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1. Introduction

Introduction

Test whether yit is nonstationary, speci�cally a unit root

I Does yit = yi ,t�1 + εit?

In pure time series case, if unit root then test statistics are not normal

I instead functions of Wiener processes / Brownian Motion
I and have low power: cannot easily distinguish between
yit = 0.9yi ,t�1 + εit and yit = yi ,t�1 + εit .

Panel data may give more power

I again nonstandard asymptotic theory + intercept(?) + trend(?)
I in particular, may need to recenter and rescale test statistic
I but then usually normally distributed

But - there are many di�erent tests of unit roots in panels

I N ! ∞ or T ! ∞ or both; heterogeneity; cross-section correlation
I for panel case there is no general clear best test
I good idea to read the original paper before using a test
I and rely on economic theory to give likely model for yit .
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2. Time Series Unit Root Tests Consequences

2. Time Series Unit Root Tests Consequences

yt has a unit root if need to �rst di�erence to get stationary process

I examples: random walk with drift and random walk without drift.

Random walk without drift

I If yt = yt�1 + εt then yt = (yt�2 + εt�1) + εt = � � �
so yt = y0 +∑ts=0 εs

F shocks are permanent as ∆ε0 = 1 =) ∆yt = 1

Compared to AR(1)

I Versus yt = ρyt�1 + εt , ρ < 1, then yt = ρ(ρyt�2 + εt�1) + εt = � � �
so yt = ρty0 +∑ts=0 ρt�s εs

I shocks disappear as ∆ε0 = 1 =) ∆yt = ρt ! 0.

Fundamental result: shocks are permanent if unit root.

Random walk with drift: yt = α+ yt�1 + εt
I implies yt = y0 + αt +∑ts=0 εs
I so induces a linear time trend as well as being nonstationary.
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2. Time Series Unit Root Tests Dickey-Fuller Test

Dickey-Fuller Test

Fuller (1976). Rewrite the model

yt = ρyt�1 + εt

∆yt = (ρ� 1)yt�1 + εt

= φyt�1 + εt .

I unit root if φ = 0 and stationary if φ < 0.

Dickey Fuller test: test H0 : φ = 0 against Ha : φ < 0 in

∆yt = φyt�1 + εt

Obvious approach is to test for φ = 0 in regress yt on yt�1
I But under H0 : φ = 0 test statistic has nonstandard distribution
I use special tables not t tables
I Stata command dfuller
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2. Time Series Unit Root Tests Dickey-Fuller Test

Simulation

DGP: yt = yt�1 + εt where εt iid N [0, 1] and T = 50.

Stata code
set seed 10101

program unitroot, rclass

drop all

set obs 50

generate time = n

tsset time

generate epsilon = rnormal(0,1)

generate yrwalk = 0

replace yrwalk = L.yrwalk + epsilon if time > 1

regress D.yrwalk L.yrwalk

return scalar b2 = b[L.yrwalk]

return scalar se2 = se[L.yrwalk]

return scalar t2 = ( b[L.yrwalk]-0)/ se[L.yrwalk]

end
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2. Time Series Unit Root Tests Dickey-Fuller Test

Do 10,000 simulations and summarize results
quietly simulate b2=r(b2) se2=r(se2) t2=r(t2), ///

reps(1000) saving(unitroot, replace) nolegend nodots: unitroot

summarize b2 se2 t2

mean b2 se2 t2

histogram t2, normal title("DF Unit root test Case 2")

centile t2, centile(1 2.5 5 10 90 95 97.5 99)

Centiles for t-statistic: 1 2.5 5 10 90 95 97.5 99

I N[0,1]: -2.57, -1.96, -1.64, -1.28, 1.28, 1.64, 1.96, 2.57
I Simulation: -3.56, -3.22, -2.92, -2.60, -0.40, -0.02, 0.30, 0.63
I DF Tables: -3.58, -3.22, -2.93, -2.60, -0.40, -0.03, 0.29, 0.66

De�nitely not normal or T (48).
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2. Time Series Unit Root Tests Dickey-Fuller Test
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2. Time Series Unit Root Tests Dickey-Fuller Test

Dickey-Fuller Tests (continued)

Complication 1: There are two test statistics

I The t-statistic bφ/se(bφ)
I The z-statistic Tbφ

F we can use the z-statistic in addition to the t statistic because when
φ = 0 its distribution does not depend on unknown parameters .

Complication 2: Under H0 these statistics have nonstandard
distributions - functionals of Wiener processes (Brownian motion)

I asymptotic results use a functional central limit theorem that does not
require εt to be normally distributed

I letting Ψ = Ψ(r) denote a detrended Wiener process

F Tbφ d!
R

Ψ(r )dΨ(r)R
Ψ(r)2dr and

bφ
se(bφ) d!

R
Ψ(r)dΨ(r)pR

Ψ(r )2dr

I �nite sample results assume εt is normally distributed
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2. Time Series Unit Root Tests Dickey-Fuller Test

Dickey-Fuller Tests (continued)

Complication 3: These distributions change when deterministic terms
are added to the regression, so yt = d0tγ+ ρyt�1 + εt where dt is
constant plus possibly trend

I Case 1: yt = ρyt�1 + εt estimated and H0 : yt = yt�1 + εt
I Case 2: yt = α+ ρyt�1 + εt estimated and H0 : yt = yt�1 + εt
I Case 3: yt = α+ ρyt�1 + εt estimated and H0 : yt = δ+ yt�1 + εt
I Case 4: yt = α+ δt + ρyt�1 + εt estimated and
H0 : yt = δ+ yt�1 + εt

