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1. Introduction

1. Introduction

@ Multinomial outcome models: m possible discrete outcomes.
> We model Prly = j|x| for j=1,...,m.
@ For cross-section data

» Distribution for binary y is clearly multinomial.
» Maximum likelihood estimator (MLE) is clearly best estimator.
> It is fine to use default standard errors (robust is not needed).

@ The main complications are:
> Different models arise due to different specifications for Prly; = j|x;]
* big distinction between unordered and ordered outcomes.
> Interpretation of model estimates is complicated

* separate ME for each outcome and possibly attribute for each outcome.
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2. Multinomial Data Example Fishing Data

2. Multinomial data: Multinomial logit example

@ Consider multinomial data on several mutually exclusive categorical
outcomes.
@ Example: multinomial variable y has outcome one of
» y = 1if fish from beach
» y =2 if fish from pier
» y = 3 if fish from private boat
» y =4 if fish from charter boat

@ Regressors are

> price: varies by alternative and individual
» catch rate: varies by alternative and individual
» income: varies by individual but not alternative
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2. Multinomial Data Example Fishing Data

@ Variable definitions

. describe
Contains data from muslS5data.dta
obs: 1,182
vars: 16 12 may 2008 20:46
size: 85,104 (99.2% of memory free)
storage display value
variable name type format Tabel variable label
mode float %9.0g modetype Fishing mode
price float %9.0g price for chosen alternative
crate float %9.0g catch rate for chosen
alternative
dbeach float %9.0g 1 if beach mode chosen
dpier float %9.0g 1 if pier mode chosen
dprivate float %9.0g 1 if private boat mode chosen
dcharter float %9.0g 1 if charter boat mode chosen
pbeach float %9.0g price for beach mode
ppier float %9.0g price for pier mode
pprivate float %9.0g price for private boat mode
pcharter float %9.0g price for charter boat mode
gbeach float %9.0g catch rate for beach mode
gpier float %9.0g catch rate for pier mode
gprivate float %9.0g catch rate for private boat mode
gcharter float %9.0g catch rate for charter boat mode
income float %9.0g monthly income in thousands $
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2. Multinomial Data Example Fishing Data

@ Data organization

> here wide form with one observation per individual
» each observation has data for all the possible alternatives.

. Tist mode d* p* income in 1/2, clean
mode dbeach dpier dprivate dcharter  price pbeach ppier pprivat

pcharter pmlogitl pmlogit2 pmlogit3 pmlogitd income
charter 0 0 0 1 182.93 157.93 157.93 157.9

> e
1.

> 3 182.93  .1125092  .0919656  .4516733  .3438518 7.083332
2.
4

charter 1 34.534 15.114 15.114 10.53

0 0 0
> 34.534 .1122198 .2117394 .2635553 .4124855 1.25

@ Here person 2 chose charter fishing (mode=charter or dcharter=1)
when beach, pier, private and charter fishing cost, respectively,
15.11, 15.11, 10.53 and 34.53.
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2. Multinomial Data Example Fishing Data

@ Summary statistics

» Columns y =1, ..., 4 give sample means for those with y =1, ..., 4.

Sub-sample averages
Explanatory Variable y=1 y=2 y=3 y=4 Ally
Beach Pier Private Charter  Overall
Income ($1,000's per month) ~ 4.052  3.387 4.654 3.881 4.099

Price beach ($) 36 31 138 121 103
Price pier ($) 36 31 138 121 103
Price private (%) 98 82 42 45 55
Price charter ($) 125 110 71 75 84
Catch rate beach 0.28 0.26 0.21 0.25 0.24
Catch rate pier 0.22 0.20 0.13 0.16 0.16
Catch rate private 0.16 0.15 0.18 0.18 0.17
Catch rate charter 0.52 0.50 0.65 0.69 0.63
Sample probability 0.113 0.151 0.354 0.382 1.000
Observations 134 178 418 452 1182

@ On average a person chooses to fish where it is cheapest to fish.
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2. Multinomial Data Example Multinomial logit

@ Multinomial logit of fishing mode regressed on intercept and income
» normalization that base outcome is beach fishing (y = 1)

x!(aj+Bjincome) i
>Pr[y,~j:1]: AVALY] j=12,3,4,a1 =0, =0.

