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1. Introduction

@ Discrete outcome or qualitative response models:

y takes only a finite number of discrete values (categorical data).

» Binary outcome models: only two possible outcomes.

* Without loss of generality we let these values be 1 and 0.
* We model Prly = 1|x] using logit and probit models.

@ Binary logit and probit models are nonlinear models

» We illustrate the complications that arise with a nonlinear model.

@ Other limited dependent variable models are
» Multinomial outcome models: m possible outcomes.
* We model Prly = j|x] for j=1,...,m.
> Censored and truncated models (Tobit)

* Considerably more difficult conceptually.
* Sample is not reflective of the population (selection on y)
* Standard methods rely on strong distributional assumptions.

@© A. Colin Cameron  U. of Calif. - Davis . 1A: Binary outcomes: Basics Aug 30 - Sept 3, 2010

2/ 45



1. Introduction

Outline

Introduction
Binary data:
Binary data:
Binary data:
Binary data:
Binary data:
Binary data:
Binary data:

0000000 O0CO

Binary data:

Examples

Estimation

Logit, probit, and OLS
Marginal effects
Which model?

Model diagnostics
Index function model

Additive random utility model

@© A. Colin Cameron  U. of Calif. - Davis . 1A: Binary outcomes: Basics Aug 30 - Sept 3, 2010

3/45



sl el dein G
2. Binary Data: Examples

o First: a single regressor example allows a nice plot.
e Compare predictions of Pr[y = 1|x] from logit, probit and OLS.

> Generated data followed by Stata command logit y x
> Scatterplot of y = 0 or 1 on scalar regressor x (y is jittered).

0
i

1Ix]

Predicted Pr[y:

% c PPt o ol

Data (jitered)
Logit
Probit

T T T
-2 -1 0

Regressor x

@ Logit ~ probit, while OLS predicts outside the (0, 1) interval!
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PRI EIRADELEN ST Private health insurance data

Data Example: Private health insurance [MUS ch.14.4]

@ ins=1 if have private health insurance.
e Summary statistics (sample is 50-86 years from 2000 HRS)

. describe ins retire age hstatusg hhincome educyear married hisp

storage display value
variable name type format Tlabel variable Tlabel
ins float %9.0g 1 if have private health insurance
retire double %12.0g 1 if retired
age double %12.0g age in years
hstatusg float %9.0g 1 if health status good of better
hhincome float %9.0g household annual income in $000's
educyear double %12.0g years of education
married double %12.0g 1 if married
hisp double %12.0g 1 if hispanic

. summarize ins retire age hstatusg hhincome educyear married hisp

variable Obs Mean std. Dev. Min Max
ins 3206 .3870867 .4871597 0 1
retire 3206 .6247661 .4842588 0 1
age 3206 66.91391 3.675794 52 86
hstatusg 3206 .7046163 .4562862 0 1
hhincome 3206 45.26391 64.33936 0 1312.124
educyear 3206 11.89863 3.304611 0 17
married 3206 .7330006 .442461 0 1
hisp 3206 .0726762 .2596448 0 1
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PRI EIRADELEN ST Private health insurance data

@ Summary statistics: by whether or not have private health insurance.

. bysort ins: summarize retire age hstatusg hhincome educyear married hisp, sep(0)

-> ins = 0
variable Obs Mean std. Dev. Min Max
retire 1965 .5938931 .49123 0 1
age 1965 66.8229 3.851651 52 86
hstatusg 1965 .653944 .4758324 0 1
hhincome 1965 37.65601 58.98152 0 1197.704
educyear 1965 11.29313 3.475632 0 17
married 1965 .6814249 .4660424 0 1
hisp 1965 .1007634 .3010917 0 1

-> dins =1
variable Obs Mean std. Dev. Min Max
retire 1241 .6736503 .469066 0 1
age 1241 67.05802 3.375173 53 82
hstatusg 1241 .7848509 .4110914 0 1
hhincome 1241 57.31028 70.3737 .124  1312.124
educyear 1241 12.85737 2.755311 2 17
married 1241 .8146656 .3887253 0 1
hisp 1241 .0282031 .1656193 0 1

@ ins=1 more likely if retired, older, good health status, richer, more

educated, married and nonhispanic.
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2. Binary Data Examples Logit model example

Example: Logit model

@ Probability that y; = 1 given regressors is specified to be

WMZHM=AMm=Lﬁ§£%-

» Clearly 0 < Prly; = 1|x;] < 1.

e MLE ,B is shown below to solve
n /
Z,'zl <yi - A(X,-ﬁ))X,' =0.
> This is nonlinear in B, so need to use iterative estimation procedure.
@ Marginal effect of a change in the jt regressor is

9 Prly = 1]x]

ME; 5

= N(XB)B; = AKX B)(1 -~ A(X'B));

» This varies with the evaluation point x
» This does not equal B;, though sign[ME;] = sign[B;].
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Cogitimodellexample
@ Stata command logit gives the logit MLE.

