtain standard errors of estimates.

Occasionally use a more advanced bootstrap to potentially enable
better finite sample inference

» confidence intervals with better coverage
> tests with true size closer to nominal size.
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1. Introduction

Summary

@ Introduction

@ Bootstrap (without asymptotic refinement)
© Bootstrap in General

@ Bootstrap with asymptotic refinement

© Wild Bootstrap

@ Stata commands
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PRNELIISTE  Estimate of standard error

2. Bootstrap pairs estimate of standard error

@ The most common bootstrap is the pairs bootstrap

> views the sample as the {(y1,x1), ..., (yn,xn)} as the population

> assumes that (y;, x;) are i.i.d.

» obtains B random samples from this population by resampling with
replacement

* e.g. in bootstrap resample 1 observation may appear once, observation
2 not at all, observation 2 times, ....

@ This yields B estimates 51, ...,53.

> so estimate Var[@] using the usual variance of the B estimates.

@ For scalar 6 we have

V9—Blzb1 . WhereQ—BZbZIQb
» Square root of this is called a bootstrap standard error.
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Regression application

e Data: Doctor visits (count) and chronic conditions. N = 50.

.0*0SummmarizelandOPoissonOwithOrobustise's
.Osummarize

gooovariable |000000000bsO0000000Mean0000Std.O0Dev.0000000Min00000000Max

000000docvis |00000000050000000004.12000007.821060000000000000000000043
000000000age |0000000005000000004.16200001.160382000000002.6000000006.2
00000chronic |0000DDO0050000000000.280000.45355740000000000000000000001

.Opoissonidocvisichronic,nologivce(robust)

Poissonlregressiond00000000000000000000000000000Numbertofiobs00000= 0000000050
000000000000000000000000000000000000000000000000waldochi2(1)000000= 0000003.64
000000000000000000000000000000000000000000000000Prob0>0chi20000000= 00000.0565
LogOpseudolikelihoodO= 0238.75384000000000000000PseudolR2000000000= 00000.0917

000000000000000RoObuUst
pgooooodocvis |000000Coef.000Std.DErr.000000Zz0000P>|z|00000[95%0Conf.0Interval]

oooodchronic |000.9833014000.5154894000001.910000.05600000.027039100001.993642
0000000_cons |0001.031602000.3446734000002.990000.00300000.356054100001.707149
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PINELISAE  Standard error estimation

Bootstrap standard errors after Poisson regression

@ Use option vce(boot)

> Set the seed!
» Set the number of bootstrap repetitions!

.0*0Computelbootstrapistandardierrorsiusingioptionivce(bootstrap)ito
.Opoissonddocvisichronic,Ovce(boot,Oreps(400)0seed(10101) Inodots)

Poissonlregressiond00000000000000000000000000000Numberiofiobs0nnO0= 0000000050
000000000000000000000000000000000000000000000000RepTlicationsnnonoo= 0000000400
000000000000000000000000000000000000000000000000waldochi2(1)000000= 0000003.33
000000000000000000000000000000000000000000000000Prob0>0chi20000000= 00000.0679
LogOlikelihoodo= 0238.75384000000000000000000000PseudolR2000000000= 00000.0917

oooooodocvis

J00ObservediDOBootstraplld0000000000000000000000Normalobased
0ooooocoef.000Std.0Err.000000z0000P>|z|00000[95%0Conf.0Interval]

poooochronic
popooob_cons

000.9833014000.5386575000001.830000.06800000.072447800002.039051
0001.031602000.3536507000002.920000.004000000.33845900001.724744

@ Bootstrap se = 0.539 versus White robust se = 0.515.
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PINELISAE  Standard error estimation

Results vary with seed and number of reps

.0*0BootstrapOstandardierrorsiforidifferentirepsiandiseeds
.OquietlyOpoissonddocvisichronic,Ovce(boot,0reps(50)0seed(10101))

.OestimatesOstoredboot50

.OquietlyOpoissonddocvisichronic,Ovce(boot,Oreps(50)0seed(20202))

.DestimatesOstoredboot50diff

.OquietlyOpoissonddocvisOchronic,Ovce(boot,0reps(2000)0seed(10101))

.DestimatesOstorefboot2000

.OquietlyOpoissonidocvisOchronic,Ovce(robust)