! 3 1
Zﬁ:l eXi(#k +Pgincome)

. * Multinomial logit with base outcome alternative 1
. mlogit mode income, baseoutcome(1l)

Iteration 0: Tlog likelihood = -1497.7229
Iteration 1: log likelihood = -1477.5265
Iteration 2: Tlog Tikelihood = -1477.1514
Iteration 3: log Tikelihood = -1477.1506
Multinomial logistic regression Number of obs = 1182
LR chi2( 3) = 41.14
Prob > chi2 = 0.0000
Log Tikelihood = -1477.1506 Pseudo R2 = 0.0137
mode Coef. std. Err. z P>|z| [95% Conf. Interval]
pier
income -.1434029  .0532882 -2.69  0.007 -.2478459 -.03896
_cons .8141503  .2286316 3.56 0.000 .3660405 1.26226
private
income .0919064  .0406638 2.26  0.024 .0122069 .1716059
_cons .7389208  .1967309 3.76  0.000 .3533352 1.124506
charter
income -.0316399  .0418463 -0.76  0.450 -.1136571 .0503774
_cons 1.341291  .1945167 6.90 0.000 .9600457 1.722537

(mode==beach is the base outcome)

@© A. Colin Cameron  U. of Calif. - Davis . 2A: Multinomial outcomes: Basics Aug 30 - Sep 3, 2010 8 /41



2. Multinomial Data Example Predicted probabilities

@ Predicted probabilities of each outcome:
;(&j+8jincome)

Priyj =1] =

X
e

4
Zkzl

X @ +B,income)

* Compare average predicted probabilities to sample average frequencies
predict pmlogitl pmlogit2 pmlogit3 pmlogit4, pr

summarize pmlogit* dbeach dpier dprivate dcharter, separator(4)
variable Obs Mean Std. Dev. Min Max
pmlogitl 1182 .1133672 .0036716  .0947395  .1153659
pmlogit2 1182 .1505922 .0444575  .0356142  .2342903
pmlogit3 1182 .3536379 .0797714  .2396973 .625706
pmlogit4 1182 .3824027 .0346281  .2439403  .4158273
dbeach 1182 .1133672 .3171753 0 1
dpier 1182 .1505922 .3578023 0 1
dprivate 1182 .3536379 .4783008 0 1
dcharter 1182 .3824027 .4861799 0 1

@ As expected average predicted probabilities sum to one.

@ Furthermore average predicted probabilities of each outcome equals

frequency of that outcome

> Property of multinomial logit and conditional logit
» Analog of OLS residuals sum to zeroso y = ¥.
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2. Multinomial Data Example BVEIELEIRSEEGH

@ Parameter interpretation is complex.
e Consider marginal effects - there are many (one for each outcome
value)
> Here ME;; = dp;;/0x; = p;;(B; — B;) where B; =Y piB;.
> e.g. marginal effect (AME and MEM) of $1,000 increase in annual
income on probability fish from private boat (the third outcome).

. * MEM of income change for outcome 3
. mfx, predict(outcome(3))

Marginal effects after mlogit
y = Pr(mode==3) (predict, outcome(3))

= .35220366
variable dy/dx std. Err. z P>lz| [ 95% C.I. 1 X
income .0325985 .00569 5.73 0.000 .021442 .043755 4.09934

. * AME of income change for outcome 3
. margeff, outcome(3)

Average partial effects after mlogit
y = Pr(mode=3)

variable coef. std. Err. z P>|z| [95% conf. Interval]

income .0317562 .0052589 6.04  0.000 .021449 .0420633

o Stata 11 use margins, dydx(*) predict(outcome(3))
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Wialinaeinel densisy
3. Multinomial data: Estimation Theory

@ There are m mutually-exclusive alternatives.