. * Logit regression

. logit ins retire age hstatusg hhincome educyear married hisp

Iteration O: log Tikelihood = -2139.7712
Iteration 1 log likelihood = -1998.8563
Iteration 2: log Tikelihood = -1994.9129
Iteration 3 log likelihood = -1994.8784
Iteration 4 log Tikelihood = -1994.8784

Logistic regression Number of obs = 3206

LR chi2(7) = 289.79

prob > chi2 = 0.0000

Log Tikelihood = -1994.8784 Pseudo R2 = 0.0677

ins Coef. std. Err. z P>|z]| [95% Conf. Interval]

retire .1969297 .0842067 2.34 0.019 .0318875 .3619718

age -.0145955 .0112871 -1.29 0.196 -.0367178 .0075267

hstatusg .3122654 .0916739 3.41 0.001 .1325878 .491943

hhincome .0023036 .000762 3.02 0.003 .00081 .0037972

educyear .1142626 .0142012 8.05 0.000 .0864288 .1420963

married .578636 .0933198 6.20 0.000 .3957327 .7615394

hisp -.8103059 .1957522 -4.14  0.000 -1.193973 -.4266387

_cons -1.715578 .7486219 -2.29 0.022 -3.18285 -.2483064

@ All except perhaps hstatusg have the expected sign.
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2. Binary Data Examples Logit model example

@ The average marginal effect AME; = ZN M
J

In Stata 11 use command margins, dydx(x) after logit
In Stata 10 use add-on command margeff after logit.

. margeff

Average marginal effects on Prob(ins==1) after logit

ins Coef. std. Err. z P>|z]| [95% Conf. Inter
retire .0426943 .0181787 2.35 0.019 .0070647 .078:
age -.0031693 .0024486 -1.29 0.196 -.0079685 .001¢
hstatusg .0675283 .0196091 3.44 0.001 .0290951 .105¢
hhincome .0005002 .0001646 3.04 0.002 .0001777 .000¢
educyear .0248111 .0029706 8.35 0.000 .0189889 .030¢
married .1235562 .0191419 6.45 0.000 .0860388 .161(
hisp -.1608825 .0339246 -4.74 0.000 -.2273735 -.094:

o Marginal effects: 0.043, -0.003, 0.067, 0.0005, 0.025, 0.124, -0.161
vs. Coefficients: 0.197, -0.015, 0.312, 0.0023, 0.114, 0.579, -0.810.

» Marginal effect here is about one-fifth the size of the coefficient.

@© A. Colin Cameron  U. of Calif. - Davis . 1A: Binary outcomes: Basics Aug 30 - Sept 3, 2010 9 /45



3. Binary Data Estimation Theory Overview

3. Binary data: Estimation Theory

@ For cross-section data

> distribution for binary y is clearly Bernoulli (binomial with one trial)
» maximum likelihood estimator (MLE) is clearly best estimator
> it is fine to use default standard errors (robust is not needed).

@ The main complications are

> different models arise due to different specifications for Prly; = 1|x;]
> interpretation of model estimates is complicated as nonlinear model

* emphasize marginal effects and parameter interpretation.
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3. Binary Data Estimation Theory iid case

Estimation: iid case

@ Begin with coin toss example of introductory statistics.

» y =1 denotes heads and y = 0 denotes tails.
> p denotes the probability of a head (y = 1) on one coin toss.

» Then
Prly=1] =p
Prly=0 =1-p.
» The mean and variance are
Ely] = p
Vly] = p(1-p).

@ For N tosses y; is the it" of N independent realizations of head or tail.

» The MLE for p is the sample mean ¥,
i.e. the proportion of tosses that are heads
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ERCILEAPELEN ST TN EsA  Binary regression models

Estimation: Binary regression models

@ For economics examples p; varies across individuals via regressors x;

> e.g. work / no work
> e.g. commute by car / bus.