.DestimatesOstorelrobust

.Jestimatesitablelboot500boot50diffiboot20000robust,l1b(%8.5f)0se(%8.5f)

gooovariable

00boot500000boot50~f000boot20000000robust

poooochronic

ooooood_cons

000.98330 000.98330 000.98330 000.98330
000.45444 000.59923 000.54178 000.51549
001.03160 001.03160 001.03160 001.03160
000.37131 000.37533  000.36414 000.34467

00000000000000000000000000000000000000000000007egend:0b/se
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Leading uses of bootstrap standard errors

@ Sequential two-step m-estimator
> First step gives & used to create a regressor z(R)
> Second step regresses y on x and z(&)
» Do a paired bootstrap resampling (x, y, z)
» e.g. Heckman two-step estimator.
@ Hausman test where under Hp : 9-020
» use bootstrap to compute V[0 — 8] =Var[8]+V[6] — 2Cov([8, 0]
> e.g. to test OLS versus IV
* the simpler form of Hausman test assumes i.i.d. errors.
o Functions of other estimates e.g. § = & B
> replaces delta method
@ Clustered data with many small clusters, such as short panels.
>

* Then resample the clusters.
* But be careful if model includes cluster-specific fixed effects.

@ For these in Stata need to use prefix command bootstrap:
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S0 ETER Emifin
3. The Bootstrap in General: Bootstrap algorithm

@ A general bootstrap algorithm is as follows:
» 1. Given data wy, ..., wy

* draw a bootstrap sample of size N (see below for different ways)
* denote this new sample wj, ..., wj,.

» 2. Calculate an appropriate statistic using the bootstrap sample.
Examples include:

* (a) estimate 6" of 6;

) ~k
* (b) standard error s« of estimate 6

* (c) t—statistic t* = (5* 7/9\)/55* centered at 0.
> 3. Repeat steps 1-2 B independent times.
* Gives B bootstrap replications of 5; §*B orty,..., tg or ...

» 4. Use these B bootstrap replications to obtain a bootstrapped version
of the statistic (see below).
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3. Bootstrap in General Implementation

Implementation

@ Number of bootstraps: B high is best but increases computer time.

» CT use 400 for se’s and 999 for tests and confidence intervals.
» Defaults are often too low. And set the seed!

@ Various resampling methods
> 1. Paired (or nonparametric or empirical dist. func.) is most common
* wi‘, WI*V obtained by sampling with replacement from wiy, ..., wy.
» 2. Parametric bootstrap for fully parametric models.
* Suppose y|x ~ F(x,8g) and generate y by draws from F(x;,8)
> 3. Residual bootstrap for regression with additive errors
* Resample fitted residuals Ty, ..., Ty to get (7, ..., TUy) and form new
(o x1), - (Y XN)-
» 4. Moving blocks bootstrap
* for autocorrelated time series data
» 5. Wild bootstrap
* for asymptotic refinement with heteroskedastic or clustered data.
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3. Bootstrap in General Implementation

@ Need the underlying resampling to be i.i.d.
» resample over clusters if data are clustered
* But be careful if model includes cluster-specific fixed effects.

» resample over moving blocks if data are serially correlated.
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3. Bootstrap in General Bootstraps can fail

Bootstrap failure

@ The bootstrap always provides estimates even when it makes no sense

» e.g. can always get bootstrap standard errors for the mean of a Cauchy
sample, even though the mean of the Cauchy does not exist.

@ The following are cases where standard bootstraps fail

> so need to adjust standard bootstraps.
e GMM (and empirical likelihood) in over-identified models

» For overidentified models need to recenter or use empirical likelihood.
@ Nonparametric Regression:

> Nonparametric density and regression estimators converge at rate less
than root-N and are asymptotically biased.
» This complicates inference such as confidence intervals.

@ Non-smooth estimators.
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3. Bootstrap in General Jackknife

Jackknife

@ The jackknife uses a leave-one-out resampling scheme.

@ The jackknife estimate of the variance of an estimator 6 is
V[g] = Nt Z’ 1(9 )2, where N1 Zi 0

> where §(_,-) is 6 obtained from the sample with observation i omitted.
@ The jackknife is a “rough and ready” method for bias reduction in
many situations, but not the ideal method in any.

> it can be viewed as a linear approximation of the bootstrap (Efron and
Tibsharani (1993, p.146)).

