Panel Data Methods using Stata 4B: Panels - Cointegration

© A. Colin Cameron Univ. of Calif. Davis

November 2013

© A. Colin Cameron Univ. of Calif. Davis

4B: Panels - Cointegration

1. Introduction

- Now consider panel models with dynamics.
- Especially panel regression of an I(1) y_t on an I(1) x_t when they are cointegrated
 - i.e. there is a long-run relationship between them.
- For time series the standard way is systems estimation
 - joint estimation of systems model for y_t and x_t
 - use Johansen's method based on a vector error correction model.
- For panel data a systems approach is generally not feasible
 - instead single-equation methods
 - there are several different methods, most notably dynamic OLS and fully-modified OLS.
- Recent concern is correlation across panels.
- Eviews 8 has panel cointegration tests and estimators
 - Stata has none there are a few addons.

Outline

- Introduction
- 2 Cointegration in Time Series
- In Panel Cointegration Tests
- Panel Cointegration Estimation
- Summary
- 6 References

2. Cointegration in Time Series

- A process is integrated of order d, denoted I(d), if when differenced d times it yields a stationary series
 - a white noise process is I(0)
 - an AR(1) process with $|\rho| < 1$ is I(0), as is MA(q)
 - a random walk is I(1) since $y_t = y_{t-1} + \varepsilon_t$ implies $\Delta y_t = \varepsilon_t$.
- The I(1) processes x_t and y_t are cointegrated if a linear combination of them is I(0)

• i.e.
$$y_t - \alpha - \beta x_t$$
 is I(0).

• We consider case where x_t and y_t are I(1) and we OLS regress

$$y_t = \alpha + \beta x_t + u_t.$$

- Complications exists if x_t and y_t are not cointegrated
- Complications exists if x_t and y_t are cointegrated.

Spurious Regressions

- Suppose x_t and y_t are I(1) and y_t and x_t are not cointegrated $(\beta = 0)$
- Then the OLS estimator is inconsistent
 - $\hat{\beta}$ does not converge to zero
 - conventional methods will reject $H_0: \beta = 0$ much too often and find "spurious" regressions
 - this extends to dynamic models with lags
- Analogous to unrelated deterministic trends
 - if $y_t = \delta t + u_t$ and $x_t = \gamma t + v_t$ where $Cor[u_t, v_t] = 0$
 - then OLS $y_t = \alpha + \beta x_t + u_t$ (i.e. without t as regressor) has $\widehat{\beta} \xrightarrow{p} 0$.

Cointegrated Regressions

- Suppose x_t and y_t are I(1) and y_t and x_t are cointegrated (eta
 eq 0)
- Then the OLS estimator is consistent even though x_t is endogenous!
 - OLS converges to β but at rate T not \sqrt{T}
 - in finite samples, however, $\widehat{\beta}$ can be very biased
 - and it can be inefficient because u_t is serially correlated.
- There are several better ways to estimate cointegrated relationships (and to test for cointegration)
 - these come from different representations of the model
 - most notably Granger-Representation Theorem and Stock and Watson common trends
- Big distinction between single equation and systems methods.

(人間) トイヨト イヨト

Systems Testing and Estimation

- Let \mathbf{y}_t denote an $m \times 1$ vector process (before m = 2 and $\mathbf{y}_t = [y_t \ x_t]')$
- Consider a VAR (vector autoregression) with p lags

$$\mathbf{y}_t = \frac{\mathbf{C}}{k \times 1} \frac{\mathbf{D}'_t}{m \times k} + \sum_{j=1}^{p} \frac{\mathbf{A}_j}{m \times mm \times 1} \mathbf{y}_{t-j} + \frac{\mathbf{u}_t}{m \times 1}$$

- where D_t are exogenous (and could include deterministic trends)
- u_t is serially uncorrelated error
- Rewrite equivalently as

$$\Delta \mathbf{y}_t = \mathbf{C} \mathbf{D}'_t + \mathbf{\Pi} \mathbf{y}_{t-1} + \sum_{j=1}^{p-1} \mathbf{\Gamma}_j \Delta \mathbf{y}_{t-j} + \mathbf{u}_t$$
$$\mathbf{\Pi} = \sum_{j=1}^{p} \mathbf{A}_j - \mathbf{I}; \quad \mathbf{\Gamma}_j = -\sum_{l=j+1}^{p} \mathbf{A}_l$$