Most often use cases 2 and 4

I case 3 unrealistic as H0 model yt = y0 + δt + (εt + εt�1 + � � �+ ε1)
has time trend

I lose power as move from case 1 to case 2 to case 4

Stata dfuller uses the t-statistic bφ/se(bφ)
I cases 1-4 are, respectively, options (1) noconstant, (2) the default, (3)
drift, (4) trend

c
 A. Colin Cameron Univ. of Calif. Davis () 4A: Panels - Unit Root Tests November 2013 10 / 56



2. Time Series Unit Root Tests Unit Root Tests

Unit Root Tests for Time Series

Complication 4: εt is serially correlated

Dickey and Fuller (1979) - Augmented Dickey-Fuller (ADF) test

I easiest to understand
I add lags until εt is serially uncorrelated and use original DF tables
I so estimate ∆yt = d0tγ+ φyt�1 +∑Kk=1 γk∆yt�k + εt .
I t-statistic is bφ/se(bφ) and z-statistic is Tbφ/(1� bγ1 � � � � � bγT )
I determine # lags using AIC or BIC or by specifying K , doing regular
t-test on bγK , then bγK�1, then, ...

Phillips and Perron (1988) test

I correct the original (unaugmented) DF test for εt serially correlated
I then use the original DF tables

KPSS (1992) test of H0 : φ < 0 against Ha : φ = 0

I OLS regress yt = d0tγ+ ut , but = yt � d0tbγ, St = ∑ts=1 bu2s
I LM = ∑Tt=1 S

2
t /(T 2f0); f0 is estimate of the long-run variance of but

Other tests include DF-GLS test coming next.
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2. Time Series Unit Root Tests Unit Root Tests

Unit Root Tests for Time Series (continued)

Elliott, Rothenberg & Stock (1996) test - DF-GLS test
I this is viewed as the best unit root test
I most powerful test against local alternatives H0 : φ = cT for �xed c
I Stata command dfgls

yt = d0tγ+ ρyt�1 +∑K
k=1 γk∆yt�k + εt ; dt = 1 or dt = (1, t)

I DF test jointly estimates γ and ρ and γ0k s
I when dt = 1 equivalently ρ (and γ0k s) from OLS of (yt � ȳ) on

ρ(yt�1 � yt�1) and ∆y 0t�k s.

1. Instead (GLS step) estimate γ by bγ from OLS in
(yt � ρ̄yt�1) = (dt � ρ̄dt)0γ+ vt

I where ρ̄ = 1� 7/T for dt = 1 and ρ̄ = 1� 13.5/T for dt = (1, t)

2. φ (and γ0ks) by OLS in ∆y �t = φy �t�1 +∑K
k=1 γk∆y �t�k + wt where

y �t = yt � d0tbγ
3. Use t-statistic for bφ = 0

I for dt = 1 use DF tables (case 2)
I for dt = (1, t) use tables in Elliott et al.
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3. Panel Example: Real Exchange Rates and PPP Data Description

3. Panel Example: Real Exchange Rates and PPP

Real Exchange Rate annual data 1970-2003 on 151 countries.
I Balanced with T = 34 and N = 151
I Sometimes restrict to OECD N = 27 or G7 N = 6
I USA is the reference country
I Data from Stata Manual [XT] xtunitroot.

Real exchange rate = nominal exchange rate � (price in home
country / price in foreign country)

λ = EP�/P
lnλ = lnE + lnP� � lnP

Purchasing power parity says no unit root (instead I(0))
I reason: real exchange rate is mean-reverting
I essentially even if lnE , lnP� and lnP are I(1)

F they are cointegrated so that lnE + lnP� � lnP is I(0).
Also there is no reason to believe there is a trend

I so unit root tests here do not include a trend.
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3. Panel Example: Real Exchange Rates and PPP Data Description

Data Description

Sorted by: id  year

g7  byte   %8.0g
oecd  byte   %8.0g
lnrxrate  float  %9.0g Log real exchange rate
realxrate  float  %9.0g Real exchange rate
capt  float  %9.0g
id  float  %9.0g group(country)
ppp  float  %9.0g PWT Purchasing Power Parity index
xrate  float  %9.0g Nominal exchange rate
year  int    %8.0g
country  str3   %9s

variable name   type   format      label      variable label
              storage  display     value

 size:       200,226 (99.7% of memory free)   (_dta has notes)
 vars:            10                          15 Oct 2012 22:17
  obs:         5,134
Contains data from pennxrate.dta

. describe
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3. Panel Example: Real Exchange Rates and PPP Data Summary

       lnppp       5134    1.197976    4.097343  ­27.19693   13.65651
     lnxrate       5134    1.856842    4.194947  ­27.11847   14.22578

          g7       5134    .0397351    .1953552          0          1
        oecd       5134    .1788079    .3832287          0          1
    lnrxrate       5134   ­.6375265    .5680524   ­5.19902   2.400289
   realxrate       5134     .632419    .5703317    .005522   11.02636
        capt       5134          34           0         34         34

          id       5134    94.36424    52.87679          1        188
         ppp       5134    664.0886    18089.86   1.54e­12   852999.1
       xrate       5134    1412.495    36112.62   1.67e­12    1507226
        year       5134      1986.5    9.811664       1970       2003
     country          0

    Variable        Obs        Mean    Std. Dev.       Min        Max

. sum

. * Summarize data
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3. Panel Example: Real Exchange Rates and PPP Data Summary

