1A: Binary outcomes: Basics

© A. Colin Cameron U. of Calif. - Davis

OeNB Summer School 2010
Microeconometrics
Oesterreichische Nationalbank (OeNB), Vienna, Austria

Based on
A. Colin Cameron and Pravin K. Trivedi,
Microeconometrics: Methods and Applications (MMA), ch.14
Microeconometrics using Stata (MUS), ch.14.
Data examples are from MUS.

Aug 30 - Sept 3, 2010

1. Introduction

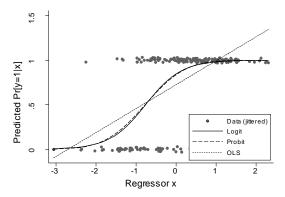
- Discrete outcome or qualitative response models:
 y takes only a finite number of discrete values (categorical data).
 - Binary outcome models: only two possible outcomes.
 - ★ Without loss of generality we let these values be 1 and 0.
 - ***** We model $Pr[y = 1|\mathbf{x}]$ using logit and probit models.
- Binary logit and probit models are nonlinear models
 - We illustrate the complications that arise with a nonlinear model.
- Other limited dependent variable models are
 - Multinomial outcome models: m possible outcomes.
 - ★ We model $Pr[y = j | \mathbf{x}]$ for j = 1, ..., m.
 - Censored and truncated models (Tobit)
 - ★ Considerably more difficult conceptually.
 - \star Sample is not reflective of the population (selection on y)
 - * Standard methods rely on strong distributional assumptions.

Outline

- Introduction
- ② Binary data: Examples
- Binary data: Estimation
- Binary data: Logit, probit, and OLS
- Sinary data: Marginal effects
- Sinary data: Which model?
- Binary data: Model diagnostics
- Binary data: Index function model
- Binary data: Additive random utility model

2. Binary Data: Examples

- First: a single regressor example allows a nice plot.
- Compare predictions of Pr[y = 1|x] from logit, probit and OLS.
 - Generated data followed by Stata command logit y x
 - Scatterplot of y = 0 or 1 on scalar regressor x (y is jittered).



Logit ≃ probit, while OLS predicts outside the (0,1) interval!

Data Example: Private health insurance [MUS ch.14.4]

- ins=1 if have private health insurance.
- Summary statistics (sample is 50-86 years from 2000 HRS)
 - . describe ins retire age hstatusg hhincome educyear married hisp

variable name	storage type		value label	variable label
ins retire age hstatusg hhincome educyear married hisp	double float float double double	%12.0g %12.0g %9.0g		1 if have private health insurance 1 if retired age in years 1 if health status good of better household annual income in \$000's years of education 1 if married 1 if hispanic

. summarize ins retire age hstatusg hhincome educyear married hisp

Variable	Obs	Mean	Std. Dev.	Min	Max
ins	3206	.3870867	.4871597	0	1
retire	3206	.6247661	.4842588	0	1
age	3206	66.91391	3.675794	52	86
hstatusg	3206	.7046163	.4562862	0	1
hhincome	3206	45.26391	64.33936	0	1312.124
educyear	3206	11.89863	3.304611	0 0 0	17
married	3206	.7330006	.442461		1
hisp	3206	.0726762	.2596448		1

- Summary statistics: by whether or not have private health insurance.
 - . bysort ins: summarize retire age hstatusg hhincome educyear married hisp, sep(0)
 - \rightarrow ins = 0

Variable	Obs	Mean	Std. Dev.	Min	Max
retire	1965	.5938931	.49123	0	1
age hstatusg	1965 1965	66.8229 .653944	3.851651 .4758324	52	86
hhincome	1965	37.65601	58.98152	0	1197.704
educyear	1965	11.29313	3.475632	0	17
married	1965	.6814249	.4660424	0	1
hisp	1965	.1007634	.3010917	0	1

 \rightarrow ins = 1

Max	Min	Std. Dev.	Mean	Obs	Variable
1	0	.469066	.6736503	1241	retire
82	53	3.375173	67.05802	1241	age
1	0	.4110914	.7848509	1241	hstatusg
1312.124	.124	70.3737	57.31028	1241	hhincome
17	2	2.755311	12.85737	1241	educyear
1	0	.3887253	.8146656	1241	married
1	0	.1656193	.0282031	1241	hisp

• ins=1 more likely if retired, older, good health status, richer, more educated, married and nonhispanic.

Example: Logit model

ullet Probability that $y_i=1$ given regressors is specified to be

$$\mathsf{Pr}[y_i = 1 | \mathbf{x}_i] = \Lambda(\mathbf{x}_i' \boldsymbol{\beta}) = \frac{\mathsf{exp}(\mathbf{x}_i' \boldsymbol{\beta})}{1 + \mathsf{exp}(\mathbf{x}_i' \boldsymbol{\beta})}.$$

- Clearly $0 < \Pr[y_i = 1 | \mathbf{x}_i] < 1$.
- MLE $\widehat{\boldsymbol{\beta}}$ is shown below to solve

$$\sum_{i=1}^{n} (y_i - \Lambda(\mathbf{x}_i'\boldsymbol{\beta}))\mathbf{x}_i = \mathbf{0}.$$

- ightharpoonup This is nonlinear in eta, so need to use iterative estimation procedure.
- Marginal effect of a change in the j^{th} regressor is

$$\mathsf{ME}_{j} = \frac{\partial \mathsf{Pr}[y=1|\mathbf{x}]}{\partial x_{j}} = \Lambda'(\mathbf{x}'\boldsymbol{\beta})\beta_{j} = \Lambda(\mathbf{x}'\boldsymbol{\beta})(1 - \Lambda(\mathbf{x}'\boldsymbol{\beta}))\beta_{j}$$

- This varies with the evaluation point x
- $\qquad \qquad \textbf{This does not equal } \beta_j, \, \textbf{though sign}[\mathsf{ME}_j] = \mathsf{sign}[\beta_j] \, .$

Stata command logit gives the logit MLE.