» Dependent variable y takes value j if the outcome is alternative j,
j=1 ... m
» Probability that the outcome is alternative j is

p=Ply=j j=l..m

@ Introduce m binary variables for each observed y

1 ify=j
=0 iy A
» Thus y; equals 1 if alternative j is chosen and y; equals O for all other

non-chosen alternatives.
» For an individual exactly one of y1, y», ..., ym will be non-zero.

@ The density for one observation can then be conveniently written as

fy)=p' xpy x .. xpim =117, p/"
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I T TEI R ETEN ST ECH M A Multinomial regression models

Estimation Theory: Multinomial regression models

@ Probabilities depend on individual characteristics

> parameterize pj; in terms of observed data x; and parameters B:

p,-j:Pr[y,-:j] ZFJ(X,',ﬁ), j:1,...,m.
» these probabilities should lie between 0 and 1 and sum over j to one.
@ Examples
» multinomial logit (with normalization B; = 0)
ex§18j

= —, ':1,...,m
ka=1 exi'/gk J

pij = Prly; = Jj]

» other models (conditional logit, nested logit, etc.) use different p;;.
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3. Multinomial Data Estimation Theory MLE

@ Density for one observation is
Flnlx) =TT =TT, Filxi B)7.

o Likelihood is product of densities given independence over i

L(B) =TT, Frbx) =TT T o)

o Log-likelihood function:

InL(B)

N :
In <H/:1 ern:l pé’)
= ZIN:1 ij:1 yij In pj
= L X i i B).
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3. Multinomial Data Estimation Theory MLE

Estimation Theory: Maximum Likelihood Estimation

@ Log-likelihood function:

nL(B) =YL, Y7 yitnpy =Y Y viln Fi(xi, B).

@ MLE maximizes InL(B) with first-order conditions:

alnL oF;(xi, B)

21121 1,:yij B) jaﬁ =0.

> No explicit solution so use iterative gradient methods to compute B
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3. Multinomial Data Estimation Theory MLE

Consistency of MLE

@ What are weakest conditions for consistency?

» The distribution is necessarily multinomial.
> So for consistency need correct specification of p;; = Fj(x,-, B).
» Again qualitatively similar to linear model.

° B is asymptotically normal by the usual asymptotic theory if the
d.g.p. is correctly specified.

» For independent cross-section data there is no need to use robust se's.
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4. Multinomial data: Types of Regressors

@ Distinguish between two different types of regressors.

» Alternative-specific or case-specific or alternative-invariant regressors
do not vary across alternatives.

* e.g. income (in our example), gender.
» Alternative-varying regressors may vary across alternatives.
* e.g. price.
@ Models and commands can change

» Multinomial logit: all regressors are case-specific.
» Conditional logit: regressors are individual-varying.

@ Required data format can change

» wide form: N observations collapses data on all m alternatives
» long form: N X m observations
» Stata command reshape moves between long and wide forms.
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5. Multinomial Data Multinomial logit model MNL Model

5. Multinomial data: Multinomial logit model

@ The multinomial logit (MNL) model is used when all regressors are
individual-specific or case-specific.
exﬁﬁj

= j=1,..
T etk T

pij = Prly; = J]

> Clearly these probabilities lie between 0 and 1 and sum over j to one.
> A normalization such as B; = 0 is needed ensure model identification.

@ The parameters B,, ..., B,, are estimated by MLE.

» Some algebra gives f.o.c.

alnL(B)
9Bk

> Clearly consistent if E[y;x|x;] = pix, i-e. correct model for probabilities.

N
=Y ik —piu)xi=0, k=2,..m,
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Wiginel cfifeis
Multinomial Logit: Marginal Effects

@ For MNL (all case-specific) some algebra yields
ap,'j —
a_x,- = Pij(,Bj - .3,)

where Bi = Y piB, is a probability weighted average of the §,.

> Coefficient signs # sign of marginal effects (due to §;)!!

@ But can get sign if compare to base category (want good choice).