> it requires less computation than the bootstrap in small samples, as
then N < B is likely

> but it is outperformed by the bootstrap as B — oo.

o E.g. poisson docvis chronic, vce(jackknife)
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4. Bootstrap Confidence Intervals (no refinement)

o “Normal-based” confidence intervals

» 95% Clis 6 & 1.96 X sepo0¢ (0)
» asymptotically equivalent to 6 + 1.96 X se(6)
» what Stata vce(boot) gives.

@ Percentile bootstrap confidence intervals

> 95% Clis (8,025, 80.975)
> from the 2.5 to 97.5 percentiles of the bootstrap Gb b=1,..,B
» asymptotically equivalent to 6 + 1.96 x se(8).

@ Validity of bootstrap confidence intervals and tests requires
convergence of the bootstrap distribution.

o Validity of bootstrap standard errors requires stronger uniform
integrability conditions, because convergence in distribution does not
imply convergence in moments.

@ So percentile method requires weaker assumptions than the
“normal-based” method.
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Bootstrap Wald Test (no refinement)

e Consider test of Hy : 6 = 6 against Hy : 0 # 0 at level a.
o “Normal-based” Wald test

» t=(6—0g)/se(d)
> p=Prllt] > z1_4/2] =2 x (1-D(]t])
» what Stata vce(boot) gives.

@ Percentile bootstrap symmetric two-sided Wald test

PO ~
> p=5Lh1 1{l6,—6] > [0-6]}
> reject at level a if p < a.
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5. Bootstrap with asymptotic refinement Asymptotic refinement

5. Bootstrap with asymptotic refinement

@ The simplest bootstraps are no better than usual asymptotic theory
» advantage is easy to implement, e.g. standard errors.

@ More complicated bootstraps provide asymptotic refinement
> this may provide a better finite-sample approximation.

@ Several methods have for asymptotic refinement have been proposed

» econometricians use the percentile-t method,
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5. Bootstrap with asymptotic refinement Asymptotic refinement

Asymptotic refinement (continued)

@ Let T denote the Wald test t-ratio.
@ Most conventional asymptotic tests
» & = nominal size for a test, e.g. &« = 0.05.
» actual size= a« + O(N~1/2) for T or a + O(N~1) for |T|
> e.g. see Hansen (2022), Probability and Statistics, p.186.
@ Most tests with asymptotic refinement
» actual size= a + O(N™1) for T or a + O(N~Y/2) for |T|.
e Asymptotic bias of size O(N~1) < O(N~1/2) is smaller

asymptotically.
> but need simulation studies to confirm finite sample gains.
* eg. if N =100 then 100/N = O(N~!) > 5/+/N = O(N~1/2).
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Asymptotically pivotal statistic and studentized t-statistic
Asymptotically pivotal statistic and studentized t-statistic

@ Econometricians rarely use asymptotic refinement.

@ Asymptotic refinement bootstraps an asymptotically pivotal statistic
> this means limit distribution does not depend on unknown parameters.

e An estimator 8 — 8y < A0, cr%] is not asymptotically pivotal

> since 0'% is an unknown parameter.

@ But the studentized t—statistic is asymptotically pivotal
> since t = (0 — 00)/sy 2 N[0,1] has no unknown parameters.

@ So bootstrap Wald test statistic to get tests and confidence intervals
with asymptotic refinement.

@ Formally this is an empirical way of implementing an Edgeworth
expansion

> a higher order expansion than the usual one used for asymptotic theory
> analogous to going out extra terms in a Taylor series expansion.
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5. Bootstrap with asymptotic refinement Asymptotically pivotal statistic and studentized t-statistic

Edgeworth Expansion

Consider Zy = ¥; X;/\/N where X; are i.i.d. [0, 1].

o The usual CLT leads to Zy % N(0,1). More precisely Zy has c.d.f.
Gn(z) = Pr[Zy < z] = ®(z) + O(N~Y/?),

> where ®(-) is the standard normal c.d.f.
o The CLT uses an approximation of E[e*?V], the characteristic
function of Zy, , where i = /—1.
A better approximation expands E|e in powers of N
@ The usual Edgeworth Expansion adds two additional terms, so