. * Logit regression

Logistic regression

. logit ins retire age hstatusg hhincome educyear married hisp

```
Iteration 0: log likelihood = -2139.7712
Iteration 1: log likelihood = -1998.8563
Iteration 2: log likelihood = -1994.8784
Iteration 3: log likelihood = -1994.8784
Iteration 4: log likelihood = -1994.8784
```

Log likelihood = -1994.8784

Number of obs = 3206 LR chi2(7) = 289.79 Prob > chi2 = 0.0000 Pseudo R2 = 0.0677

	ins	Coef.	Std. Err.	z	P> Z	[95% Conf.	<pre>Interval]</pre>
•	retire age hstatusg hhincome educyear married hisp _cons	.1969297 0145955 .3122654 .0023036 .1142626 .578636 8103059 -1.715578	.0842067 .0112871 .0916739 .000762 .0142012 .0933198 .1957522 .7486219	2.34 -1.29 3.41 3.02 8.05 6.20 -4.14 -2.29	0.019 0.196 0.001 0.003 0.000 0.000 0.000 0.022	.0318875 0367178 .1325878 .00081 .0864288 .3957327 -1.193973 -3.18285	.3619718 .0075267 .491943 .0037972 .1420963 .7615394 4266387 2483064

• All except perhaps hstatusg have the expected sign.

- The average marginal effect AME $_j = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \Pr[y_i = 1 | \mathbf{x}_i]}{\partial x_i}$
 - ▶ In Stata 11 use command margins, dydx(*) after logit
 - ▶ In Stata 10 use add-on command margeff after logit.
 - . margeff

Average marginal effects on Prob(ins==1) after logit

ins	Coef.	Std. Err.	z	P> z	[95% Conf.	Inter
retire age hstatusg hhincome educyear married hisp	.0426943 0031693 .0675283 .0005002 .0248111 .1235562 1608825	.0181787 .0024486 .0196091 .0001646 .0029706 .0191419	2.35 -1.29 3.44 3.04 8.35 6.45 -4.74	0.019 0.196 0.001 0.002 0.000 0.000	.0070647 0079685 .0290951 .0001777 .0189889 .0860388 2273735	.078 .001 .105 .000 .030 .161

- Marginal effects: 0.043, -0.003, 0.067, 0.0005, 0.025, 0.124, -0.161 vs. Coefficients: 0.197, -0.015, 0.312, 0.0023, 0.114, 0.579, -0.810.
 - Marginal effect here is about one-fifth the size of the coefficient.

3. Binary data: Estimation Theory

- For cross-section data
 - distribution for binary y is clearly Bernoulli (binomial with one trial)
 - maximum likelihood estimator (MLE) is clearly best estimator
 - it is fine to use default standard errors (robust is not needed).
- The main complications are
 - different models arise due to different specifications for $Pr[y_i = 1 | \mathbf{x}_i]$
 - interpretation of model estimates is complicated as nonlinear model
 - emphasize marginal effects and parameter interpretation.

Estimation: iid case

- Begin with coin toss example of introductory statistics.
 - y = 1 denotes heads and y = 0 denotes tails.
 - p denotes the probability of a head (y = 1) on one coin toss.
 - Then

$$Pr[y = 1] = p$$

 $Pr[y = 0] = 1 - p$.

▶ The mean and variance are

$$E[y] = p$$

$$V[y] = p(1-p).$$

- For N tosses y_i is the i^{th} of N independent realizations of head or tail.
 - The MLE for p is the sample mean ȳ, i.e. the proportion of tosses that are heads

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q ()

Estimation: Binary regression models

- For economics examples p_i varies across individuals via regressors \mathbf{x}_i
 - ► e.g. work / no work
 - e.g. commute by car / bus.
- Specify model for the probability

$$\Pr[y_i = 1 | \mathbf{x}_i] = p_i = F(\mathbf{x}_i' \boldsymbol{\beta}),$$

where $0 \le F(\cdot) \le 1$ so that $0 \le p \le 1$.

- Single-index model
 - \triangleright parameters β appear only via single index $\mathbf{x}'\beta$ that is then transformed to be between 0 and 1.
- Choose $F(\cdot)$ to be a cumulative distribution function (c.d.f.).
 - ▶ Logit model uses logistic c.d.f.: $F(\cdot) = \Lambda(\cdot)$ with $\Lambda(z) = e^z/(1+e^z)$
 - ▶ Probit model uses standard normal c.d.f.: $F(\cdot) = \Phi(\cdot)$.

Aug 30 - Sept 3, 2010

Estimation: Maximum Likelihood Estimation

• Useful notation: The density can be written in compact notation as

$$f(y_i|\mathbf{x}_i) = p_i^{y_i}(1-p_i)^{1-y_i}.$$

• **Likelihood** is product of densities given independence over *i*:

$$L(\beta) = \prod_{i=1}^{N} f(y_i | \mathbf{x}_i) = \prod_{i=1}^{N} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

- MLE maximizes $L(\beta)$ which is equivalent to maximize $\ln L(\beta)$.
- Log-likelihood function:

$$\begin{aligned} \ln L(\beta) &= \ln \left(\prod_{i=1}^{N} p_i^{y_i} (1 - p_i)^{1 - y_i} \right) \\ &= \sum_{i=1}^{N} \ln \left(p_i^{y_i} (1 - p_i)^{1 - y_i} \right) \\ &= \sum_{i=1}^{N} \left\{ y_i \ln p_i + (1 - y_i) \ln (1 - p_i) \right\} \\ &= \sum_{i=1}^{N} \left\{ y_i \ln F(\mathbf{x}_i' \beta) + (1 - y_i) \ln (1 - F(\mathbf{x}_i' \beta)) \right\}. \end{aligned}$$