@ Specify model for the probability
Prly; = 1|xi] = pi = F(xiB),

where 0 < F(-) <1sothat 0 < p <1.
@ Single-index model

> parameters B appear only via single index x’B that is then transformed
to be between 0 and 1.

@ Choose F(-) to be a cumulative distribution function (c.d.f.).

> Logit model uses logistic c.d.f.: F(-) = A(+) with A(z) = e*/(1+ €%)
> Probit model uses standard normal c.d.f.: F(:) = ®(-).
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3. Binary Data Estimation Theory MLE

Estimation: Maximum Likelihood Estimation

@ Useful notation: The density can be written in compact notation as
i 1— i
f(yilxi) = p' (1 —pi)* "

o Likelihood is product of densities given independence over i:

LB) =TT, flilxi) =TTy Pl (1 — i)t

e MLE maximizes L(B) which is equivalent to maximize In L(B).
o Log-likelihood function:

InL(B) = In (H,'-Vzlp,-y"(l—pf)l‘”)
= Y n(pr(1—p)t )
= Y i+ (1—y)In(1—p)}
= Y {yiInF(B) + (1= yi) In(1 = F(xiB)) }
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3. Binary Data Estimation Theory MLE

o MLE B maximizes In L(B) if dIn L(B)/9B = 0. Some algebra:

(xﬁ)F'< XiB)x; — g F(XiB)xi |
R w?: 4o

i X + i i
=Xl (2 (ﬁ)l R >F/(Xf-ﬁ)xi}

F(x
=)y 1ﬁ '(x:B)x;i

dln
I aLﬁ(ﬁ) = ZII\LI

@ Resulting first-order conditions (where F'(z) = 0F(z)/dz).

n Yi— F(X;ﬁ) "X B)x: —
Ei:l F(X;ﬁ)(l— F(X:ﬁ))F( I,B) i 0

@ No explicit solution so use iterative gradient methods to compute E
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3. Binary Data Estimation Theory MLE

Consistency of MLE

@ What are weakest conditions for consistency?

> Analogy principle: B solving le-vzl h,-(B) = 0 is consistent for 8
if B solves the corresponding population moment condition

E[Z7_1 hi(B)] = 0.

@ The binary outcome model MLE solves

" Fixp
iU =PSB gy - Py~

> So a necessary and sufficient condition for consistency is

Elyilxi] = F(x;B).
» Consistent given correct specification of p; = E[y;|x;] = Pr[y; = 1|x;].

e Qualitatively similar to OLS in linear model: need E[y;|x;] correct.
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3. Binary Data Estimation Theory MLE

Asymptotic distribution of MLE

@ For correctly specified distribution the MLE

bt o (<[ T552)) |

@ Specializing to binary outcome MLE

o, )2 !
BuL ~ N [,B, <Z,N—1 ,_—I_((ll:'_),_—i)xixf) ] . Fi = F(xiB), F = F'(xif

o Default ML standard errors replace F(x:B) by F(xfB)

» For independent cross-section data there is no need for robust se's
» Reason: For binary data the distribution must be Bernoulli

The only possibly misspecification is of Prly; = 1|x;]

But then have more serious problem of inconsistency.
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3. Binary Data Estimation Theory RESJEIEHEIRTEE LS

Statistical inference

o Consider test of Hy : f = 0 against H, : B # 0.
o Wald test:

» w=pB/se(B) and reject if |w| > 1.96

» chisquared version rejects if w? > x%(1) = 3.84.
@ Likelihood ratio test

» LR = =2 [In(Lrest) — In(Lunrest)] and reject if LR > x2%:(1) = 3.84.
@ LM test or score test

> used when Hp model easier to estimate than H,
> used less here.

@ All three are asymptotically equivalent

» Wald is most often used.
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4. Binary data: Logit, Probit and OLS

o Logit model to begin with:
exfﬁ

,-=Pr,-:1x,-:Axf- = 7"
pr = Prlyi = 1xi) = AGB) =

» A(z) =€e?/(1+€e”) =1/(1+ e ?) is the logistic c.d.f.
» The derivative A’(z) = A(z)(1 — A(z)) is the logistic density.
» For this reason also called logistic regression model.

o Logit ML first-order conditions simplify to
Y. (vi = A(xiB))x; = 0.