> Suppose B; = 0. Then for MNL it can be shown that

) . 5P
Prlyi =jlyi=jorl] = —
1+ e™iP

» So ﬁj interpreted as parameters of a binary logit model between
alternatives j and 1.
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5. Multinomial Data Multinomial logit model Example

Multinomial Logit: Example

@ Multinomial logit of fishing mode regressed on intercept and income

> repeats earlier output

> normalization that base outcome is beach fishing (y = 1)

> SO ﬁpriv,income

. * Multinomial logit with base outcome alternative 1

. mlogit mode income, baseoutcome(1l)

Iteration O: log Tikelihood =-1497.7229
Iteration 1: log Tikelihood =-1477.5265
Iteration 2: log Tikelihood =-1477.1514
Iteration 3: log Tikelihood =-1477.1506

= 0.0919 means Pr[priv|beach or priv] T as income?

Multinomial Togistic regression Number of obs = 1182
LR chi2(3) = 41.14
Prob > chi2 = 0.0000
Log Tlikelihood = -1477.1506 Pseudo R2 = 0.0137
mode Ccoef. std. Err. z P>|z| [95% conf. Interval]
pier
income -.1434029 .0532882 -2.69 0.007 -.2478459 -.03896
_cons .8141503 .2286316 3.56 0.000 .3660405 1.26226
private
income .0919064 .0406638 2.26  0.024 .0122069 .1716059
_cons .7389208 .1967309 3.76  0.000 .3533352 1.124506
charter
income -.0316399 .0418463 -0.76  0.450 -.1136571 .0503774
_cons 1.341291  .1945167 6.90 0.000 .9600457 1.722537

(mode==beach is the base outcome)

Basics
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6. Multinomial Data Conditional logit model CL Model

6. Multinomial data: Conditional logit model

@ The conditional logit model (CL) is used when some or all regressors
are alternative-specific.

exfjﬁ—i-zf'yj

pj = Prlyi =j] =

=— =1,....,m.
i, b

» Here x are alternative-specific, z are case-specific regressors
> A normalization such as 7y; = 0 is needed for case-specific regressors.
» Again these probabilities lie between 0 and 1 and sum over j to one.

@ The parameters 7,, ..., 7y, are estimated by MLE.
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Wiginel cfifeis
Conditional Logit: Marginal Effects

@ For CL some algebra yields

%:{ pi(1—pj)B Jj=k
OXjk —piipikB  JF k
o It follows that if §; > 0 then effect of x;; increasing is

» probability of outcome j increases
> probabilities of all other outcomes decrease.

@ Marginal effects in Stata 11

» MEM and MER are computed using Stata command estat mfx
» No command for AME.
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Compaian i ML
Conditional Logit: Comparison to MNL

@ The MNL and CL models are essentially the same model

» MNL can always be re-expressed as CL (and vice-versa)
> In particular, MNL can be estimated as a special case of CL.

@ MNL formulation is often used in labor economics.

» e.g. for choice of occupation all individual specific regressors, such as
education, age and gender, are invariant across alternatives.

o CL formulation is more commonly used in transportation mode choice.

» Then data is available on mode attributes such as price and time which
vary over both individuals and alternatives.

» When case-specific regressors are also included this is sometimes called
a mixed model.
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Eramplz
Conditional Logit: Example

e Conditional logit regression of fishing mode on both:

> alternative-specific regressors: price and quality
> case-specific regressors: intercept and income.

@ First need to convert data from wide form to long form.
@ Then estimate using command asclogit

» This supplants older Stata command clogit.
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6. Multinomial Data Conditional logit model Example

* Original data are in wide form

use muslbdata.dta, clear

generate id = _n

summarize id d* p* g* income

* Convert data from wide form to long form

reshape long d p q, i(id) j(fishmode beach pier ///
private charter) string

list in 1/4, clean noobs

summarize

* Conditional logit with alternative-specific and
case-specific regressors

asclogit d p q, case(id) alternatives(fishmode) ///
casevars(income) basealternative(beach) nolog

* Marg effect at mean of price change for each alternative
estat mfx, varlist(p)

* Predicted probabilities of choice of each mode
predict pasclogit, pr
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6. Multinomial Data Conditional logit model Example

* conditional logit with alternative-specific and case-specific regressors
. asclogit d p g, case(id) alternatives(fishmode) casevars(income) ///