Cointegration in Systems

- Now bring in cointegration
- If there are r cointegrating relationships then
 - ▶ rank($\mathbf{\Pi}$) = r so $\mathbf{\Pi} = \alpha m{\beta}'$ where α and $m{\beta}$ are $m \times r$ with rank r
 - ▶ so model as VAR in first difference with y_{t-1} also regressor
- Johansen (1988) method
 - determine number of cointegrating relationships via rank of $oldsymbol{\Pi}$
 - then estimate subject to restriction $\mathbf{\Pi} = \alpha \boldsymbol{\beta}'$.
- Other related systems methods
 - Ahn and Reinsel (1988) similar to Johansen
 - Stock and Watson (1988) common trends
 - Park and Phillips (1988)

Single-equation Methods

- Model is $y_t = \mathbf{d}'_t \delta + \mathbf{x}'_t \boldsymbol{\beta} + u_t$
 - ▶ y_t is l(1)
 - d_t are deterministic I(0) variables
 - \mathbf{x}_t are m I(1) variables and are not cointegrated often m=1
 - the innovations $\Delta \mathbf{x}_t$ may be correlated with u_t endogenous regressors
 - there is at most one cointegrating relationship between y_t and \mathbf{x}_t
- The direct regression is the levels estimator
 - given cointegration $\widehat{\beta}$ is superconsistent (at rate T not \sqrt{T})
 - despite \mathbf{x}_t endogenous and u_t serially correlated
 - but $\hat{\beta}$ is biased for finite T.

Error Correction Model

A better estimator uses the error correction model (ECM) form

- for case m = 1 with $y_t = \delta + \alpha y_{t-1} + \beta_0 x_t + \beta_1 x_{t-1} + u_t$
- then in long run $y = \delta + \lambda x$ where $\lambda = \frac{\beta_0 + \beta_1}{1 \alpha_1}$
- For rewrite as ECM: $\Delta y_t = \delta + (\alpha 1)(y_{t-1} \lambda x_{t-1}) + \beta_1 \Delta x_t + u_t$
- ▶ like model in first differences except add "error correction term" y_{t-1} − λx_{t-1}
- And estimate above by OLS or equivalently Δy_t on $y_{t-1}, x_{t-1}, \Delta x_t$
- More generally OLS of Δy_t on \mathbf{d}_t , y_{t-1} , \mathbf{x}_{t-1} , $\mathbf{\Delta} x_t$
- Better than levels but not best

Fully Modified and Dynamic OLS Tests

- Fully modified OLS (Phillips and Hansen (1990)
 - adjusts the levels estimator for regressor endogeneity and error serial correlation
- Dynamic OLS (Saikkonen (1991))
 - ► can show $u_t = \sum_{k=-\infty}^{\infty} \Delta x'_{t+k} \gamma_k + v_t$ where v_t is orthogonal to all leads and lags of Δx_t
 - then can do OLS in $y_t = \mathbf{d}'_t \delta + \mathbf{x}'_t \beta + \sum_{k=-\infty}^{\infty} \mathbf{\Delta} \mathbf{x}'_{t+k} \gamma_k + v_t$
 - in practice need to truncate and to e.g. k = -2 to 2.

- 4 週 ト - 4 三 ト - 4 三 ト

Residual-based Cointegration Tests

- If y_t and \mathbf{x}_t are cointegrated then $u_t = y_t \mathbf{d}_t' \delta \mathbf{x}_t' \boldsymbol{\beta} \sim I(0)$
 - so get residuals \hat{u}_t from OLS of $y_t = \mathbf{d}'_t \delta + \mathbf{x}'_t \boldsymbol{\beta} + u_t$
 - perform the usual unit root tests on these residuals
 - \blacktriangleright will need to adjust the statistics / critical values due to estimation of meta
 - ▶ for most tests $H_0: u_t \sim I(1)$ so no cointegration vs H_a : cointegration.
- Engle and Granger (1987) do ADF tests on the residuals \widehat{u}_t
- Phillips and Ouliaris (1990) do Phillips-Perron adjustment on the residuals û_t.
- Hamilton (1994) Tables B.8 and B.9 give the critical values.