• MLE $\widehat{m{\beta}}$ maximizes $\ln L(m{\beta})$ if $\partial \ln L(m{\beta})/\partial m{\beta} = {m{0}}$. Some algebra:

$$\begin{array}{ll} \frac{\partial \ln L(\beta)}{\partial \beta} &= \sum_{i=1}^{N} \left\{ \frac{y_i}{F(\mathbf{x}_i'\boldsymbol{\beta})} F'(\mathbf{x}_i'\boldsymbol{\beta}) \mathbf{x}_i - \frac{1-y_i}{1-F(\mathbf{x}_i'\boldsymbol{\beta})} F'(\mathbf{x}_i'\boldsymbol{\beta}) \mathbf{x}_i \right\} \\ &= \sum_{i=1}^{n} \left\{ \left(\frac{y_i}{F(\mathbf{x}_i'\boldsymbol{\beta})} - \frac{1-y_i}{1-F(\mathbf{x}_i'\boldsymbol{\beta})} \right) F'(\mathbf{x}_i'\boldsymbol{\beta}) \mathbf{x}_i \right\} \\ &= \sum_{i=1}^{N} \left\{ \left(\frac{y_i(1-F(\mathbf{x}_i'\boldsymbol{\beta})) + (1-y_i)F(\mathbf{x}_i'\boldsymbol{\beta})}{F(\mathbf{x}_i'\boldsymbol{\beta})1-F(\mathbf{x}_i'\boldsymbol{\beta})} \right) F'(\mathbf{x}_i'\boldsymbol{\beta}) \mathbf{x}_i \right\} \\ &= \sum_{i=1}^{n} \frac{y_i-F(\mathbf{x}_i'\boldsymbol{\beta})}{F(\mathbf{x}_i'\boldsymbol{\beta})(1-F(\mathbf{x}_i'\boldsymbol{\beta}))} F'(\mathbf{x}_i'\boldsymbol{\beta}) \mathbf{x}_i \end{array}$$

• Resulting first-order conditions (where $F'(z) = \partial F(z)/\partial z$).

$$\sum_{i=1}^n \frac{y_i - F(\mathbf{x}_i'\boldsymbol{\beta})}{F(\mathbf{x}_i'\boldsymbol{\beta})(1 - F(\mathbf{x}_i'\boldsymbol{\beta}))} F'(\mathbf{x}_i'\boldsymbol{\beta})\mathbf{x}_i = \mathbf{0}.$$

ullet No explicit solution so use iterative **gradient methods** to compute $\widehat{oldsymbol{eta}}$.

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

Consistency of MLE

- What are weakest conditions for consistency?
 - Analogy principle: $\widehat{\boldsymbol{\beta}}$ solving $\sum_{i=1}^{N}\mathbf{h}_{i}(\widehat{\boldsymbol{\beta}})=\mathbf{0}$ is consistent for $\boldsymbol{\beta}$ if $\boldsymbol{\beta}$ solves the corresponding population moment condition $\mathbb{E}[\sum_{i=1}^{n}\mathbf{h}_{i}(\boldsymbol{\beta})]=\mathbf{0}$.
- The binary outcome model MLE solves

$$\sum_{i=1}^{N} (y_i - F(\mathbf{x}_i'\boldsymbol{\beta})) \frac{F'(\mathbf{x}_i'\boldsymbol{\beta})}{F(\mathbf{x}_i'\boldsymbol{\beta})(1 - F(\mathbf{x}_i'\boldsymbol{\beta}))} \mathbf{x}_i = \mathbf{0}.$$

▶ So a necessary and sufficient condition for consistency is

$$\mathsf{E}[y_i|\mathbf{x}_i] = F(\mathbf{x}_i'\boldsymbol{\beta}).$$

- ▶ Consistent given correct specification of $p_i = E[y_i|\mathbf{x}_i] = Pr[y_i = 1|\mathbf{x}_i]$.
- Qualitatively similar to OLS in linear model: need $E[y_i|\mathbf{x}_i]$ correct.

ロト (個) (重) (重) (重) のの()

Asymptotic distribution of MLE

For correctly specified distribution the MLE

$$\widehat{\boldsymbol{\beta}}_{\mathsf{ML}} \stackrel{a}{\sim} \mathcal{N} \left[\boldsymbol{\beta}, \ \left(-\mathsf{E} \left[\frac{\partial^2 \ln L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}} \right] \right)^{-1} \right]$$

Specializing to binary outcome MLE

$$\widehat{\boldsymbol{\beta}}_{\mathsf{ML}} \stackrel{\text{\tiny a}}{\sim} \mathcal{N} \left[\boldsymbol{\beta}, \ \left(\sum_{i=1}^{N} \frac{(F_i')^2}{F_i(1-F_i)} \mathbf{x}_i \mathbf{x}_i' \right)^{-1} \right], \ F_i = F(\mathbf{x}_i' \boldsymbol{\beta}), \ F_i' = F'(\mathbf{x}_i' \boldsymbol{\beta})$$

- Default ML standard errors replace $F(\mathbf{x}_i'\boldsymbol{\beta})$ by $F(\mathbf{x}_i'\hat{\boldsymbol{\beta}})$.
 - ► For independent cross-section data there is no need for robust se's
 - Reason: For binary data the distribution must be Bernoulli The only possibly misspecification is of $Pr[y_i = 1 | \mathbf{x}_i]$ But then have more serious problem of inconsistency.

Statistical inference

- Consider test of $H_0: \beta = 0$ against $H_a: \beta \neq 0$.
- Wald test.

 - $w = \widehat{\beta}/se(\widehat{\beta})$ and reject if |w| > 1.96• chisquared version rejects if $w^2 > \chi^2_{.05}(1) = 3.84$.
- Likelihood ratio test
 - ▶ LR = $-2*[\ln(L_{rest}) \ln(L_{unrest})]$ and reject if LR $> \chi^2_{\text{NF}}(1) = 3.84$.
- LM test or score test
 - used when H_0 model easier to estimate than H_a
 - used less here.
- All three are asymptotically equivalent
 - Wald is most often used.