> Residual y; — A(x}B) is orthogonal to regressors (like OLS).
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4. Binary Data Specific Models Logit

@ Logit estimates for private health insurance (repeats earlier)

. logit ins retire age hstatusg hhincome educyear married hisp

Iteration O: log Tikelihood = -2139.7712
Iteration 1: log likelihood = -1998.8563
Iteration 2: log likelihood = -1994.9129
Iteration 3: log Tikelihood = -1994.8784
Iteration 4: log Tikelihood = -1994.8784

Logistic regression Number of obs = 3206

LR chi2(7) = 289.79

prob > chi2 = 0.0000

Log Tikelihood = -1994.8784 Pseudo R2 = 0.0677

ins Coef. std. Err. z P>|z]| [95% Conf. Interval]

retire .1969297 .0842067 2.34 0.019 .0318875 .3619718

age -.0145955 .0112871 -1.29 0.196 -.0367178 .0075267

hstatusg .3122654 .0916739 3.41 0.001 .1325878 .491943

hhincome .0023036 .000762 3.02 0.003 .00081 .0037972

educyear .1142626 .0142012 8.05 0.000 .0864288 .1420963

married .578636 .0933198 6.20 0.000 .3957327 .7615394

hisp -.8103059 .1957522 -4.14  0.000 -1.193973 -.4266387

_cons -1.715578 .7486219 -2.29 0.022 -3.18285 -.2483064
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4. Binary Data Specific Models Probit

Probit model

@ Probit model specifies
pi = Prly; = 1|xi] = ®(xip).

» ®(z) = [*_ ¢(s)ds is the standard normal.

» The derivative q>’( ) = ¢(z) = (1/v/27) exp(—2%/2) is the standard
normal density function.

@ Probit ML first-order conditions do not simplify, unlike logit case

N o d(x ¢ (xiB) _
L= B gapc - o)~
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4. Binary Data Specific Models Probit

@ Probit estimates for private health insurance

. probit ins retire age hstatusg hhincome educyear married hisp

Iteration O: log likelihood = -2139.7712
Iteration 1 log Tikelihood = -1996.0367
Iteration 2: log likelihood = -1993.6288
Iteration 3 log Tikelihood = -1993.6237
Probit regression Number of obs = 3206
LR chi2(7) = 292.30
Prob > chi2 = 0.0000
Log likelihood = -1993.6237 pPseudo R2 = 0.0683
ins Coef. std. Err. z P>|z]| [95% Conf. Interval]
retire .1183567 .0512678 2.31 0.021 .0178737 .2188396
age -.0088696 .006899 -1.29 0.199 -.0223914 .0046521
hstatusg .1977357 .0554868 3.56 0.000 .0889836 .3064877
hhincome .001233 .0003866 3.19 0.001 .0004754 .0019907
educyear .0707477 .0084782 8.34 0.000 .0541308 .0873646
married .362329 .0560031 6.47 0.000 .2525651 .472093
hisp -.4731099 .1104385 -4.28 0.000 -.6895655 -.2566544
_cons -1.069319 .4580791 -2.33  0.020 -1.967138  -.1715009

@ Scaled differently to logit but similar t-statistics (see below).
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LS (7 bz dhiz
OLS for binary data

@ OLS regression of y; on x;.

» Then we are implicitly setting
pi = Prly; = 1|x;] = x;,

which has obvious weakness that p < 0 and p > 1 is possible.
> called the linear probability model.

@ Asymptotic distribution: use heteroskedastic robust standard errors

Bots ~ N [B, (X'X) IXEX(X'X) 7]

» where for X’EX use
Y —xiB)xix;  or Y xiB(1—xiB)xix]

> Need this as the error in y; = x}B + u; is intrinsically heteroskedastic,
since V[y;| = p;i(1 — p;) for a Bernoulli random variable.
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4. Binary Data Specific Models [NOIESRTIATEISAEIE)

@ OLS estimates for private health insurance

regress ins retire age hstatusg hhincome educyear married hisp, vce(robust)

Linear regression Number of obs = 3206
FC 7, 3198) = 58.98
Prob > F = 0.0000
R-squared = 0.0826
Root MSE = .46711