イロト 不得下 イヨト イヨト

3. Panel Cointegration Tests

Tests are usually single-equation tests, mostly residual-based

- usually H₀: unit root residual (no cointegration)
- Pedroni (1994, 2004) residual-based ADF tests
 - in most general case $y_{it} = \mathbf{d}'_{it} \delta_i + \mathbf{x}'_{it} \beta_i + u_{it}$
 - OLS gives û_{it}
 - ADF test OLS regresses $\hat{u}_{it} = \rho_i \hat{u}_{it} + \sum_{k=1}^{K} \gamma_{ik} \Delta \hat{u}_{i,t-k}$
 - asymptotics are $N \to \infty$ and then $T \to \infty$
 - ▶ get various tests depending on \mathbf{d}_{it} , heterogeneity of ρ_i , ...
 - ▶ since $N \to \infty$ in each case the statistic $\stackrel{d}{\to} N[0, 1]$ upon appropriate recentering and scaling.
- Kao (1998) residual-based ADF tests
 - similar to Pedroni except constrain $\beta_i = \beta$ at the first step.

E Sac

イロト 不得下 イヨト イヨト

Panel Cointegration Tests

- McCoskey and Kao (1998) residual-based KPSS (LM) tests
 - similar to Hadri (2000) for panel unit roots
 - here H₀ : stationary residual (cointegration)
- Maddala and Wu (1999) Fisher/Johanson combined systems tests
 - do separate Johanson systems tests for each cross-section
 - combine p-values as in Fisher-type test.

• Westerlund (2007, 2008) tests based on error correction model (ECM)

$$\Delta y_{it} = \mathbf{d}'_t \delta_i + \alpha_i (y_{i,t-1} - \mathbf{x}'_{i,t-1} \beta_i) + \sum_{k=1}^{K_i} \alpha_{ij} \Delta y_{i,t-k}$$

+ $\sum_{i=1}^{K_i} \Delta \mathbf{x}'_{i,t-1} \gamma_{ii} + \varepsilon_{it}, \text{ where iid}$

- ► test $H_0: \alpha_i = 0$ no cointegration as then y_{it} does not respond to the shock $y_{i,t-1} \mathbf{x}'_{i,t-1}\beta$
- group mean tests allow $\alpha'_i s$ to differ and panel tests have $\alpha_i = \alpha$
- Eviews 8 does Pedroni tests, Kao tests and Maddala-Wu.
- Stata 12 does not do panel cointegration tests
 - Stata addon xtwest does Westerlund tests.

4. Panel Cointegration Estimation

- Use single equations estimators
 - Panel fully modified estimators Phillips and Moon (1999), Pedroni (2000)
 - Panel dynamic OLS estimators Kao and Chiang (2000)
 - Baltagi chapter 12.6 has short discussion
 - Kao, Chiang and Chen (2001) is good application
 - Eviews 8 does both panel dynamic and fully modified.
- Easiest is panel dynamic OLS
 - Estimate $y_{it} = \mathbf{d}'_t \delta_i + \mathbf{x}'_{it} \boldsymbol{\beta} + \sum_{k=-J_i}^{K_i} \Delta \mathbf{x}'_{i,t+k} \gamma_{i,k} + v_{it}$
 - the coefficients $oldsymbol{eta}$ are homogeneous while others are heterogeneous
 - Stata add-on xtdolshm does panel dynamic OLS
- Markus Eberhardt has references to Stata code on his website
 - concerned with both heterogeneity and stationarity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Panel Dynamic OLS Example

- Kao, Chiang and Chen (2001) data 22 countries 1970-89
 - Itfp Log of Total Factor Productivity
 - Ird Log of domestic R&D capital stock (logSd)
 - Ifrd Log of import-share weighted foreign R&D capital stock (logSf)
 - ▶ k = -2, -1, 0, 1