4. Binary data: Logit, Probit and OLS

Logit model to begin with:

$$p_i = \mathsf{Pr}[y_i = 1 | \mathbf{x}_i] = \Lambda(\mathbf{x}_i' \boldsymbol{\beta}) = rac{e^{\mathbf{x}_i' \boldsymbol{\beta}}}{1 + e^{\mathbf{x}_i' \boldsymbol{\beta}}}.$$

- $\Lambda(z) = e^z/(1+e^z) = 1/(1+e^{-z})$ is the logistic c.d.f.
- ▶ The derivative $\Lambda'(z) = \Lambda(z)(1 \Lambda(z))$ is the logistic density.
- For this reason also called logistic regression model.
- Logit ML first-order conditions simplify to

$$\sum_{i=1}^{n} (y_i - \Lambda(\mathbf{x}_i'\boldsymbol{\beta}))\mathbf{x}_i = \mathbf{0}.$$

▶ Residual $y_i - \Lambda(\mathbf{x}_i'\boldsymbol{\beta})$ is orthogonal to regressors (like OLS).

- (ロ) (個) (差) (差) (差) (2) (2) (2)

Number of obs

Logit estimates for private health insurance (repeats earlier)

. logit ins retire age hstatusg hhincome educyear married hisp

```
Tteration 0:
               log likelihood = -2139.7712
Iteration 1:
              log likelihood = -1998.8563
Iteration 2:
              log likelihood = -1994.9129
              loa likelihood = -1994.8784
Iteration 3:
Iteration 4:
               log likelihood = -1994.8784
```

Logistic regression

Log likelihood = -1994.8784

LR chi2(7) 289.79 Prob > chi2 0.0000 0.0677 Pseudo R2

ins	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
retire age hstatusg hhincome educyear married hisp _cons	.1969297	.0842067	2.34	0.019	.0318875	.3619718
	0145955	.0112871	-1.29	0.196	0367178	.0075267
	.3122654	.0916739	3.41	0.001	.1325878	.491943
	.0023036	.000762	3.02	0.003	.00081	.0037972
	.1142626	.0142012	8.05	0.000	.0864288	.1420963
	.578636	.0933198	6.20	0.000	.3957327	.7615394
	8103059	.1957522	-4.14	0.000	-1.193973	4266387
	-1.715578	.7486219	-2.29	0.022	-3.18285	2483064

3206

Probit model

Probit model specifies

$$p_i = \Pr[y_i = 1 | \mathbf{x}_i] = \Phi(\mathbf{x}_i' \boldsymbol{\beta}).$$

- $\Phi(z) = \int_{-\infty}^{z} \phi(s) ds$ is the standard normal.
- ► The derivative $\Phi'(z) = \phi(z) = (1/\sqrt{2\pi}) \exp(-z^2/2)$ is the standard normal density function.
- Probit ML first-order conditions do not simplify, unlike logit case

$$\sum_{i=1}^{N} (y_i - \Phi(\mathbf{x}_i'\boldsymbol{\beta})) \frac{\phi(\mathbf{x}_i'\boldsymbol{\beta})}{\Phi(\mathbf{x}_i'\boldsymbol{\beta})(1 - \Phi(\mathbf{x}_i'\boldsymbol{\beta}))} \mathbf{x}_i = \mathbf{0}.$$

© A. Colin Cameron U. of Calif. - Davis

Probit estimates for private health insurance

. probit ins retire age hstatusg hhincome educyear married hisp

```
Iteration 0: log likelihood = -2139.7712

Iteration 1: log likelihood = -1996.0367

Iteration 2: log likelihood = -1993.6288

Iteration 3: log likelihood = -1993.6237
```

	ins	Coef.	Std. Err.	z	P> Z	[95% Conf.	Interval]
_	retire age hstatusg hhincome educyear married hisp _cons	.1183567 0088696 .1977357 .001233 .0707477 .362329 4731099 -1.069319	.0512678 .006899 .0554868 .0003866 .0084782 .0560031 .1104385 .4580791	2.31 -1.29 3.56 3.19 8.34 6.47 -4.28 -2.33	0.021 0.199 0.000 0.001 0.000 0.000 0.000 0.020	.0178737 0223914 .0889836 .0004754 .0541308 .2525651 6895655 -1.967138	.2188396 .0046521 .3064877 .0019907 .0873646 .472093 2566544 1715009

• Scaled differently to logit but similar t-statistics (see below).

OLS for binary data

- OLS regression of y_i on \mathbf{x}_i .
 - Then we are implicitly setting

$$p_i = \Pr[y_i = 1 | \mathbf{x}_i] = \mathbf{x}_i' \boldsymbol{\beta},$$

which has obvious weakness that p < 0 and p > 1 is possible.

- called the linear probability model.
- Asymptotic distribution: use heteroskedastic robust standard errors

$$\widehat{oldsymbol{eta}}_{\mathsf{OLS}} \overset{ extstyle a}{\sim} \mathcal{N}\left[oldsymbol{eta},\, (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\Sigma\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}
ight]$$

• where for $\mathbf{X}'\widehat{\Sigma}\mathbf{X}$ use

$$\sum (y_i - \mathbf{x}_i' \widehat{\boldsymbol{\beta}})^2 \mathbf{x}_i \mathbf{x}_i' \qquad \text{or} \qquad \sum \mathbf{x}_i' \widehat{\boldsymbol{\beta}} (1 - \mathbf{x}_i' \widehat{\boldsymbol{\beta}}) \mathbf{x}_i \mathbf{x}_i'$$

Need this as the error in $y_i = \mathbf{x}_i' \boldsymbol{\beta} + u_i$ is intrinsically heteroskedastic, since $V[y_i] = p_i(1 - p_i)$ for a Bernoulli random variable.