Panel Summary

Key variables have both within and between variation

I lnrxrate is key variable
I lnppp is ln price ratio and lnxrate is ln nominal exchange rate

         within   2.29809  ­13.06217    22.3583      T =      34
         between  3.403155  ­16.52128   6.778892      n =     151
lnppp    overall  1.197976   4.097343  ­27.19693   13.65651      N =    5134

         within  2.399643  ­12.46177   23.86295      T =      34
         between  3.451942  ­16.00139   7.287732      n =     151
lnxrate  overall  1.856842   4.194947  ­27.11847   14.22578      N =    5134

         within   .370792  ­5.137827   1.797904      T =      34
         between  .4317351  ­1.560863   .7197967      n =     151
lnrxrate overall ­.6375265   .5680524   ­5.19902   2.400289      N =    5134

Variable       Mean   Std. Dev.       Min        Max     Observations

. xtsum lnrxrate lnxrate lnppp
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3. Panel Example: Real Exchange Rates and PPP Line Charts

Line Charts (for OECD)
Seem to move together against the reference USA

I xtline lnrxrate if oecd == 1, overlay
I control for cross-country correlation by including ȳt =

1
T ∑Ni=1 yit .
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id = 63/id = 159 id = 69/id = 171
id = 77 id = 80
id = 83
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4. Time Series Unit Root Tests GBR-USA

4. Time Series Unit Root Tests for GBR-USA

Consider ADF test for a single time series

I lnrxrate is GBR-USA log real exchange rate

MacKinnon approximate p­value for Z(t) = 0.4666

 Z(t)     ­1.632            ­3.730            ­2.992            ­2.626

               Statistic           Value             Value             Value
                  Test         1% Critical       5% Critical      10% Critical

 Interpolated Dickey­Fuller

Augmented Dickey­Fuller test for unit root         Number of obs   =        28

. dfuller lnrxrate if country == "GBR", lags(5)

. * ADF test with 5 lags

Do not reject H0 as p > .05
I conclude there is a unit root!

But this is very black box.
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4. Time Series Unit Root Tests GBR-USA

The following also shows the associated ADF regression
dfuller lnrxrate if country == "GBR", lags(5) regress

       _cons   ­.0083102   .0219679    ­0.38   0.709     ­.053995    .0373746

        L5D.    .1590723   .1595226     1.00   0.330    ­.1726731    .4908177
        L4D.   ­.1348889   .2074825    ­0.65   0.523    ­.5663723    .2965946
        L3D.   ­.2028981   .2105659    ­0.96   0.346    ­.6407938    .2349977
        L2D.    .0879437   .2176313     0.40   0.690    ­.3646454    .5405327
         LD.    .4322423   .2210537     1.96   0.064    ­.0274641    .8919487
         L1.   ­.2397465   .1469375    ­1.63   0.118    ­.5453198    .0658268
    lnrxrate

  D.lnrxrate       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

The estimated coe�cient �.239 is a long way from 0

I Note, however, that bφ is considerably biased below zero if φ = 0
I Fail to reject H0 in part because very noisily estimated
I And note that H0 is unit root, not H0 is no unit root.

Aside: dfgls with 5 lags also does not reject H0
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4. Time Series Unit Root Tests GBR-USA

The autocorrelations look a lot like AR(1) with ρ ' 0.7, not like unit
root.

15   ­0.2059   0.1023   44.547  0.0001
14   ­0.1392   0.0853   41.817  0.0001
13    0.0141   0.0061    40.63  0.0001
12    0.1603  ­0.2127   40.619  0.0001
11    0.2407   0.0279   39.189  0.0000
10    0.2255   0.4260   36.106  0.0001
9    0.1468   0.0177   33.513  0.0001
8    0.1205   0.1130   32.457  0.0001
7    0.0620   0.1127   31.774  0.0000
6    0.0315  ­0.1591     31.6  0.0000
5    0.0575   0.1024   31.556  0.0000
4    0.0846   0.0984   31.416  0.0000
3    0.2276  ­0.0478   31.125  0.0000
2    0.4734  ­0.2900    29.08  0.0000
1    0.7436   0.7715   20.509  0.0000

 LAG       AC       PAC      Q     Prob>Q  [Autocorrelation]  [Partial Autocor]
                                          ­1       0       1 ­1       0       1

. corrgram lnrxrate if country == "GBR"

. * ACF
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5. Panel Unit Root Tests Overview

5. Panel Unit Roots: Overview

Levin and Lin (1992) seminal paper that introduced many of the ideas

I need to recenter and rescale DF but ultimately normal
I results vary with heterogeneity, deterministic trends, ....

A quite general model for heterogeneous panels is

∆yit = φiyi ,t�1 + αi + δi t + θt + uit

= φiyi ,t�1 + z
0
itγi + θt + uit

Three cases of deterministic trends:

I no constant: αi = 0; δi = 0 so z
0
itγi = 0

I constant, no trend: δi = 0 so z
0
itγi = αi

I trend: both nonzero so z0itγi = αi + δi t.

Di�erent tests make di�erent restrictions on this.

I initially uit i.i.d. (and possibly normal for �nite sample results)
I relax to serially correlated ( ) yi ,t�1 endogenous)
I relax to uit correlated over i (more complicated).
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5. Panel Unit Root Tests Limit Theory

Limit Theory

Asymptotics may potentially be

I N �xed T ! ∞
I T �xed N ! ∞
I T ! ∞ and N ! ∞.

For T ! ∞ and N ! ∞ Phillips and Moon (1999 Ecta) consider

I sequential limits: notation (T ,N ! ∞)seq

F e.g. �x N, let T ! ∞, then let N ! ∞.