. * Dynamic OLS . xtdolshm ltfp lrd lfrd, nlag(2) nlead(1)

DOLS Hom. Pane	el data Coint.	Estimation	results	Number of obs	=	352
Group variable: id				Number of grou	ps =	22
Wald chi2(2)	= 56.49			Obs per group:	min =	20
Prob > chi2	= 0.000				avg =	20
					max =	20
				R-squared	=	0.5114
				Adj R-squared	=	0.3054
	Coef.	Std. Err.	z	P> z [95%	Conf.	Interval]
lrd lfrd	.1068545 .0558467	.0228706	4.67 1.45	0.000 .06 0.147019	2029 6237	.15168 .1313171

5. Summary

- For panel cointegration the methods are not well-established.
- Eviews 8 has several single-equation commands for cointegration testing and estimation.
- Stata has some add-ons
 - xtwest for cointegration test
 - xtdolshm for estimation when cointegrated.
 - Marcus Eberhardt's website https://sites.google.com/site/medevecon/home has many useful links to papers, data and Stata code, including Stata add-ons, for both cross-sectional dependence and unit roots.

6. References

6. References

- Panel Unit Roots and Cointegration Surveys
 - Banerjee, A. (1999), "Panel Data Unit Roots and Cointegration: An Overview," Oxford Bulletin of Statistics, 607-629. Very nice exposition of the literature to 1999.

http://onlinelibrary.wiley.com/doi/10.1111/1468-0084.0610s1607/pdf

Breitung, J., and M.H. Pesaran (2008), "Unit Roots and Cointegration in Panels," in L. Matyas and P. Sevestre (Eds.), *The Econometrics of Panel Data*, 279–322. Kluwer Academic Publishers. More recent and concerned about cross-section correlation.

http://www.econ.cam.ac.uk/dae/repec/cam/pdf/cwpe0535.pdf

Smith R.P., and A-M. Fuertes (2010), "Panel Time-Series." Lengthy survey used for a course taught at cemmap.

http://www.ems.bbk.ac.uk/faculty/smith/RSpanel.pdf

 Baltagi, B. (2008), Econometric Analysis of Panel Data, fourth edition, chapter 12.

イロト 不得下 イヨト イヨト

- Panel Cointegration Tests
 - McCoskey, S. and C. Kao (1998), "A residual-based test of the null of cointegration in panel data," Econometric Reviews, 17, 57-84.
 - Pedroni, P. (2004), "Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis," Econometric Theory, 20, 597-265.
 - Westerlund, J. (2007), "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, 69, 709-748.
 - Westerlund, J. and D. Persyn (2008), "Error Correction Based Cointegration Tests for Panel Data," Stata Journal, 8, 232-241.
- Panel Cointegration Estimation
 - Kao, C.-H., M.-H, Chiang, and B. Chen (2002), "International R&D Spillovers: An Application of Estimation and Inference in Panel Cointegration," Oxford Bulletin of Economics and Statistics, 61, 691-709.
 - Kao, C., and M.-H. Chiang (2001), "On the Estimation and Inference of a Cointegrated Regression in Panel Data," Advances in Econometrics, 15, 179-222.
 - Phillips, P.C.B. and H. Moon (1999), "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, 67, 1057-1111.

6. References

- Cross-Sectional Dependence in Panels with Cointegration
 - Bai, J. (2009), "Panel data models with interactive fixed effects," *Econometrica*, 1229–1279.

http://onlinelibrary.wiley.com/doi/10.3982/ECTA6135/pdf

Eberhardt, M., C. Helmers and H. Strauss (2012), "Do Spillovers Matter When Estimating Private Returns to R&D?," *Review of Economics and Statistics*, forthcoming. Applies CCE and MG estimators.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1966020

- Marcus Eberhardt's website https://sites.google.com/site/medevecon/home This has many useful links to papers, data and Stata code, including Stata add-ons, for both cross-sectional dependence and unit roots.
- Pedroni, P. (2001), "Fully modified OLS for heterogeneous cointegrated panels," Advances in Econometrics, 15, 93-130.