OLS estimates for private health insurance

. regress ins retire age hstatusg hhincome educyear married hisp, vce(robust)

```
Linear regression

Number of obs = 3206
F( 7, 3198) = 58.98
Prob > F = 0.0000
R-squared = 0.0826
Root MSE = .46711
```

ins	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
retire	.0408508	.0182217	2.24	0.025	.0051234	.0765782
age	0028955	.0023254	-1.25	0.213	0074549	.0016638
hstatusg	.0655583	.0190126	3.45	0.001	.0282801	.1028365
hhincome	.0004921	.0001874	2.63	0.009	.0001247	.0008595
educyear	.0233686	.0027081	8.63	0.000	.0180589	.0286784
married	.1234699	.0186521	6.62	0.000	.0868987	.1600411
hisp	1210059	.0269459	-4.49	0.000	1738389	068173
_cons	.1270857	.1538816	0.83	0.409	1746309	.4288023

Compare logit, probit and OLS estimates

- Coefficients in different models are not directly comparable!
 - Though the t-statistics are similar.
 - . \star Compare coefficient estimates across models with default and robust standard ϵ . estimates table blogit bprobit bols blogitr bprobitr bolsr, ///
 > stats(N ll) b(%7.3f) t(%7.2f) stfmt(%8.2f)

Variable	blogit	bprobit	bols	blogitr	bprobitr	bolsr
retire	0.197	0.118	0.041	0.197	0.118	0.041
	2.34	2.31	2.24	2.32	2.30	2.24
age	-0.015	-0.009	-0.003	-0.015	-0.009	-0.003
-	-1.29	-1.29	-1.20	-1.32	-1.32	-1.25
hstatusg	0.312	0.198	0.066	0.312	0.198	0.066
-	3.41	3.56	3.37	3.40	3.57	3.45
hhincome	0.002	0.001	0.000	0.002	0.001	0.000
	3.02	3.19	3.58	2.01	2.21	2.63
educyear	0.114	0.071	0.023	0.114	0.071	0.023
•	8.05	8.34	8.15	7.96	8.33	8.63
married	0.579	0.362	0.123	0.579	0.362	0.123
	6.20	6.47	6.38	6.15	6.46	6.62
hisp	-0.810	-0.473	-0.121	-0.810	-0.473	-0.121
	-4.14	-4.28	-3.59	-4.18	-4.36	-4.49
_cons	-1.716	-1.069	0.127	-1.716	-1.069	0.127
	-2.29	-2.33	0.79	-2.36	-2.40	0.83
N	3206	3206	3206	3206	3206	3206
11	-1994.88	-1993.62	-2104.75	-1994.88	-1993.62	-2104.75
						Janandi k

Compare predicted probabilities from models

- Predicted probabilities $\frac{1}{N} \sum_{i=1}^{N} F(\mathbf{x}_{i}'\widehat{\boldsymbol{\beta}})$ for different models.
 - * Comparison of predicted probabilities from logit, probit and OLS
 - . quietly logit ins retire age hstatusg hhincome educyear married hisp
 - . predict plogit. p
 - . quietly probit ins retire age hstatusg hhincome educyear married hisp
 - . predict pprobit, p
 - . quietly regress ins retire age hstatusg hhincome educyear married hisp
 - . quietly predict pOLS
 - . summarize ins plogit pprobit pOLS

Max	Min	Std. Dev.	Mean	Obs	Variable
1	0	.4871597	.3870867	3206	ins
.9649615	.0340215	.1418287	.3870867	3206	plogit
.9647618	.0206445	.1421416	.3861139	3206	pprobit
1.197223	1557328	.1400249	.3870867	3206	pOLS

- Average probabilities are very close (and for logit and $OLS = \bar{y}$).
- Range similar for logit and probit but OLS gives $\widehat{p}_i < 0$ and $\widehat{p}_i > 1$.

5. Binary Data: Marginal effects

- Coefficients in different models are not directly comparable!
- Instead compare marginal effects across models

$$\Pr[y=1|\mathbf{x}] = \mathsf{E}[y=1|\mathbf{x}] = F(\mathbf{x}'\boldsymbol{\beta}).$$

with different models having different $F(\cdot)$.

• Marginal effect: $\mathsf{ME}_j = \partial \mathsf{Pr}[y=1|\mathbf{x}]/\partial x_j = \partial F(\mathbf{x}'\boldsymbol{\beta})/\partial x_j$ is

$$\begin{split} \mathsf{ME}_j &= F'(\mathbf{x}'\boldsymbol{\beta}) \times \beta_j & \text{for general } F(\cdot) \\ &= \left\{ \begin{array}{cc} \Lambda(\mathbf{x}'\boldsymbol{\beta})(1 - \Lambda(\mathbf{x}'\boldsymbol{\beta}))\beta_j & \text{logit model} \\ \phi(\mathbf{x}'\boldsymbol{\beta})\beta_j & \text{probit model} \\ \beta_i & \text{OLS} \end{array} \right. \end{split}$$

- The marginal effect depends on
 - ▶ the functional form of F and
 - ▶ the evaluation point x
 - the parameter β .

Marginal effects: AME, MEM, and MER

- Consider three different marginal effects
 - ▶ 1. AME: Average Marginal Effect for jth regressor

$$\mathsf{AME}_j = \frac{1}{N} \sum_{i=1}^N \mathsf{ME}_j = \frac{1}{N} \sum_{i=1}^N F'(\mathbf{x}_i' \widehat{\boldsymbol{\beta}}) \times \widehat{\boldsymbol{\beta}}_j$$

- ★ For population AME compute the sample-weighted AME.
- **2.** MEM: Marginal Effect at mean value $\mathbf{x} = \overline{\mathbf{x}}$

$$\mathsf{MEM}_j = \mathsf{ME}_j(\mathbf{x} = \overline{\mathbf{x}}) = F'(\overline{\mathbf{x}}'\widehat{\boldsymbol{\beta}}) \times \widehat{\boldsymbol{\beta}}_j.$$

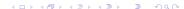
3. MER: Marginal Effect at representative value $\mathbf{x} = \mathbf{x}^*$

$$\mathsf{MER}_j = \mathsf{ME}_j(\mathbf{x} = \mathbf{x}^*) = F'(\mathbf{x}^{*'}\widehat{\boldsymbol{\beta}}) \times \widehat{\boldsymbol{\beta}}_j.$$

• These differ unless $F(\mathbf{x}'\boldsymbol{\beta}) = \mathbf{x}'\boldsymbol{\beta}$ (the linear model).