I diagonal path: notation T = T (N)

F (T ,N)! ∞ at rate T = T (N)

I joint limits: notation N,T ! ∞
F simultaneously without any restrictions.
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5. Panel Unit Root Tests Pedagogical Example

Pedagogical Example

Levin and Lin (1992)

I common ρ, heterogeneous intercept, homoskedasticity
I yit = ρyi ,t�1 + αi + uit ; uit � iid[0, σ2]
I note: Levin, Lin, Chu (2002) consider more general models

Demeaning takes care of αi (Frisch-Waugh Theorem)

I then bφ = bρ� 1 comes from OLS of ∆yit�1 on yit � ȳi
I
p
NTbφ = pN ∑i

1
T ∑tf(yi ,t�1�ȳi )/σg�∆fyi ,t�1/σg
∑Ni=1

1
T2

∑Tt=1f(yi ,t�1�ȳi )/σ2g
I
p
NTbφ = pN ∑i aiT

∑i biT
=
p
N aNTbNT

de�ning aiT , biT , aNT , bNT .

1. T ! ∞, �nd aiT , biT properties using functional CLT's
I aiT is function of Wiener process and has mean 1/6 and variance 1/45
I biT is function of Wiener process and has mean -1/2 and variance 1/12

2. N ! ∞ and apply CLT's and LLN's to get limit distribution of

I
p
N(Tbφ� E[aNT ]

E[bNT ]
) =

p
N(aNT� E[aNT ])

bNT
+E[aNT ]

p
N
�

1
bNT

� 1
E[bNT ]

�
c
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5. Panel Unit Root Tests Pedagogical Example

Then for T ! ∞ followed by N ! ∞

T
p
Nbφ+ 3pN d! N [0, 10.2]

I need N small relative to T so
p
N/T ! 0

I convergence rate is T
p
N rather than usual

p
TN.

F Like single time series where T not
p
T .

I centering is wrong: bφ+ 3/T is centered on zero (bαi Nickell bias).
F e.g. bφ = �0.2 looks like not unit root, but with T = 15,bφ+ 3/T = �0.2+ 3/15 = 0.0.

I asymptotic variance of bφ equals 10.2/NT 2 is not the usual variance
I lesson: need to recenter and rescale bφ.

If we use the t-statistic tφ=0 = bφ/sebφ (rather than bφ) we get
p
1.25� tφ=0 +

p
1.875Np

645/112
d! N [0, 1].

I again need to recenter and rescale.
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5. Panel Unit Root Tests Summary of Approaches

Summary of Approaches

1. Common ρ - one pooled augmented DF regression
I Detrend data, rescale to common variance for each i , and do ADF
I Levin and Lin (1992) and Levin, Lin and Chu (2002)
I Breiting (2000) proposes �rst pre-whitening data - better power
I Harris-Tzavalis (1999) have variation that works for T �xed
I Breiting and Das (2005) extend to weak (spatial) cross-section
dependence

2. Common ρ - generalize the KPSS test
I Hadri (2000) LM test

3. Heterogeneous ρi - N separate ADF t-statistics are averaged
I detrend data, get ADF t-statistic for each, use the average of these
I Im, Pesaran and Shin (2003)
I Pesaran (2006) extends to strong (common shocks) cross-section
dependence

4. Heterogeneous ρi - separate tests and combine p-values
I Fisher-type tests - Choi (2001) proposes four ways to combine.

c
 A. Colin Cameron Univ. of Calif. Davis () 4A: Panels - Unit Root Tests November 2013 25 / 56



5. Panel Unit Root Tests Stata Command xtunitroot

Stata Command xtunitroot
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6. Application of Panel Unit Root Tests

6. Application: Tests follow Stata Manual [XT]

Eviews 8 has the same tests except for Harris-Tzavalis.

Generally default option of constant (αi ) no trend (δi = 0) (for
lnxrate).

I 1. LLC: Levin-Lin-Chu (1993, 2002)
I 2. HT: Harris-Tzavalis (1999)
I 3. Breitung: Breitung (2000)
I 4. IPS: Im-Pesaran-Shin (2003)
I 5. IPS: Im-Pesaran-Shin (2003) with serially correlated errors
I 6. Fisher: Fisher-type Maddala and Wu (1999), Choi (2001)
I 7. Hadri: LM test (Hadri (2000))

Test 1 is for small N relative to T so use only G7 N = 7

Test 2 is for large N so all countries N =151 (also use for test 6).

Tests 3-5, 7 use intermediate N so use OECD N = 27

All tests reject hypothesis that all unit roots. Some are stationary.
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6. Application of Panel Unit Root Tests Levin-Lin-Chu Panel Unit Root Test

Levin-Lin-Chu Panel Unit Root Test

Levin, Lin and Chu (2002).

For N ! ∞ slower than T ! ∞ so N/T ! 0
I though in noconstant case

p
N/T ! 0.

ADF model

∆yit = φyi ,t�1 + z
0
itγi +∑pi

j=1
θij∆yi ,t�j + uit

uit � iid[0, σ2i ]

Test H0 : φi = 0 for all i (all have unit roots)

against Ha : φi = φ < 0 for all i (all have common non-unit root).