GN(Z):PI’[ZN Sz]: ( )_|_g\1(ﬁ)+gz()_{_o( 3/2),

» where g1(z) = —(2° — 1)¢(2)x3/6
> ¢(-) is the standard normal density
» K3 is the third cumulant of Zy
* the 3 coefficient in the expansion In(E[e”?V]) = Y%, x,(is)" /r!
> g2(+) is given in Rothenberg (1984, p.895) or Amemiya (1985, p.93).
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Asymptotically pivotal statistic and studentized t-statistic
Bootstrap and Edgeworth Expansion

@ We have

Gu(z) = PrlZy < 2] = @(z) + &2 + & + O(N*72),

e Using this directly is problematic as g1(z) depends on «3.
@ Instead, the bootstrap for an asymptotically pivotal statistic can be
shown to eliminate the term g (z)/v'N

> see P. Hall (1982), The Bootstrap and Edgeworth Expansions,
Springer-Verlag.

» or Cameron and Trivedi (2005), Microeconometrics Methods and
Applications, pp.371-372.

» or Hansen (2022), Econometrics, p.285.

o This leads to actual size= a + O(N71).
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LR EITTSTE RV IEETN TS LIl Percentile-t pairs bootstrap

Percentile-t pairs bootstrap
e Bootstrap t = (6 — 00)/s5 ~ N0, 1]
> by recomputing t; = (6, — 6)/s§b where 6 = original sample estimate
* the original sample is now the population and the population 6 = 6.

.0*0Percentiledtdforialdsingledcoefficient:0Bootstrapltheltistatistic
.Ouselbootdata.dta,0clear

.Oquietly0Opoissonddocvisichronic,Ovce(robust)

.0Tocalothetan=0_b[chronic]

.07ocalosethetan=0_se[chronic]

.Obootstrapitstar=((_b[chronic]0 theta')/_se[chronic]),0seed(10101)00000000///
>000reps(999) Unodotsisaving(percentilet,lreplace):0poissonidocvisichronic,i///
>000vce(robust)

(note:0filelpercentilet.dtainotiofound)

BootstrapOresultsi000000000000000000000000000000NumbertofiobsO0000= 0000000050
000000000000000000000000000000000000000000000000Replications000000= 0000000999

pooooocommand: 00poissonidocvisichronic,Ovce(robust)
poooooootstar:  (_b[chronic]D.9833014421442415)/_se[chronic]

000ObserveddlUBootstrapl0l0000000000000000000000NOrmalibased
nooooocoef.000Std. 0Err. 00000020000P>|2z|00000[95%0Conf. 0Interval]l

0opopoootstar |000000000000001.288018000000.000001.0000000002.52447000002.52447
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Fee i (219 100 D
Percentile-t pairs bootstrap (continued)

o The 999 values of tstar (=t} = (8, —5)/s§b) trace the bootstrap
estimated density of the t-statistic .

@ The plot is of the kernel density estimate and T (48)

Density of tsar

<
(\f)' -
=
2oy
o)
[a]
|—! -
o
T T T
-5 0 5
tstar
Kernel density estimate
t density, df = 48
kernel = epanechnikov, bandwidth = 0.2687
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Fee i (219 100 D
Percentile-t Wald test

@ Let t be the original full sample test statistic.
@ For an equal-tailed test

> p-value = the proportion of times that t < t; or t > t;, b=1,...,B.
@ For a symmetric two-sided test

> p-value = the proportion of times that [t;| > [t], t =1,..., B,
» where t is the original full sample test statistic.
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LR EITTSTE RV IEETN TS LIl Percentile-t pairs bootstrap

Percentile-t Confidence Interval

Let 6 and se(B) be from the original full sample.

Let t5 005 and t3 75 denote the 2.5 and 97.5 percentiles of t},
b=1,..,B.

@ For a symmetric 95% confidence interval we use
> 0+ |t*|0.05 x se(0)

For an equal-tailed 95% confidence interval we use

- 6 t5 975 X se(8), 6 — t5 005 X< se(0)].
> For explanation see Efron and Tibsharani (1993, 173-174) or Hansen
(2022, 283-284).
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Fee i (219 100 D
Percentile-t Wald test

o Let t be se(B) be from the original full sample.

@ For an equal-tailed 95% confidence interval test at 5% the critical
t-values are the 2.5 and 97.5 percentiles of t*.

@ For a symmetric two-sided test the p-value is the proportion of times
that |t*| > |t
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SIS E R RERT DT S S BC and BCa confidence intervals with Pairs bootstrap

BC and BCa confidence interval

o (N) is observed coefficient + 1.96 x bootstrap s.e.

e (P)is 2.5 to 97.5 percentile of the bootstrap estimates BI BE

o (BC bias-corrected) and (BCa) also have asymptotic refinement

> not used in practice - instead use percentile-t method.