Marginal effects (continued)

- Stata 11: MEs computed using new post-estimation command margins
 - ► AME: margins, dydx(*)
 - ► MEM: margins, dydx(*) atmean
 - ► MER: margins, dydx(*) at()
- Stata 10: MEs computed using post-estimation commands mfx or margeff
 - ► AME: user-written command margeff
 - MEM: Stata command mfx
 - ► MER: Stata command mfx, at()
- These commands available after most Stata estimation commands
 - ▶ use margins if you have Stata 11



AME compared to MEM for logit

- ▶ Stata 11 use margins, dydx(*) and margins, dydx(*) atmean.
 - . * Marginal effects for logit: AME differs from MEM
 - . quietly logit ins retire age hstatusg hhincome educyear married hisp
 - . margeff

Average marginal effects on Prob(ins==1) after logit

ins	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
retire age hstatusg hhincome educyear married hisp	.0426943 0031693 .0675283 .0005002 .0248111 .1235562 1608825	.0181787 .0024486 .0196091 .0001646 .0029706 .0191419	2.35 -1.29 3.44 3.04 8.35 6.45 -4.74	0.019 0.196 0.001 0.002 0.000 0.000	.0070647 0079685 .0290951 .0001777 .0189889 .0860388 2273735	.0783239 .0016299 .1059615 .0008228 .0306334 .1610736

. mfx

Marginal effects after logit y = Pr(ins) (predict)

= 1,37283542

variable	dy/dx	Std. Err.	z	P> z	[95%	C.I.]	Х
retire*	.0457255	.0194	2.36	0.018	.007711	.08374	.624766
age	0034129	.00264	-1.29	0.196	008585	.001759	66.9139
hstatusg*	.0716613	.02057	3.48	0.000	.031346	.111977	.704616
hhincome	.0005386	.00018	3.02	0.003	.000189	.000888	45.2639
educyear	.0267179	.0033	8.09	0.000	.020245	.033191	11.8986
married*	.1295601	.01974	6.56	0.000	.090862	.168259	.733001
hisn*	1677028	.03418	-4.91	0.000	- 23469	- 100715	072676

Marginal effects: Approximations for logit and probit

- In general: $ME_i = F'(\mathbf{x}'\boldsymbol{\beta}) \times \beta_i$.
 - For OLS: $ME_i = \widehat{\beta}_i$.
 - For logit: $ME_i \leq 0.25 \hat{\beta}_i$
 - ★ reason: $F'(\mathbf{x}'\boldsymbol{\beta}) = \Lambda(\mathbf{x}'\boldsymbol{\beta})(1 \Lambda(\mathbf{x}'\boldsymbol{\beta})) < 0.25$.
 - For probit: $ME_i \leq 0.40 \hat{\beta}_i$
 - * reason: $F'(\mathbf{x}'\boldsymbol{\beta}) = \phi(\mathbf{x}'\boldsymbol{\beta}) < (1/\sqrt{2\pi}) \simeq 0.40.$
- This leads to the following rule of thumb for slope parameters

$$\begin{array}{lcl} \widehat{\beta}_{\mathsf{Logit}} & \simeq & 4\widehat{\beta}_{\mathsf{OLS}} \\ \widehat{\beta}_{\mathsf{Probit}} & \simeq & 2.5\widehat{\beta}_{\mathsf{OLS}} \\ \widehat{\beta}_{\mathsf{Logit}} & \simeq & 1.6\widehat{\beta}_{\mathsf{Probit}}. \end{array}$$

• For logit only a useful approximation is $\mathsf{ME}_i \simeq \bar{y}(1-\bar{y})\widehat{\beta}_i$.

Marginal effects: Single-index models

Single-index model: nonlinear model with

$$\mathsf{E}[y|\mathbf{x}] = \mathsf{Pr}[y=1|\mathbf{x}] = F(\mathbf{x}'\boldsymbol{\beta}).$$

- ▶ $E[y|\mathbf{x}]$ is a transformation $F(\cdot)$ of a linear combination of the regressors.
- Logit and probit are examples.
- All marginal effects are the same multiple of the relevant parameter:

$$\mathsf{ME}_j = \frac{\partial \mathsf{E}[y|\mathbf{x}]}{\partial x_j} = F'(\mathbf{x}'\boldsymbol{\beta})\beta_j.$$

- ▶ 1. Sign of β_i equals the sign of ME_i if $F(\cdot)$ is monotonic increasing.
- ▶ 2. If β_i is two times β_k then ME_j is two times ME_k.

$$\frac{\mathsf{ME}_j}{\mathsf{ME}_k} = \frac{F'(\mathbf{x}'\boldsymbol{\beta})\beta_j}{F'(\mathbf{x}'\boldsymbol{\beta})\beta_k} = \frac{\beta_j}{\beta_k}.$$

Marginal effects: Odds ratio interpretation for logit

- Odds ratio: p/(1-p) measures the probability that y=1 relative to the probability that y=0.
 - ▶ E.g. y = 1 denotes survival and y = 0 denotes death.
 - ▶ Odds ratio = 2 means odds of survival are twice those of death.
- Logit model

$$p = \frac{\exp(\mathbf{x}'\boldsymbol{\beta})}{1 + \exp(\mathbf{x}'\boldsymbol{\beta})} \quad \Rightarrow \quad \frac{p}{1 - p} = \exp(\mathbf{x}'\boldsymbol{\beta})$$

- ► Then $\partial(p/(1-p))/\partial x_j = \exp(\mathbf{x}'\boldsymbol{\beta}) \times \beta_j = (p/(1-p)) \times \beta_j$.
- So $\hat{\beta}_j = 0.1$ means a one unit change in x_j increases the odds ratio by a multiple 0.1.
- ▶ More precisely the odds ratio is multiplied by $\exp(\widehat{\beta}_i)$.
 - * reason: If x_j increases by 1 then $p/(1-p) = \exp(\mathbf{x}'\boldsymbol{\beta} + 1 \times \boldsymbol{\beta}_i) = \exp(\boldsymbol{\beta}_i) \exp(\mathbf{x}'\boldsymbol{\beta}).$
- ▶ Stata command logistic reports exponentiated coefficients.