Robust
ins coef. std. Err. t P>|t]| [95% Conf. Interval]
retire .0408508 .0182217 2.24 0.025 .0051234 .0765782
age -.0028955 .0023254 -1.25 0.213 -.0074549 .0016638
hstatusg .0655583 .0190126 3.45 0.001 .0282801 .1028365
hhincome .0004921 .0001874 2.63 0.009 .0001247 .0008595
educyear .0233686 .0027081 8.63 0.000 .0180589 .0286784
married .1234699 .0186521 6.62 0.000 .0868987 .1600411
hisp -.1210059 .0269459 -4.49  0.000 -.1738389 -.068173
_cons .1270857 .1538816 0.83 0.409 -.1746309 .4288023
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CenyizErkan aii meskls
Compare logit, probit and OLS estimates

o Coefficients in different models are not directly comparable!
» Though the t-statistics are similar.
* compare coefficient estimates across models with default and robust standard e

. estimates table blogit bprobit bols blogitr bprobitr bolsr, ///
> stats(N 11) b(%7.3f) t(%7.2f) stfmt(%8.2f)

variable blogit bprobit bols blogitr bprobitr bolsr
retire 0.197 0.118 0.041 0.197 0.118 0.041
2.34 2.31 2.24 2.32 2.30 2.24
age -0.015 -0.009 -0.003 -0.015 -0.009 -0.003
-1.29 -1.29 -1.20 -1.32 -1.32 -1.25
hstatusg 0.312 0.198 0.066 0.312 0.198 0.066
3.41 3.56 3.37 3.40 3.57 3.45
hhincome 0.002 0.001 0.000 0.002 0.001 0.000
3.02 3.19 3.58 2.01 2.21 2.63
educyear 0.114 0.071 0.023 0.114 0.071 0.023
8.05 8.34 8.15 7.96 8.33 8.63
married 0.579 0.362 0.123 0.579 0.362 0.123
6.20 6.47 6.38 6.15 6.46 6.62
hisp -0.810 -0.473 -0.121 -0.810 -0.473 -0.121
-4.14 -4.28 -3.59 -4.18 -4.36 -4.49
_cons -1.716 -1.069 0.127 -1.716 -1.069 0.127
-2.29 -2.33 0.79 -2.36 -2.40 0.83
N 3206 3206 3206 3206 3206 3206
11 -1994.88 -1993.62 -2104.75 -1994.88 -1993.62 -2104.75

legend: b/t
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CRNET ETQADEL =R el MV [HE  Comparison of predicted probabilities

Compare predicted probabilities from models
o Predicted probabilities & YV | F(xfﬁ) for different models.

. * comparison of predicted probabilities from logit, probit and OLS
. quietly Togit ins retire age hstatusg hhincome educyear married hisp

. predict plogit, p

. quietly probit ins retire age hstatusg hhincome educyear married hisp
. predict pprobit, p

. quietly regress ins retire age hstatusg hhincome educyear married hisp
. quietly predict poLS

. summarize ins plogit pprobit pOLS

variable Obs Mean std. Dev. Min Max
ins 3206 .3870867 .4871597 0 1
plogit 3206 .3870867 .1418287 .0340215 .9649615
pprobit 3206 .3861139 .1421416 .0206445 .9647618
poLsS 3206 .3870867 .1400249 -.1557328  1.197223

@ Average probabilities are very close (and for logit and OLS = y).

@ Range similar for logit and probit but OLS gives p; < 0 and p; > 1.
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5. Binary Data Marginal Effects Definition

5. Binary Data: Marginal effects

o Coefficients in different models are not directly comparable!
@ Instead compare marginal effects across models

Prly = 1|x] = E[y = 1|x] = F(x'B).

with different models having different F(-).
o Marginal effect: ME; = dPr[y = 1|x]/dx; = 0F (x'B)/9x; is

ME; = F'(x'B) x ,Bj for general F(-)
A(X'B)(1—A(XB))B; logit model
= ¢(x'B)B; probit model
B, OLS

@ The marginal effect depends on

> the functional form of F and
> the evaluation point x
> the parameter B.
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BRI EABEIENVETEMEINS S AME, MEM and MER

Marginal effects: AME, MEM, and MER

o Consider three different marginal effects

» 1. AME: Average Marginal Effect for jth regressor
1Y 1Y
AME; = N;MEJ-: N_ZlF(x,ﬂ) x B
1= 1=

* For population AME compute the sample-weighted AME.
» 2. MEM: Marginal Effect at mean value x = X

MEM; = ME;(x =X) = F'(x'B) x [Sj.
» 3. MER: Marginal Effect at representative value x = x*
MER; = ME;(x = x") = F'(x"'B) x B.