> basealternative(beach) nolog
Alternative-specific conditional logit Number of obs = 4728
Case variable: id Number of cases = 1182
Alternative variable: fishmode Alts per case: min = 4
avg = 4.0
max = 4
wald chi2(5) = 252.98
Log Tikelihood = -1215.1376 Prob > chi2 = 0.0000
d Coef. std. Err. z P>|z| [95% Conf. Interval]
fishmode
p -.0251166 .0017317  -14.50 0.000 -.0285106  -.0217225
q .357782 .1097733 3.26  0.001 .1426302 .5729337
beach (base alternative)
charter
income -.0332917 .0503409 -0.66 0.508 -.131958 .0653745
_cons 1.694366 .2240506 7.56  0.000 1.255235 2.133497
pier
income -.1275771 .0506395 -2.52 0.012 -.2268288  -.0283255
_cons .7779593 .2204939 3.53  0.000 .3457992 1.210119
private
income .0894398 .0500671 1.79 0.074 -.0086898 .1875694
_cons .5272788 .2227927 2.37 0.018 .0906132 .9639444
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7. Multinomial Data Independence of Irrelevant Alternatives

7. CL and MNL: Independence of Irrelevant Alternatives
° Conside/r CL model with all regressors case-specific:
pj =€/ ¥, e P,
@ Probability of observing alternative j given that either alternative j or
alternative k is:

_ _ _ Pj
Priy =jly =jor k] =35
X/'ﬁ x/ﬁ
_ el /Yy, el
- /
(9% g 9P )+ (A0 o, )
S L
ex}ﬁ+exlﬂ

_ expllx-x)'B)
14exp((xj—xx)'B) "

@ The choice between j and k is a binary logit model!!

» The probability does not depend on other alternatives.

» This restriction is called the assumption of independence of irrelevant
alternatives (lIA).

» The same result holds for the MNL model.
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R tus = (e bus patin
CL and MNL: Red Bus - Blue Bus problem

@ In many consumer choice situations IIA assumption is too restrictive.
@ Extreme example (red bus - blue bus problem)

> In a CL or MNL model the conditional probability of commute by car
given commute by car or red bus is independent of whether commuting
by blue bus is an option.

» But in practice we expect introduction of a blue bus, same as red bus
in every aspect except color to

* have no impact on car use
* halve use of blue bus (bus riders split evenly between red and blue)

» This leads to an increase in the conditional probability of car use given
car or blue bus.

@ This weakness of MNL and CL leads to extensions using a random
utility approach in consumer choice applications.
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8. Multinomial Data Additive Random Utility Model ARUM

8. Additive Random Utility Models (unordered models)

@ For an m-alternative model the additive random utility model
(ARUM) specifies utility of each alternative as

Uy =Vi+g
U =VWVote
Um = Vm +€em

@ Here Vj is deterministic part of utility, e.g. V; = x’,Bj or X,
and ¢; are errors.
@ Then j is chosen if it has the highest utility

Prly =j] =Pr[U; > Uy, all k # j]
= Prlex — &5 < —(Vi = V), all k # ]
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Eremplzs
Additive Random Utility Model: Examples

o Different error distributions lead to different multinomial models.

> 1. MNL and CL: ¢; are i.i.d. type | extreme value.

> 2. Nested logit: ¢; are correlated type | extreme value.

> 3. Random parameters logit: ¢; are i.i.d. type | extreme value
but additionally parameters 8, are multivariate normal.

> 4. Multinomial probit: ¢; are multivariate normal.

@ 1 and 2 are tractable.
3 and 4 are not and require simulation methods to estimate.
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Ulireo eltsie eamnp
Additive Random Utility Model: Three alternatives

@ Choice probabilities can be complicated.

@ For example, with three alternatives

Pr[y = 3] = PF[U3 Z U1, U3 Z U2]

:PF[V3+€3>V1+81, V3—|—€3>V2+82]

= Pr[el — 83 —(Vl ) €y — 83 —(V2 )]
= Prle;3 < — Vi3, B3 < —Vas)

= [ OOVBf Vs f(€13,€23)d€13dens.