6. Binary Data: Which binary choice model?

- Theoretically it depends on the unknown data generating process.
- Key choice is of $p_i = F(\mathbf{x}_i'\boldsymbol{\beta})$.
- Unlike other ML applications the distribution is determined solely by p_i, so this is only possible misspecification.
- If $F(\cdot)$ in $p_i = F(\mathbf{x}_i'\boldsymbol{\beta})$ is misspecified then MLE is inconsistent.
- But provided p_i is still of single-index form $p_i = F(\mathbf{x}_i'\boldsymbol{\beta})$, then choosing the wrong function F effects all slope parameters equally, and the ratio of slope parameters is constant across the models.

- Logit: binary model most often used by statisticians.
 - Logit generalizes simply to multinomial data (> two outcomes).
- Probit: binary model most often used by economists.
 - Probit is motivated by a latent normal random variable.
 - Probit generalizes to Tobit models and multinomial probit.
- Empirically: logit or probit are similar
 - give similar predictions and marginal effects
 - greatest difference is in prediction of probabilities close to 0 or 1.
- Complementary log-odds model:
 - also a possibility when most outcomes are 0 or 1.
- OLS: can be useful for preliminary data analysis
 - for individual level prediction should use probit or logit
 - for computing average marginal effects Angrist and Pischke (2009) argue that OLS is okay.

7. Binary Data: Model Diagnostics

- Diagnostics for nonlinear model are not so clear cut.
 - ► There are several measures of model adequacy.
 - Many are very specific to binary outcome models.
 - There is no single best measure.
 - ► See Amemiya (1981) and Maddala (1983).
- Approaches detailed below:
 - ▶ 1. R-squared measures
 - **2.** Compare \hat{y} with y.
 - ▶ **3.** Compare predicted $\widehat{\Pr}[y=1]$ with actual $\Pr[y=1]$.

Model Diagnostics: McFadden's R-Squared

- There are many R-squareds for binary models as R^2 in linear model has many interpretations.
- Best is a measure due to McFadden (1974)

$$R^2 = 1 - \frac{\ln L_{fit}}{\ln L_0},$$

- ▶ In L_{fit} = log-likelihood in the fitted model
- ightharpoonup In L_0 is the log-likelihood in the intercept-only model
- ullet This R^2 should be only used for discrete choice models.
 - Aside: In other nonlinear models instead use

$$R_{\text{RG}}^2 = 1 - \frac{\ln L_{\text{max}} - \ln L_{fit}}{\ln L_{\text{max}} - \ln L_0} = \frac{\ln L_{fit} - \ln L_0}{\ln L_{\text{max}} - \ln L_0},$$

where \mathcal{L}_{max} is the maximum possible value of the log-likelihood.

- For binary outcome models $\ln L_{\text{max}} = 0$, so $R_{\text{RG}}^2 = \text{McFadden's } R^2$.
- For easy interpretation use $Cor[y, \widehat{p}]$ where $\widehat{p}_i = F(\mathbf{x}_i'\widehat{\boldsymbol{\beta}})$.

→ < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □

Model Diagnostics: Correct Prediction that y=1

- Many measures compare predicted \hat{y} with y.
- The problem is in defining a rule for when $\widehat{y}=1$.
 - Obvious is $\hat{y} = 1$ when $\hat{p} = F(\mathbf{x}'\hat{\boldsymbol{\beta}}) > 0.5$.
 - ▶ But this can yield $\hat{y} = 1$ all the time if most of the sample has y = 1 (or $\hat{y} = 0$ all the time if most of the sample has y = 0).
- The receiver operator characteristics (ROC) curve does this for different thresholds
 - for $0 \le c \le 1$ recompute $\widehat{y}_i(c) = 1$ when $\widehat{p}_i = F(\mathbf{x}_i'\widehat{\boldsymbol{\beta}}) > c$ and $\widehat{y}_i(c) = 0$ otherwise.
 - plot the fraction of true positives against false positives
 - also called plot sensitivity against (1 specificity).
 - departures from a 45 degree line are preferred.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q ()

Model Diagnostics: Correct Prediction of Pr[y=1]

- Can compare predicted $\widehat{\Pr}[y=1]$ with y.
- Doing this on average is not helpful over the entire sample.
 - For logit:

$$\begin{array}{ll} \sum_{i=1}^{N}(y_i-\Lambda(\mathbf{x}_i'\widehat{\boldsymbol{\beta}}))\mathbf{x}_i=\mathbf{0} & \text{f.o.c. for MLE} \\ \Rightarrow & \sum_{i=1}^{N}(y_i-\Lambda(\mathbf{x}_i'\widehat{\boldsymbol{\beta}}))=0 & \text{if regressors include intercept} \\ \Rightarrow & \frac{1}{N}\sum_{i=1}^{N}\widehat{p}_i=\bar{y} & \text{where } \widehat{p}_i=\Lambda(\mathbf{x}_i'\widehat{\boldsymbol{\beta}}). \end{array}$$

- ▶ And probit in practice comes close to this.
- More useful for comparisons with subsamples or out of sample
 - ▶ Do a generalized chi-square goodness-of-fit test.
 - Stata post-estimation command gof.