@ These differ unless F(x'B) = x'B (the linear model).
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BRI EABEIENVETEMEINS S AME, MEM and MER

Marginal effects (continued)

@ Stata 11: MEs computed using new post-estimation command
margins
» AME: margins, dydx(x)
» MEM: margins, dydx(*) atmean
» MER: margins, dydx(*) at()

@ Stata 10: MEs computed using post-estimation commands mfx or
margeff

» AME: user-written command margeff
» MEM: Stata command mfx
» MER: Stata command mfx, at()

@ These commands available after most Stata estimation commands

> use margins if you have Stata 11
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Cogiimodel[example
@ AME compared to MEM for logit

» Stata 11 use margins, dydx(*) and margins, dydx(*) atmean.

* Marginal effects for logit: AME differs from MEM
. quietly logit ins retire age hstatusg hhincome educyear married hisp

. margeff

Average marginal effects on Prob(ins==1) after logit

ins Coef. std. Err. z P>|z]| [95% conf. Interval]
retire .0426943 .0181787 2.35 0.019 .0070647 .0783239
age -.0031693 .0024486 -1.29 0.196 -.0079685 .0016299
hstatusg .0675283 .0196091 3.44 0.001 .0290951 .1059615
hhincome .0005002 .0001646 3.04 0.002 .0001777 .0008228
educyear .0248111 .0029706 8.35 0.000 .0189889 .0306334
married .1235562 .0191419 6.45 0.000 .0860388 .1610736
hisp -.1608825 .0339246 -4.74  0.000 -.2273735 -.0943914
. mfx
Marginal effects after Togit
y = Pr(ins) (predict)
= .37283542
variable dy/dx std. Err. z P>|z| [ 95% C.I. ] X
retire* .0457255 .0194 2.36 0.018 .007711 .08374 .624766
age -.0034129 .00264 -1.29 0.196 -.008585 .001759  66.9139
hstatusg* .0716613 .02057 3.48 0.000 .031346 .111977 .704616
hhincome .0005386 .00018 3.02 0.003 .000189 .000888  45.2639
educyear .0267179 .0033 8.09 0.000 .020245 .033191  11.8986
married* .1295601 .01974 6.56 0.000 .090862 .168259 .733001
hisp* -.1677028 .03418 -4.91 0.000 “-.23469 -.100715 .072676
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5. Binary Data Marginal Effects BEETE{ECEEN

Marginal effects: Approximations for logit and probit
o In general: ME; = F'(X'B) x B;.
» For OLS: ME; = B;.
> For logit: ME; < 0.25[3j
* reason: F'(x'B) = A(XB)(1— A(x'B)) < 0.25.
» For probit: ME; < 0.4OBJ-
* reason: F'(X'B) = ¢(xX'B) < (1/+/27) ~ 0.40.

@ This leads to the following rule of thumb for slope parameters

:BLogit = 4"BOLS
Prrobit = 2:5BoLs
:BLogit = 1'618Probit'

e For logit only a useful approximation is ME; ~ y(1 —y)Bj.
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Stz madkls
Marginal effects: Single-index models

@ Single-index model: nonlinear model with
Ely[x] = Prly = 1|x] = F(x'B).

> E[y|x] is a transformation F(-) of a linear combination of the
regressors.
> Logit and probit are examples.

@ All marginal effects are the same multiple of the relevant parameter:

_ 9E[y[x]

ME; = =5

= F/(X/,B).Bj-

» 1. Sign of ﬁj equals the sign of ME; if F(-) is monotonic increasing.
» 2. If ﬁj is two times B, then ME; is two times ME,.

ME; _ F'(XB)B; B,
MEx  F'(XB)Br B
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Odds ratio interpretation for logit
Marginal effects: Odds ratio interpretation for logit

e Odds ratio: p/(1 — p) measures the probability that y = 1 relative to
the probability that y = 0.

» E.g. y =1 denotes survival and y = 0 denotes death.
» QOdds ratio = 2 means odds of survival are twice those of death.

o Logit model

_ exp(X'B) P oy
~ 1+exp(X'B) = l—p_ep( p)

> Then o(p/(1—p))/0x; = exp(x'B) x B; = (p/(1—p)) x B;.
» So B; = 0.1 means a one unit change in x; increases the odds ratio by

a multiple 0.1. R
> More precisely the odds ratio is multiplied by exp(p;).