Implementation
I detrend: form panel-by-panel (standardized) regression residuals

F eeit = beit/bσεi where beit = ∆yit �∑pij=1 bθij∆yi ,t�j � z0itbγi
F evi ,t�1 = bvi ,t�1/bσεi where bvi ,t�1 = yi ,t�1 �∑pj=1 eθij∆yi ,t�j � z0iteγi

I base test on bδ/se(bδ) from eeit = bvi ,t�1δ+ error
I recenter, rescale and use ratio of short-run to long-run variance.
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6. Application of Panel Unit Root Tests Levin-Lin-Chu Panel Unit Root Test

Test with lag length determined by AIC rejects H0 as p < .05

I conclude that stationary
I if add option demean p = 0.0187 so again stationary

 Adjusted t*         ­4.0277        0.0000
 Unadjusted t        ­6.7538

                    Statistic      p­value

LR variance: Bartlett kernel, 10.00 lags average (chosen by LLC)
ADF regressions: 1.00 lags average (chosen by AIC)

Time trend: Not included
Panel means: Included
AR parameter: Common                        Asymptotics: N/T ­> 0

Ha: Panels are stationary                   Number of periods =     34
Ho: Panels contain unit roots               Number of panels  =      6

Levin­Lin­Chu unit­root test for lnrxrate

. xtunitroot llc lnrxrate if g7, lags(aic 10)

. * Levin­Lin­Chu unit root test
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6. Application of Panel Unit Root Tests Levin-Lin-Chu Panel Unit Root Test

Previous chose only one lag (pi = 1 on average) - seems too short

I setting four lags of ∆yit we do not reject H0
I conclude that unit root present.

 Adjusted t*         ­1.1601        0.1230
 Unadjusted t        ­4.9507

                    Statistic      p­value

LR variance: Bartlett kernel, 10.00 lags average (chosen by LLC)
ADF regressions: 4 lags

Time trend: Not included
Panel means: Included
AR parameter: Common                        Asymptotics: N/T ­> 0

Ha: Panels are stationary                   Number of periods =     34
Ho: Panels contain unit roots               Number of panels  =      6

Levin­Lin­Chu unit­root test for lnrxrate

. xtunitroot llc lnrxrate if g7, lags(4)

. * So do unit root tests with lag lengths set to 4
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6. Application of Panel Unit Root Tests Harris-Tsavalis Panel Unit Root Test

Harris-Tsavalis Panel Unit Root Test

Harris and Tsavalis (1999).

For T �xed and N ! ∞

yit = ρyi ,t�1 + z
0
itγi + uit

uit � N [0, σ2]

I very strong assumptions - i.i.d. error ! (DF not ADF)
I can relax normality (but then need to estimate kurtosis of uit)
I and can include time dummies

Test H0 : φi = 0 for all i (all have unit roots)

against Ha : φi = φ < 0 for all i (all have common non-unit root).bρ biased for �nite T via γi
I HT �nd the bias correction term when ρ = 1
I e.g. if z0itγi = αi thenp

N(bρ� (1� 3
T+1 ))

d! N
h
0,
3(17T 2�20T+17)
5(T�1)(T+1)3

i
.
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6. Application of Panel Unit Root Tests Harris-Tsavalis Panel Unit Root Test

Reject H0 as p < .05. Conclude that stationary.

 rho                  0.8184      ­13.1239       0.0000

                    Statistic         z         p­value

Time trend: Not included                  Cross­sectional means removed
Panel means: Included                                   T Fixed
AR parameter: Common                        Asymptotics: N ­> Infinity

Ha: Panels are stationary                   Number of periods =     34
Ho: Panels contain unit roots               Number of panels  =    151

Harris­Tzavalis unit­root test for lnrxrate

. xtunitroot ht lnrxrate, demean

. * Harris­Tsavalis unit root test
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6. Application of Panel Unit Root Tests Breitung Panel Unit Root Test

Breitung Panel Unit Root Test

Breitung (2000) and Breitung and Das (2005)

For T ! ∞ followed by N ! ∞
Have heterogeneous intercept, common trend

yit = ρyi ,t�1 + γi + βt + uit ; uit � serially correlated and not iid
LLC controls for heterogeneous γi by mean di�erencing

I instead use the long di�erence yit � yi ,p+1
F with p lags lost due to serial correlation in uit

I then yit = γi + βt and yi ,p+1 = γi so yit � yi ,p+1 = β(t � p + 1).
To control for serial correlation of order p in uit pre-whiten data

I let ∆bεit be residual from OLS of ∆yit on ∆yi ,t�1, ...,∆yi ,t�p
I let bε�it be residual from OLS of y�it = yit � yi ,p+1 on ∆yi ,t�1, ...,∆yi ,t�p
I bλ = ∑Ni=1 ∑Tt=p+2bε�it∆bεit/bσ2iq

∑Ni=1 ∑Tt=p+2 ∆bε2it/bσ2i
d! N [0, 1] where σ2i =

1
T�p�2 ∑Tt=p+2 ∆bε2it .

A variation (robust) permits weak cross-sectional correlation
I though then need T >> N.
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6. Application of Panel Unit Root Tests Breitung Panel Unit Root Test

This version has no lags (should add lags) and gets cross-section
correlation robust version

I marginally reject H0 at 5%.

 * Lambda robust to cross­sectional correlation

 lambda*             ­1.6794        0.0465

                    Statistic      p­value

Time trend: Not included                  Prewhitening: Not performed
Panel means: Included                                        sequentially
AR parameter: Common                        Asymptotics: T,N ­> Infinity

Ha: Panels are stationary                   Number of periods =     34
Ho: Panels contain unit roots               Number of panels  =     27

Breitung unit­root test for lnrxrate

. xtunitroot breitung lnrxrate if oecd, robust

. * Breitung unit root test
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6. Application of Panel Unit Root Tests Im-Pesaran-Shin Panel Unit Root Test

Im-Pesaran-Shin Panel Unit Root Test

Im, Pesaran and Shin (2003) allow di�erent φi for each panel

For T �xed (need normal errors) or T ! ∞ followed by N ! ∞.
Augmented DF model

∆yit = φiyi ,t�1 + z
0
itγi +∑pi

j=1
θij∆yi ,t�j + uit

uit � N [0, σ2i ] in �nite T case

Test H0 : φi = 0 for all i (all have unit roots)

against Ha : φi = φ < 0 for some i (some have non-unit root).
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6. Application of Panel Unit Root Tests Im-Pesaran-Shin Panel Unit Root Test