» For a 3-alternative model probabilities require a bivariate integral.

e For an m-alternative model there is an (m — 1)-variate integral.

@ Methods have been developed to enable estimate models even if no
analytical solution.
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8. Multinomial Data Additive Random Utility Model MNL and CL
Additive Random Utility Model: MNL and CL

@ Suppose the errors ¢; are i.i.d. type | extreme value distributed (also
called log Weibull) with density

fle)) =e Yexple™™), j=12,...,m

@ Then it can be shown that there is an analytical solution for

probabilities
Prly =j] =Pr[U; > Uy, all k # j]
=Prleg — & < —(Vk — V)), all k #J]
= Prlg; < — V]
_ e
T Xye'

» MNL model is obtained when V; =
» CL model is obtained when V; = J’ﬁ
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8. Multinomial Data Additive Random Utility Model Independence of Irrelevant Alternatives revisited

ARUM: Independence of Irrelevant Alternatives revisited

@ CL and MNL models arise when errors ¢; are independent across j.
@ This is certain to be violated if two alternatives are similar:

» Suppose alternatives 1 and 2 are similar

> A low draw of &; leads to overprediction of utility of alternative 1
» But then expect to overpredict utility of alternative 1 = &5 is low.
> Low (or high) values of €1 and ey = errors are correlated.

@ The earlier red bus - blue bus problem is an extreme case.

@ So use richer models with correlated errors at the expense of
increased computational burden: NL, RPL and MNP.
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9. Multinomial Data Further Models BRULITGIEL Ry TeL [

9. Multinomial data further models: unordered models

@ Unordered model: no obvious ordering of alternatives.
e 1. MNL and CL logit models

» Easy to estimate
» Too restrictive:

* binary logit comparison between any pair of alternatives without
consideration of other alternatives
* red-bus blue-bus problem

@ 2. Nested logit

» Easy to estimate
» But need to specify nesting structure

@ 3. Random parameters logit:
» Difficult to estimate but now feasible.
@ 4. Multinomial probit:

» Difficult to estimate but now feasible.
» Currently random parameters logit is preferred.
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9. Multinomial Data Further Models BROIEEL R[S

Multinomial data furtehr models: ordered models

@ For outcomes for which there is a natural ordering

> e.g. health status poor/fair (y = 1), good (y = 2), excellent (y = 3).

Model is based on a single latent variable
v =x'B+u.

@ Multinomial outcomes depend on magnitude of y*. For 3 outcomes:

1 ify*<m
yi=4q 2 ifag <y"<a
3 if y* > an.
@ MLE estimates B and the threshold parameters «
@ Standard models are

» Ordered probit model
> Ordered logit model.
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9. Multinomial Data Further Models Model Selection

Multinomial data: model selection

@ First choose between ordered and unordered.
@ Within these if models are nested then can do a likelihood ratio test

» CL and MNL are special case of nested logit
» CL is special case of random parameters logit

@ If models are not nonnested then use information criteria

> These are log-likelihood with a degrees of freedom penalty.

* AIC = —2InL+ 2k
* BIC=—-2InL+kInN

> Prefer model with smaller IC (as then larger In L)
» BIC is preferred as AIC has too small a penalty for model size.

@ Note: a likelihood ratio test of one restriction has critical value of
2 _
Xos(1) = 3.84

> So LR tests favors more general model if —2In L falls by > 3.84
> Also Vuong (1989) proposes LR test for nonnested models.
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9. Multinomial Data Further Models EESIEIERINENLE

Multinomial data: Stata commands
@ Stata commands

Command Model

mlogit multinomial logit

asclogit conditional logit

clogit older command for conditional logit
nlogit nested logit (ARUM version)
mprobit multinomial probit

asmprobit multinomial probit
mixlogit random parameters logit (Stata add-on)

@ Commands mlogit and mprobit for individual-specific regressors only
> data in wide form (one obs is all alternatives for individual)

@ Other commands allow individual-varying regressors (e.g. price)

> data in long form (one obs is one alternative for individual)
» commands reshape to move from wide to long form.
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10. Multinomial Data Ordered Logit Data Example

10. Multinomial data: Ordered logit example

@ Data example with health status poor/fair, good, or excellent.