* reason: If x; increases by 1 then
p/(1—p) =exp(xX’B+1x B;) = exp(B;) exp(x'B).

» Stata command logistic reports exponentiated coefficients.
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6. Binary Data: Which binary choice model?

@ Theoretically it depends on the unknown data generating process.

e Key choice is of p; = F(x!B).

@ Unlike other ML applications the distribution is determined solely by
pi, so this is only possible misspecification.

o If F(-) in pj = F(x}B) is misspecified then MLE is inconsistent.

o But provided p; is still of single-index form p; = F(x/B), then
choosing the wrong function F effects all slope parameters equally,
and the ratio of slope parameters is constant across the models.
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6. Binary Data: Which Model?

@ Logit: binary model most often used by statisticians.

> Logit generalizes simply to multinomial data (> two outcomes).

Probit: binary model most often used by economists.

> Probit is motivated by a latent normal random variable.
> Probit generalizes to Tobit models and multinomial probit.

Empirically: logit or probit are similar

» give similar predictions and marginal effects
» greatest difference is in prediction of probabilities close to 0 or 1.

o Complementary log-odds model:

> also a possibility when most outcomes are 0 or 1.

OLS: can be useful for preliminary data analysis

» for individual level prediction should use probit or logit
» for computing average marginal effects Angrist and Pischke (2009)
argue that OLS is okay.
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7. Binary Data Model Diagnostics ONaE

7. Binary Data: Model Diagnostics

@ Diagnostics for nonlinear model are not so clear cut.

> There are several measures of model adequacy.

» Many are very specific to binary outcome models.
» There is no single best measure.

> See Amemiya (1981) and Maddala (1983).

@ Approaches detailed below:

» 1. R-squared measures
» 2. Compare y with y.
» 3. Compare predicted Pr[y = 1] with actual Pr[y = 1].
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e s [ egrer
Model Diagnostics: McFadden's R-Squared

@ There are many R-squareds for binary models as R? in linear model
has many interpretations.
@ Best is a measure due to McFadden (1974)

In Lﬁt

R?>=1
|nL0’

> In Ls; = log-likelihood in the fitted model
> In Ly is the log-likelihood in the intercept-only model

@ This R? should be only used for discrete choice models.
> Aside: In other nonlinear models instead use

In Lmax —In Lfit - In Lfit —In Lo

R2. —1— —
RG InLmax —INLg  InLmax — InLo’

where Lmax is the maximum possible value of the log-likelihood.
» For binary outcome models In L3x = 0, so RI%G = McFadden's R2.

o For easy interpretation use Corly, p| where B; = F(x/B).
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Qs pradEen e y=1
Model Diagnostics: Correct Prediction that y=1

@ Many measures compare predicted y with y.
@ The problem is in defining a rule for when y = 1.

» Obvious is ¥ = 1 when p = F(x'B) > 0.5.
» But this can yield y = 1 all the time if most of the sample has y =1
(or y = 0 all the time if most of the sample has y = 0).

@ The receiver operator characteristics (ROC) curve does this for
different thresholds

-~

» for 0 < ¢ < 1 recompute yj(c) =1 when p; = F(x;B) > ¢ and
yi(c) = 0 otherwise.

» plot the fraction of true positives against false positives

> also called plot sensitivity against (1 - specificity).

> departures from a 45 degree line are preferred.
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Qs pradEen e y=1
Model Diagnostics: Correct Prediction of Pr[y=1]

e Can compare predicted Pr[y = 1] with y.
@ Doing this on average is not helpful over the entire sample.
» For logit:
ZIN:]_(yi = A(x]
= YN (yi— A(X;B)) =0 if regressors include intercept
= Frlip=y where p; = A(x;B).
> And probit in practice comes close to this.

@ More useful for comparisons with subsamples or out of sample

» Do a generalized chi-square goodness-of-fit test.
» Stata post-estimation command gof.
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8. Binary Data Index Function

8. Binary data: Index function model

@ Index function model

> gives a way to interpret the function F(-) in a binary model.
» generalizes to ordered multinomial models and Tobit models.

@ Specify a regression model for latent variable y*
v =xB+u.
@ This cannot be estimated as y* is not observed. Instead we observe
1 ify*>0
Y= { 0 ify* <0

» The choice of 0 as the threshold is a normalization.