Obtain t statistics for each panel

I these are usual augmented Dickey-Fuller t-test denote τi
I then τi under H0 : φi = 0 has mean E[τi ] and variance V[τi ] that are
given in tables

I the average of these recentered and rescaled
d! N [0, 1] by CLT as

N ! ∞
F unbalanced panel

Z =
p
N
h
1
N ∑Ni=1 τi � 1

N ∑Ni=1 E[τi ]
i

/
q

1
N ∑Ni=1 V[τi ]

d! N [0, 1]

F balanced panel Z =
p
N
h
1
N ∑Ni=1 τi � E[τ]

i
/
p
V[τi ]

d! N [0, 1]
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6. Application of Panel Unit Root Tests Im-Pesaran-Shin Panel Unit Root Test

With serially uncorrelated errors (no lags)

I reject as p < 0 and conclude some panels are stationary

 Z­t­tilde­bar       ­7.3911        0.0000
 t­tilde­bar         ­2.5771
 t­bar               ­3.1327                     ­1.810  ­1.730  ­1.680

                    Statistic      p­value         1%      5%      10%
                                              Fixed­N exact critical values

ADF regressions: No lags included

Time trend: Not included                  Cross­sectional means removed
Panel means: Included                                        sequentially
AR parameter: Panel­specific                Asymptotics: T,N ­> Infinity

Ha: Some panels are stationary              Number of periods =     34
Ho: All panels contain unit roots           Number of panels  =     27

Im­Pesaran­Shin unit­root test for lnrxrate

. xtunitroot ips lnrxrate if oecd, demean

. * Im­Pesaran­Shin unit root test
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6. Application of Panel Unit Root Tests Im-Pesaran-Shin Panel Unit Root Test

With serially correlated errors (AIC has average 1.5 lags)

I reject as p < 0 and conclude some panels are stationary

 W­t­bar             ­7.3075        0.0000

                    Statistic      p­value

ADF regressions: 1.48 lags average (chosen by AIC)

Time trend: Not included                  Cross­sectional means removed
Panel means: Included                                        sequentially
AR parameter: Panel­specific                Asymptotics: T,N ­> Infinity

Ha: Some panels are stationary              Number of periods =     34
Ho: All panels contain unit roots           Number of panels  =     27

Im­Pesaran­Shin unit­root test for lnrxrate

. xtunitroot ips lnrxrate if oecd, lags(aic 8) demean

. * Im­Pesaran­Shin unit root test with serially correlated errors
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6. Application of Panel Unit Root Tests Fisher-Type Panel Unit Root Test

Fisher-Type Panel Unit Root Test

Maddala and Wu (1999) and Choi (2001).

For T ! ∞ and N �xed

I Model is completely heterogeneous

Do separate time series unit root tests in each panel

I Stata fisher does Dickey-Fuller and Phillips-Perron

Then need to combine the N tests.

This is like meta-analysis

I combine the p values using methods of Fisher
I e.g. P = �2∑Ni=1 ln pi � χ2(2N) (reject H0 if large)
I there are other ways of combining - see the output.
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6. Application of Panel Unit Root Tests Fisher-Type Panel Unit Root Test

Here do Dickey-Fuller with two lags in each panel

I all four ways have p < .05 so conclude at least one panel is stationary.

 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.

 Modified inv. chi­squared Pm       27.4211       0.0000
 Inverse logit t(759)      L*      ­20.9768       0.0000
 Inverse normal            Z       ­19.6183       0.0000
 Inverse chi­squared(302)  P       975.9130       0.0000

                                  Statistic      p­value

Drift term:   Included                      ADF regressions: 2 lags
Time trend:   Not included                  Cross­sectional means removed
Panel means:  Included
AR parameter: Panel­specific                Asymptotics: T ­> Infinity

Ha: At least one panel is stationary        Number of periods =     34
Ho: All panels contain unit roots           Number of panels  =    151

Based on augmented Dickey­Fuller tests
Fisher­type unit­root test for lnrxrate

. xtunitroot fisher lnrxrate, dfuller drift lags(2) demean

. * Fisher unit root test
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6. Application of Panel Unit Root Tests Hadri LM Panel Unit Root Test

Hadri LM Panel Unit Root Test

Hadri (2000) generalizes the KPSS test.

T ! ∞ and then N ! ∞
Suppose

yit = rit + βi t + εit , εit � N [0, σ2ε ]
rit = ri ,t�1 + uit , uit � N [0, σ2u ].

In general yit will be I(1) due to the random walk rit .

But if σ2u = 0 then uit = 0, rit = ri ,t�1 = constant
I so yit = α+ βi t + εit is trend stationary.

So test H0 : σ2u/σ2ε = 0 against Ha : σ2u/σ2ε = 0
I Note that now H0 is no unit root against Hq unit root
I simulations show this tends to over-reject.