.0*0Bootstrapiconfidencelintervals:Onormalibased,Opercentile,1BC,0andIBCa
.OquietlyOpoissonidocvisichronic,lvce(boot,Ireps(999)0seed(10101)0bca)

.DestatObootstrap,nall

Poissonlregressionl00000000000000000000000000000Numbertofiobsin000= 0000000050
000000000000000000000000000000000000000000000000Replicationsnnnnn0= 0000000999

nooooodocvis

0oooobservedinonooonnooonoOBootstrap
gonoooocoef.n000000Biasnon0Std.OErr.00[95%0Conf. 0Interval]

nooodchronic

gpooooo_cons

000.98330144000.0132307000.5413785400000.0777810002.044384000(N)
000.01394380002.061742000(P)
0000.0790790002.01943800(BC)
000.029594400002.083490(BCa)
0001.0316016000.0769223000.356853420000.33218170001.731021000(N)
0000.1865860001.582409000(P)
0000.2682640001.64135600(BC)
0000.3867730001.7713510(BCa)

(N)oooonormalioconfidencelinterval
(P)OonOpercentilelconfidencelinterval
(BC)DnObiasicorrectediconfidencedinterval
(Bca)nubiasicorrectediandiacceleratediconfidencedinterval
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6. Percentile-t confidence intervals with Wild bootstrap

6. Percentile-t confidence intervals with Wild bootstrap

@ The wild bootstrap was proposed for some non-i.i.d. models

» C.F.J. Wu (1986), “Jackknife, Bootstrap and Other Resampling
Methods in Regression Analysis,” Ann. Statist. 14(4), 1261-1295.

> Regina Y. Liu (1988), “Bootstrap Procedures under some Non-1.I.D.
Models,” Ann. Statist., 16(4), 1696 - 1708.

@ Initially used in econometrics for OLS regression with heteroskedastic
errors

> but few applications as usually N is reasonably large.

@ Then used for clustered data

» A. Colin Cameron, Douglas Miller and Jonah Gelbach (2008),
“Bootstrap-Based Improvements for Inference with Clustered Errors,”
R.E.Stat, 90, 414-427

» great need as asymptotics work poorly with few clusters

> and does better than percentile-t with cluster pairs bootstrap.
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6. Percentile-t confidence intervals with Wild bootstrap

Wild bootstrap for OLS and independent observations

@ The wild bootstrap for linear regression

» conditions on the sample value of the x’s.
» only y is resampled. x is not resampled.

@ In original sample do restricted OLS of y; on x; where impose
Ho : B = 0 on the coefficient of interest

> get residual U; = y; — x/B.

o In the bt" resample
> sety;, = X.B+ T
ag =1 with probability 0.5
ag = —1 with probability 0.5
» do OLS regression using sample (y1 p,X1), ..., (YN b, Xn) gives
t; = (By— B)/s5,.
> seems "wild" as y; , can only take one of two values
» but with N observations possibly as many as 2" distinct samples.

~ L~
where U = agu; and {

@ Gives an asymptotic refinement for OLS with heteroskedastic errors.
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Wild bootstrap (continued)

@ Not used much in practice for independent observations.
» usually if N is low then estimates are statistically insignificant.
@ But with clustered data and the number of clusters G is small

> estimates may be highly statistically significant if many observations
per cluster
> yet tests have poor size

@ In theory one could instead use a simpler pairs cluster bootstrap
> where resample clusters (yg, Xg) with replacement
> but this worked poorly in Monte Carlos.

o Instead do a Wild bootstrap where resample ui, over clusters.

> e Ygp= XgB +ugoryg = Xg[AE — Ug in cluster g and use the
percentile-t method as before

> important Uiz imposes Hp.

» Cameron, Gelbach and Miller (2008) proposed this

» Webb (2017) proposed six-point resampling when G < 10.
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6. Percentile-t confidence intervals with Wild bootstrap

Wild Score bootstraps

@ Instead do a Wild bootstrap where resample over clusters.
> Wild cluster bootstrap with weights ag (e.g. ag = —1 or 1)
> B* =B+ (X'X)"1 Yg Xg(aglg) resamples residuals tig
> =B+ (X'X)1 Yg (agXglig) resamples score X, Uy
@ The latter generalizes to score of other estimators such as ML

» Score bootstrap of Kline and Santos (2012).