8. Binary data: Index function model

- Index function model
 - gives a way to interpret the function $F(\cdot)$ in a binary model.
 - generalizes to ordered multinomial models and Tobit models.
- Specify a regression model for latent variable y*

$$y^* = \mathbf{x}'\boldsymbol{\beta} + u.$$

• This cannot be estimated as y^* is not observed. Instead we observe

$$y = \begin{cases} 1 & \text{if } y^* > 0 \\ 0 & \text{if } y^* \le 0. \end{cases}$$

- ▶ The choice of 0 as the threshold is a normalization.
- Examples:
 - y^* is tendency to work we observe only whether or not work (y = 1)
 - \triangleright y* is a propensity to commute by public transit we observe only whether or not the public transit is used (y = 1).

Index function model: resulting binary outcome

ullet Outcome probability: Suppressing conditioning on ${f x}$:

$$Pr[y = 1] = Pr[y^* > 0]$$

$$= Pr[\mathbf{x}'\boldsymbol{\beta} + u > 0]$$

$$= Pr[-u < \mathbf{x}'\boldsymbol{\beta}]$$

$$= F(\mathbf{x}'\boldsymbol{\beta}),$$

- ▶ F is the c.d.f. of -u (equals c.d.f. of u if density symmetric about 0).
- Probit model: Assume $u \sim \mathcal{N}[0,1]$. Then

$$\Pr[y=1] = \Phi(\mathbf{x}'\boldsymbol{\beta}).$$

• Logit model: Assume $u \sim \text{logistic}$. Then

$$\Pr[y=1] = \Lambda(\mathbf{x}'\boldsymbol{\beta}) = \exp(\mathbf{x}'\boldsymbol{\beta})/[1 + \exp(\mathbf{x}'\boldsymbol{\beta})].$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

© A. Colin Cameron U. of Calif. - Davis

• Probit simulation: $y^* = 1 + x + u$, $u \sim \mathcal{N}[0, 1]$, $x \sim \mathcal{N}[0, 1]$. And y = 1 if $y^* > 0$ and y = 0 otherwise. N = 200.

- . * Index function model to generate probit
- . clear
- . quietly set obs 200
- . quietly generate x = rnormal(0,1)
- . quietly generate ystar = 1 + 1*x + rnormal(0,1)
- . quietly generate y = ystar > 0
- . summarize y x

Variable	Obs	Mean	Std. Dev.	Min	Max
y x	200 200	.71 1005735	.4549007 1.029603	0 -2.830635	2.679533

. probit y x, nolog

Probit regression

Number of obs = 200 LR chi2(1) = 78.06 Prob > chi2 = 0.0000 Pseudo R2 = 0.3241

Log likelihood = -81.398245

у	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
x	1.099966	.1538048	7.15	0.000	.7985144	1.401418
_cons	.9806923	.1403632	6.99		.7055855	1.255799

9. Binary Data: Additive Random Utility Model

- The additive random utility model (ARUM)
 - generalizes to unordered multivariate models.
- Consumer choice: consumer selects alternative with highest utility.
- Specify the utilities of alternatives 0 and 1 to be

$$U_0 = V_0 + \varepsilon_0$$

$$U_1 = V_1 + \varepsilon_1$$

- V₀ and V₁ are deterministic components of utility.
 (The dependence on regressors is detailed below).
- ightharpoonup ϵ_0 and ϵ_1 are random components of utility.
- We observe y=1 if $U_1>U_0$ and y=0 if $U_1\leq U_0$.

ARUM: Binary outcome

Outcome probability: Suppressing dependence on x

$$\begin{array}{ll} \Pr[y = 1] &= \Pr[U_1 > U_0] \\ &= \Pr[V_1 + \varepsilon_1 > V_0 + \varepsilon_0] \\ &= \Pr[\varepsilon_0 - \varepsilon_1 < V_1 - V_0] \\ &= F(V_1 - V_0), \end{array}$$

where F is the c.d.f. of $(\varepsilon_0 - \varepsilon_1)$.

- ullet Binary probit: $arepsilon_0$ and $arepsilon_1$ are joint normal with $V[arepsilon_0-arepsilon_1]=1.$
- Binary logit: ε_0 and ε_1 are type I extreme value distributed with $f(\varepsilon) = e^{-\varepsilon} \exp(-e^{-\varepsilon})$, as then $(\varepsilon_0 \varepsilon_1)$ is logistic distributed.
- ullet The random component arepsilon in the utility model is needed.
 - Otherwise, choice is deterministic with e.g. alternative 1 always chosen if $V_1 > V_0$.

◆ロト ◆部ト ◆差ト ◆差ト き めなべ

ARUM: Regressors

- Distinguish between two types of regressors
 - **z**_{jj} alternative-varying regressors e.g. price may vary over alternatives
 - **w**; case-specific regressors (or alternative-invariant) e.g. race or gender.
- Then deterministic component of utility:

$$V_{ij} = \mathbf{z}'_{ij}\alpha + \mathbf{w}'_i\gamma_j, \quad j = 0, 1,$$

where coefficients

- α does not vary with alternative
- $\triangleright \gamma_i$ does vary with the alternatives.
- Outcome probability:

$$\Pr[y_i = 1] = F(V_{i1} - V_{i0}) = F((\mathbf{z}_{i1} - \mathbf{z}_{i0})'\alpha + \mathbf{w}_i'(\gamma_1 - \gamma_0)).$$

- ullet This is earlier model with $old x_i'old eta = (old z_{i1} old z_{i0})'lpha + old w_i'(\gamma_1 \gamma_0)$.
- ullet Case-specific regressors: only difference $(\gamma_1-\gamma_0)$ can be identified.

10. Some References

- The material is covered in graduate level texts including
 - ► CT(2005) MMA chapter 14 and CT(2009) MUS chapter 14
 - Wooldridge, J.M. (2002), Econometric Analysis of Cross Section and Panel Data, MIT Press.
 - Greene, W.H. (2007), Econometric Analysis, Prentice-Hall, Sixth edition.
- A classic book is
 - Maddala, G.S. (1986), Limited-Dependent and Qualitative Variables in Econometrics, Cambridge University Press.