The test is an LM test that
d! N [0, 1] after recentering and rescaling

I OLS regress yit = d
0
itγ+ ut , buit = yit � d0itbγ, Sit = ∑ts=1 bu2is

I LM = ∑Ni=1
�

∑Tt=1 S
2
it/(T

2fi0)
�
; fi0 = bVlong�run[buit ].
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6. Application of Panel Unit Root Tests Hadri LM Panel Unit Root Test

Reject H0 as p < .05 here means some panels contain unit roots.

 z                    9.6473        0.0000

                    Statistic      p­value

LR variance: Bartlett kernel, 5 lags Cross­sectional means removed
Heteroskedasticity: Robust                                    sequentially
Time trend: Not included            Asymptotics: T, N ­> Infinity

Ha: Some panels contain unit roots          Number of periods =     34
Ho: All panels are stationary               Number of panels  =     27

Hadri LM test for lnrxrate

. xtunitroot hadri lnrxrate if oecd, kernel(bartlett 5) demean

. * Hadri unit root test

c
 A. Colin Cameron Univ. of Calif. Davis () 4A: Panels - Unit Root Tests November 2013 42 / 56



7. Cross-section Dependence

7. Cross-section Dependence

Levin, Lin and Chu (2003, p.13) state that cross-sectional dependence
can be partially controlled for on their tests by �rst subtracting the
\cross-sectional average" ȳt =

1
N ∑N

i=1 yit
I equivalent to including a full set of time dummies in the original model
for yit

I this is a single common shock that has an identical e�ect on all
individuals in the panel.

I Stata gives this as an option for all its unit tests, citing LLC
I but LLC only say that this is okay for their test.

Breiting and Pesaran (2008) call tests that allow for cross-section
correlation of errors \second generation tests".

I ignoring cross-section dependence leads to size bias
I especially if the panel units are cross-cointegrated e.g. PPP
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7. Cross-section Dependence Weak and Strong Cross-section Dependence

Weak and Strong Cross-Section Dependence

Weak dependence

I eigenvalues of covariance matrix of yit are bounded as N ! ∞
I essentially this means that correlations across individuals need to
dampen as they get \further" apart

I this is the case for spatial dependence

Strong dependence

I at least one eigenvalue of covariance matrix of yit diverges as N ! ∞
I this is the case for common factors F0iδt .
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7. Cross-section Dependence Unit Root Tests

Unit Root Tests

Breitung and Pesaran (2008) section 9.4 have summary

I see this for references

Moon and Perron (2004) and Pesaran (2007)

I model yit = (1� ρi )µi + ρiyi ,t�1 + uit , uit = γi ft + εit
I test of πi = 1 is joint test that (1) all time series I(1); and (2) they are
not cointegrated.

Bai and Ng (2004) propose Panel Analysis of Nonstationarity in
Idiosyncratic and Common components (PANIC)

I analyzes common factors and idiosyncratic components separately
I nonstationarity can be pervasive, variable-speci�c or both
I can determine the number of independent stochastic trends driving the
common factors.
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7. Cross-section Dependence Pesaran's Test

Pesaran (2007)
Cross-sectionally augmented Dickey Fuller (CADF) test.
One-factor model uit = γi ft + εit for the cross-panel correlation.
Begin with no serial correlation

yit = (1� ρi )µi + ρiyi ,t�1 + uit ; uit = γi ft + εit
=) ∆yit = αi + φiyi ,t�1 + γi ft + εit ; αi = µi (1� ρi ); φi = (ρi � 1)
I εit iid [0, σ

2
i ], ft iid [0, σ

2
f = 1], εit , ft and γi independent for all i

Test H0 : φi = 0 for all i against Ha : φi < 0 for some i .
Pesaran (2006) shows ft can be proxied by cross-section mean
ȳt =

1
N ∑N

i=1 yit and lags if N ! ∞
I So OLS estimate

∆yit = ai + biyi ,t�1 + ci ȳt�1 + di∆ȳt + eit
I If T is �xed replace yit with yit � ȳ0; ȳ0 = 1

N ∑Ni=1 yi0.

CADFi Test for panel i : ti = bbi/se[bbi ].
CADF Joint panel test: 1N ∑N

i=1 ti where truncate as in his equation
(34)

I or can combine CADFi test p-values.
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7. Cross-section Dependence Pesaran's Test

Pesaran (2007) with serially correlated error (AR(p)).

OLS estimate (his equation (54))

∆yit = ai + biyi ,t�1 + ci ȳt�1 +∑p
j=0 dij∆ȳt�j +∑p

j=1 δij∆ȳi ,t�j + eit

CADFi Test for panel i : ti = bbi/se[bbi ]
I has critical values in Tables 1.

CADF Joint panel test: 1T ∑N
i=1 tt where truncate as in his equation

(34)
I has critical values in Tables 2
I or can combine CADFi test p-values e.g. �2∑Ni=1 ln(pi ) � χ2(2N).

The critical values are obtained by simulation (no N [0, 1] tests here)
I asymptotic theory generally the same under sequential or joint limits
I N = 10, 20, 30, 40, 50, 100 and T = 10, 20, 30, 40, 50, 100
I generally works well even for small N and T .

The paper also has good summary of other methods in the
introduction and implements some of these in simulation and
application.
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7. Cross-section Dependence Application: Pesaran's Test

Application: Pesaran (2007)
use pennxrate.dta, clear

rename lnrxrate yy

keep if oecd==1

bysort year: egen ytbar = mean(yy)

sort id year

statsby phi= b[l.yy] se= se[l.yy], by(id) clear: regress d.yy l.yy l.ytbar L(0/2)d.ytbar

L(1/2)d.yy

generate t = phi/se

* t is CADF i test: Critical values are in Table 1 (individual panel)

format phi t %9.3f

list phi t, clean

* Panel ACDF test: Critical values are in Table 2 (average of panels)

mean t

* Fisher test combines the individual test p values

generate lnp = ln(p)

quietly summarize lnp

display "Fisher test = " -2*r(sum) " with p-value = "chi2tail(r(N),-2*r(sum))
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7. Cross-section Dependence Application: Pesaran's Test

Application (continued)

Individual CADF i t-tests

I critical value �3.34 for N = 30 and T = 30 from Table 1(b)
I here most negative t's are -4.18, -4.09, -3.-04
I so 2 of 27 are rejected - borderline reject H0

Overall CADF test

I critical value �2.15 for N = 30 and T = 30 from Table 2(b)
I here mean t = -1.78
I do not reject H0 : all φi = 0 against Ha : some φi 6= 0.