@ The Stata boottest command due to Roodman, MacKinnon,
Nielsen and Webb (2018) implements

> regular Wild and score Wild bootstraps
» for independent and clustered data
» for OLS, IV and nonlinear regression.
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6. Percentile-t confidence intervals with Wild bootstrap

Wild score bootstrap example

@ For the current Poisson example with independent observations

» Default standard errors are too small giving z = 3.6714
» But the method adjusts for this and yields p = 0.0951.

.0*0wildOscorelbootstrapiforiPoisson
.0quietlyOpoissonddocvisichronic

.Oboottestichronic,Iseed(10101)

Relrunninglregressioniwithinull0imposed.

Iteration0d0:0007Tog0likelihoodl= 0276.04852
Iterationd 007log0likelihoodO= 0263.56766
i 007log0likelihoodn= 00262.8458
:000Tognlikelihoodi= 0262.84466
Iteration04:0007og0Tikelihoodl= 0262.84466

Poissonfregression000000000000000000000000000000Numbertofiobsinono= 0000000050

waldichi2(0)nnnnoo=
LogO1ikelihoodi= 0262.84466000000000000000000000Prob0>0chi20000000=

(01)00[docvis]chronici=00

pooooodocvis |0o0000Coef.n00Std.OEPr.00000020000P>|2z|00000[95%0Conf.0Interval]

noooochronic |0000000000000 (omi tted)
gopoooo_cons |0001.415853000.0696733000020.320000.000000001.279296000001. 55241

Scorenbootstrap,nullnimposed,19990replications,iwalditest, IRademacheriweights:
chronic

000000000000000000000000000000000000000000020= 00003.6714
Prob>|z|0= 00000.0951
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6. Percentile-t confidence intervals with Wild bootstrap

Wild score bootstrap example (continued)

@ Repeat previous but use heteroskedastic-robust standard errors

> heteroskedastic-robust standard errors yield smaller z = 1.5280
» But the same p = 0.0951.

.0*ONoteltha
.OquietlyOpo

.Oboottestic
Relrunningdr
Iteration0:
Iterationnl:
Iterationn2:
Iterationn3:
Iterationn4:
Poissoniregr

LogOTlikeliho

(01)00[docv:

tOwithOrobustise'slgivesdsamelplvaluelthoughodifferentitistat
issonidocvisOchronic,ivce(robust)

hronic,0seed(10101)
egressionOwithOnull0imposed.

[0276.04852
0263.56766

0o0logolikelihoodo=
0oologolikelihood
000logolikelihoodi= 00262.8458
000logolikelihood 0262.84466
0o00logolikelihoodi= 1262.84466

ession000000000000000000000000000000Numbertofiobsnnnnn=
waldochi2(0)noooo
od0= 0262.84466000000000000000000000ProbO>0chi20000000=

0000000050

is]chronici=00

000000docvis

000000Coef. 000Std. Err. 00000020000P>|z|00000[95%0Conf. 0Intervall

noooochronic
0000000_cons

0000000000000 (omi tted)
0001.415853000.0696733000020.320000.000000001.279296000001.55241

Scorenbootst
chronic

gooooooooooo

A. Colin Cameron U

rap,Onull0imposed,19990replications,owalditest, 0Rademacherioweights:

000000000000000000000000000000020= 00001.5280
Prob>|z|0= 00000.0951
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6. Percentile-t confidence intervals with Wild bootstrap

Wild score confidence intervals

A better way that imposes a range of Hys

» similar to procedure for AR confidence intervals with weak instruments.

A confidence interval, or more generally a confidence region, can be
obtained by inverting a test.

Specifically, to obtain a 95% confidence set for a parameter 6 we
perform a two-sided test of 8 = 6 for a range of values of 6.

The confidence set is then those values of 8y for which the test has p
> 0.05, since the 95% confidence interval includes those values that
we do not reject at level 0.05.
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7. Stata Commands

7. Stata commands

Most commands have option vce (bootstrap) and vce(jackknife)

@ For more complicated bootstraps write a program and use
bootstrap:

For replicability set the seed!!

For published work the more bootstraps the better as the seed
becomes less important

For small clusters use user-written boottest command.
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