. * Create multinomial ordered outcome variable with values y = 1, 2, 3
. use musl8data.dta, clear

. quietly keep if year=2

. generate hlthpf = h1thp + h1thf

. generate hlthe = (1 - hlthpf - hlthg)

. quietly generate hlthstat = 1 if hlthpf == 1
. quietly replace hlthstat = 2 if hlthg = 1

. quietly replace hlthstat = 3 if hlthe = 1

. label variable hlthstat "health status"

. label define hsvalue 1 poor_or_fair 2 good 3 excellent

. label values hlthstat hsvalue
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10. Multinomial Data Ordered Logit Data Example

@ Summary statistics

. tabulate hlthstat

health
status Freq. Percent cum.
poor_or_fair 523 9.38 9.38
good 2,034 36.49 45.87
excellent 3,017 54.13 100.00
Total 5,574 100.00

* summarize dependent and explanatory variables
. summarize hlthstat age linc ndisease

variable Obs Mean Std. Dev. Min Max
h1thstat 5574 2.447435 .659524 1 3
age 5574 25.57613 16.73011 .0253251 63.27515
Tinc 5574 8.696929 1.220592 0 10.28324
ndisease 5574 11.20526 6.788959 0 58.6
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10. Multinomial Data Ordered Logit Ordered logit estimates

o Estimate using Stata command ologit

. * ordered logit estimates
. ologit hlthstat age Tinc ndisease, nolog

ordered Togistic regression Number of obs = 5574

LR chi2( 3) = 740.39

Prob > chi2 = 0.0000

Log likelihood = -4769.8525 Pseudo R2 = 0.0720
h1thstat coef. std. Err. z P>|z| [95% conf. Interval]

age -.0292944 .001681 -17.43  0.000 -.0325891  -.0259996

Tinc .2836537  .0231097 12.27  0.000 .2383594 .328948

ndisease -.0549905 .0040692 -13.51 0.000 -.062966 -.047015

/cutl -1.39598  .2061293 -1.799986 -.9919736

/cut2 .9513097  .2054294 .5486755 1.353944
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10. Multinomial Data Ordered Logit Ordered logit estimates

o Compare fitted and actual frequencies and compute MEM
> In Stata 11: margins, predict(outcome(3)) dydx(*) gives AME.

. summarize h1thpf hlthg hlthe plologit p2ologit p3ologit, separator(0)

variable Obs Mean Std. Dev. Min Max
h1thpf 5574 .0938285 .2916161 0 1
hT1thg 5574 .3649085 .4814477 0 1
h1the 5574 .541263 .4983392 0 1
plologit 5574 .0946903 .0843148 .0233629 .859022
p2ologit 5574 .3651672 .0946158 .1255265 .5276064
p3ologit 5574 .5401425 .1640575 .0154515 .7999009

: * Marginal effect at mean for 3rd outcome (health status excellent)
. mfx, predict(outcome(3))

Marginal effects after ologit
y = Pr(hlthstat=3) (predict, outcome(3))
= .53747616

variable dy/dx Std. Err. z P>z| [ 95% C.I. ] X
age -.0072824 .00042 -17.43 0.000 -.008101 -.006463 25.5761
Tinc .070515 .00575 12.26 0.000 .05924 .08179  8.69693
ndisease -.0136704 .00101 -13.50 0.000 -.015655 -.011686  11.2053
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11. Some References

@ The material is covered in graduate level texts including
» CT(2005) MMA chapter 15 and CT(2009) MUS chapter 15
» Wooldridge, J.M. (2002), Econometric Analysis of Cross Section and

Panel Data, MIT Press.
> Greene, W.H. (2007), Econometric Analysis, Prentice-Hall, Sixth

edition.

@ A classic book is
» Maddala, G.S. (1986), Limited-Dependent and Qualitative Variables in
Econometrics, Cambridge University Press.
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