Fisher test combining individual CADF i t-tests

I Fisher test = 8.6578493 with p-value = .00325655
I reject H0 : all φi = 0 against Ha : some φi 6= 0.
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8. Appendix: Random Walks and Wiener Processes

8. Random Walk is Asymptotically a Wiener Processes

Let yt = yt�1 + ut = ∑t
s=1 us where us � iid N [0, 1]

I then yt � N [0, t]

Change the index from 0 � t � T to 0 � r � 1
I t = [rT ] where [rT ] is the integer part of rT
I yt = y[rT ] � N [0, t]

I 1p
T
y[rT ] � N [0, [rT ]/T ] =) 1p

T
y[rT ] � N [0, r ]

I 1p
T
y[rT ] � 1p

T
y[r 0T ] � N [0, r � r 0]; r 0 < r similarly

But this is just a discrete time version of a continuous time Wiener
process (Brownian motion) W (r), de�ned as

I W (r) = 0
I W (r) is continuous in r almost surely, 0 � r � 1
I W (r)�W (r 0) � N [0, r � r 0] independently for any 0 � r 0 < r � 1

Key Result: 1p
T
y[rT ]

a
= W (r) or 1p

T
yt

a
= W ( tT )
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8. Appendix: Random Walks and Wiener Processes

DF Test involves Sums of Functions of Random Walks

Dickey-Fuller test from regress ∆yt on yt�1 yields
I bφ = bρ� 1 = ∑Tt=1 yt�1(∆yt)/ ∑Tt=1 y

2
t�1

For nonrandom function f (r) de�ned on [0, 1]

I
R 1
0 f (r)dr = lim

T!∞
∑Tt=1 f (

t
T )�

1
T = lim

T!∞
1
T ∑Tt=1 f (

t
T )

I this extends to random functions such as W (r)

So for sums of yt and its products, given
1p
T
yt

a
= W ( tT )

I 1
T 3/2 ∑Tt=1 yt =

1
T ∑Tt=1

1p
T
yt

a
= 1

T ∑Tt=1W (
t
T )

d!
R 1
0 W (r)dr

I 1
T 2 ∑Tt=1 y

2
t =

1
T ∑Tt=1(

1p
T
yt)2 =

1
T ∑Tt=1W (

t
T )

2 d!
R 1
0 W (r)

2dr

I 1
T ∑Tt=1 yt�1∆yt

d! 1
2 [W (1)

2 � 1] after some algebra

So Dickey-Fuller z-test statistic

I Tbφ = 1
T ∑Tt=1 yt�1(∆yt )

1
T2

∑Tt=1 y
2
t�1

d!
1
2 [W (1)2�1]R 1
0 W (r )2dr

(no nuisance parameters)

c
 A. Colin Cameron Univ. of Calif. Davis () 4A: Panels - Unit Root Tests November 2013 51 / 56



8. Appendix: Random Walks and Wiener Processes

Generalizations

ut in yt = yt�1 + ut can be nonnormal, serially correlated,
heterogeneously distributed if T ! ∞

I we need 1p
T
y[rT ] =

1p
T

∑ts=1 us
d! ω�N [0, r ] for some ω

I this can be established using a (functional) central limit theorem
I ω is the long-run variance of y[rT ]

We often include an intercept and possibly trend in the DF test

I ∆yt = α+ δt + φyt�1 + ut
I then need results for ∑Tt=1 ∆yt , ∑Tt=1 t∆yt , ∑Tt=1 yt�1, ∑Tt=1 tyt�1, ...
see Hamilton (1996, p.506)

I or can use results for demeaned processes (Frisch-Waugh) ... see
Hayashi (2000, p.570)
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8. Appendix: Random Walks and Wiener Processes

Consider ∆yt = α+ φyt�1 + ut

I use demeaned random walk y
µ
t = yt � ȳ ; where ȳ = 1

T ∑Tt=1 yt
I continuous time analog is detrended standard Wiener

W µ(r) = W (r)�
R 1
0 W (s)ds

I 1
T 2 ∑Tt=1(y

µ
t )
2 d!

R 1
0 W

µ(r)2dr

I 1
T ∑Tt=1 y

µ
t�1∆yµ

t
d! 1
2 [W

µ(1)2 �W µ(0)2 � 1]

Consider ∆yt = α+ δ+ φyt�1 + ut detrended random walk
y

µ
t = yt � bα� bδt where bα and bδ are from OLS of yt on intercept and
linear time trend

I then di�erent functions of Wiener processes.
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9. Summary

9. Summary

Stata unit root test

Single Time Series dfgls, dfuller

Panel: cross-country correlation xtunitroot

Panel: cross-country correlation �

For panel unit root tests with cross-country correlation can easily
code up Pesaran (2007) CADF test and refer to tables in his paper.
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Surveys

I Breitung, J, and M.H. Pesaran (2008), \Unit Roots and Cointegration
in Panels," in L. M�aty�as and P. Sivestre, eds., The Econometrics of
Panel Data: Advanced Studies in Theoretical and Applied
Econometrics, Third Edtiion, Advanced Studies in Theoretical and
Applied Econometrics, 46, 2008, pp 279-322, Springer.

I Kirchg�assner. G. (2013), Introduction to Modern Time Series Analysis,
chapter 7, Springer.

I Stata Manual [XT] Longitudinal Data / Panel Data entry xtunitroot
Method and Formulas summarizes several panel unit root tests.

I Eviews 8 Users Guide II Chapter 16 summarizes several panel unit root
tests.
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