@ Examples:

> y* is tendency to work - we observe only whether or not work (y = 1)
» y* is a propensity to commute by public transit - we observe only
whether or not the public transit is used (y = 1).
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8. Binary Data Index Function Resulting binary outcome

Index function model: resulting binary outcome

@ QOutcome probability: Suppressing conditioning on x :

Prly =1] = Pr[y* > 0]
=Pr[xX'f+u>0]
= Pr[—u < X'B]
= F(X'B),

> F is the c.d.f. of —u (equals c.d.f. of u if density symmetric about 0).

@ Probit model: Assume u ~ N[0, 1]. Then
Prly = 1] = ®(x'B).
o Logit model: Assume u ~ logistic. Then

Prly = 1] = A(X'B) = exp(x'B) /[1 + exp(x'B)].
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8. Binary Data Index Function Simulation example

@ Probit simulation: y* =1+ x+ u, u ~ N0,1], x ~ N0, 1].
And y =1 if y* > 0 and y = 0 otherwise. N = 200.

. * Index function model to generate probit
. clear

. quietly set obs 200

. quietly generate x = rnormal(0,1)

. quietly generate ystar = 1 + 1*x + rnormal(0,1)
. quietly generate y = ystar > 0

. summarize y x

variable } Obs Mean std. Dev. Max

y 200 .71 .4549007 0 1

X 200 -.1005735 1.029603 -2.830635 2.679533

. probit y x, nolog

Probit regression Number of obs = 200
LR chi2(1) = 78.06
Prob > chi2 = 0.0000
Log Tikelihood = -81.398245 Pseudo R2 = 0.3241
y Coef. std. Err. z P>|z]| [95% conf. Interval]
X 1.099966 .1538048 7.15 0.000 .7985144 1.401418
_cons .9806923 .1403632 6.99 0.000 .7055855 1.255799
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9. Binary Data: Additive Random Utility Model

@ The additive random utility model (ARUM)

» generalizes to unordered multivariate models.
@ Consumer choice: consumer selects alternative with highest utility.
@ Specify the utilities of alternatives 0 and 1 to be

Uo = Vo + &0
U=WVi+e

» V{ and V; are deterministic components of utility.
(The dependence on regressors is detailed below).
> &g and €7 are random components of utility.

@ We observe y =1 if U; > Uy
andy:0ifU1§ Uo.
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9. Binary Data Additive Random Utility Model Binary outcome

ARUM: Binary outcome

@ Outcome probability: Suppressing dependence on x

Prly =1] = Pr[U; > U]
= Pr[Vl +e > W +So]
= Pr[ﬁo —g <V — Vo]
=F(V1 — W),

where F is the c.d.f. of (g9 —¢1).
e Binary probit: gy and ¢&; are joint normal with V[eg — ;1] = 1.
@ Binary logit: €y and €; are type | extreme value distributed with
f(e) = e “exp(—e¢), as then (gg — ¢1) is logistic distributed.
@ The random component ¢ in the utility model is needed.

» Otherwise, choice is deterministic with e.g. alternative 1 always chosen
if Vi > W.
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ARUM: Regressors

@ Distinguish between two types of regressors

> z;; alternative-varying regressors e.g. price may vary over alternatives
> w, case-specific regressors (or alternative-invariant) e.g. race or gender.

@ Then deterministic component of utility:
Vi = zf-ja —I—wf'yj, j=01,

where coefficients

» u does not vary with alternative
> 7, does vary with the alternatives.

@ Qutcome probability:
Priyi =1] = F(Vi1 — Vi)
F((zin — zio)' & + wi(71 — 7%0))-

> This is earlier model with x'B = (zj1 — zjo) & + W} (y; — 79)-
» Case-specific regressors: only difference («; — ) can be identified.
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10. References

10. Some References

@ The material is covered in graduate level texts including
» CT(2005) MMA chapter 14 and CT(2009) MUS chapter 14
» Wooldridge, J.M. (2002), Econometric Analysis of Cross Section and

Panel Data, MIT Press.
> Greene, W.H. (2007), Econometric Analysis, Prentice-Hall, Sixth

edition.

@ A classic book is
» Maddala, G.S. (1986), Limited-Dependent and Qualitative Variables in
Econometrics, Cambridge University Press.
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