## 2A: Multinomial outcomes: Basics

(C) A. Colin Cameron<br>U. of Calif. - Davis

OeNB Summer School 2010
Microeconometrics
Oesterreichische Nationalbank (OeNB), Vienna, Austria

```
Based on
A. Colin Cameron and Pravin K. Trivedi, Microeconometrics: Methods and Applications (MMA), ch.15.
Microeconometrics using Stata (MUS), ch.15.
Data examples are from MUS.
```

Aug 30 - Sep 3, 2010

## 1. Introduction

- Multinomial outcome models: $m$ possible discrete outcomes.
- We model $\operatorname{Pr}[y=j \mid \mathbf{x}]$ for $j=1, \ldots, m$.
- For cross-section data
- Distribution for binary $y$ is clearly multinomial.
- Maximum likelihood estimator (MLE) is clearly best estimator.
- It is fine to use default standard errors (robust is not needed).
- The main complications are:
- Different models arise due to different specifications for $\operatorname{Pr}\left[y_{i}=j \mid \mathbf{x}_{i}\right]$
$\star$ big distinction between unordered and ordered outcomes.
- Interpretation of model estimates is complicated
$\star$ separate ME for each outcome and possibly attribute for each outcome.


## Outline

(1) Introduction
(2) Multinomial data: Multinomial logit example
(3) Multinomial data: Estimation
(9) Multinomial data: Types of regressors
(5) Multinomial data: Multinomial logit
(6) Multinomial data: Conditional logit
(1) Multinomial data: Independence of Irrelevant Alternatives
(8) Multinomial data: Additive Random Utility Model
(1) Multinomial data: Further models
(10) Multinomial data: Ordered logit example

## 2. Multinomial data: Multinomial logit example

- Consider multinomial data on several mutually exclusive categorical outcomes.
- Example: multinomial variable $y$ has outcome one of
- $y=1$ if fish from beach
- $y=2$ if fish from pier
- $y=3$ if fish from private boat
- $y=4$ if fish from charter boat
- Regressors are
- price: varies by alternative and individual
- catch rate: varies by alternative and individual
- income: varies by individual but not alternative
- Variable definitions
. describe
Contains data from mus15data.dta
obs: 1,182
$\begin{array}{ll}\text { vars: } \\ \text { size: } & 85,104(99.2 \% \text { of memory free) }\end{array}$
12 May 2008 20:46

| variable name | storage type | display format | value labe1 | variable labe7 |
| :---: | :---: | :---: | :---: | :---: |
| mode | float | \%9.0g | modetype | Fishing mode |
| price | float | \%9.0g |  | price for chosen alternative |
| crate | float | \%9.0g |  | catch rate for chosen alternative |
| dbeach | float | \%9.0g |  | 1 if beach mode chosen |
| dpier | float | \%9.0g |  | 1 if pier mode chosen |
| dprivate | float | \%9.0g |  | 1 if private boat mode chosen |
| dcharter | float | \%9.0g |  | 1 if charter boat mode chosen |
| pbeach | float | \%9.0g |  | price for beach mode |
| ppier | float | \%9.0g |  | price for pier mode |
| pprivate | float | \%9.0g |  | price for private boat mode |
| pcharter | float | \%9.0g |  | price for charter boat mode |
| qbeach | float | \%9.0g |  | catch rate for beach mode |
| qpier | float | \%9.0g |  | catch rate for pier mode |
| qprivate | float | \%9.0g |  | catch rate for private boat mode |
| qcharter | float | \%9.0g |  | catch rate for charter boat mode |
| income | float | \%9.0g |  | monthly income in thousands \$ |

- Data organization
- here wide form with one observation per individual
- each observation has data for all the possible alternatives.
. list mode $\mathrm{d}^{*} \mathrm{p}$ * income in $1 / 2$, clean
mode dbeach dpier dprivate dcharter price pbeach ppier pprivat

| $>$ | e | pcharter | pmlogit1 | pmlogit2 | pmlogit3 | pmlogit4 | income |  |  |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1. | charter | 0 | 0 | 0 | 1 | 182.93 | 157.93 | 157.93 | 157.9 |
| $>$ | 3 | 182.93 | .1125092 | .0919656 | .4516733 | .3438518 | 7.083332 |  |  |
| 2. | charter | 0 | 0 | 0 | 1 | 34.534 | 15.114 | 15.114 | 10.53 |
| $>4$ | 34.534 | .1122198 | .2117394 | .2635553 | .4124855 | 1.25 |  |  |  |

- Here person 2 chose charter fishing (mode=charter or dcharter=1) when beach, pier, private and charter fishing cost, respectively, 15.11, 15.11, 10.53 and 34.53 .
- Summary statistics
- Columns $y=1, \ldots, 4$ give sample means for those with $y=1, \ldots, 4$.

|  | Sub-sample averages |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Explanatory Variable | $y=1$ <br> Beach | $y=2$ <br> Pier | All <br> Private | y $=4$ <br> Charter | Averall |
| Income ( $\$ 1,000$ 's per month) | 4.052 | 3.387 | 4.654 | 3.881 | 4.099 |
| Price beach (\$) | 36 | 31 | 138 | 121 | 103 |
| Price pier (\$) | 36 | 31 | 138 | 121 | 103 |
| Price private (\$) | 98 | 82 | 42 | 45 | 55 |
| Price charter (\$) | 125 | 110 | 71 | 75 | 84 |
| Catch rate beach | 0.28 | 0.26 | 0.21 | 0.25 | 0.24 |
| Catch rate pier | 0.22 | 0.20 | 0.13 | 0.16 | 0.16 |
| Catch rate private | 0.16 | 0.15 | 0.18 | 0.18 | 0.17 |
| Catch rate charter | 0.52 | 0.50 | 0.65 | 0.69 | 0.63 |
| Sample probability | 0.113 | 0.151 | 0.354 | 0.382 | 1.000 |
| Observations | 134 | 178 | 418 | 452 | 1182 |

- On average a person chooses to fish where it is cheapest to fish.


## - Multinomial logit of fishing mode regressed on intercept and income

- normalization that base outcome is beach fishing $(y=1)$
$-\operatorname{Pr}\left[y_{i j}=1\right]=\frac{e^{\mathrm{x}_{i}^{\prime}\left(\alpha_{j}+\beta_{j} \text { income }\right)}}{\sum_{k=1}^{4} \mathrm{e}^{\mathrm{x}_{i}^{\prime}\left(\alpha_{k}+\beta_{k} \text { income }\right)}}, j=1,2,3,4, \alpha_{1}=0, \beta_{1}=0$.
. * Multinomial logit with base outcome alternative 1
. mlogit mode income, baseoutcome(1)

| Iteration 0: | $\log$ likelihood $=$ | -1497.7229 |
| :--- | :--- | :--- |
| Iteration 1: | $\log$ likelihood $=$ | -1477.5265 |
| Iteration 2: | log likelihood $=$ | -1477.1514 |
| Iteration 3: | $\log$ likelihood $=$ | -1477.1506 |


| Multinomial logistic regression | Number of obs <br> LR chi2 (3) | $=$ | 1182 |
| :--- | :---: | :--- | :--- |
|  |  | Prob $>$ chi2 | $=$ |
| Log likelihood $=-1477.1506$ | Pseudo R2 | $=$ | 41.14 |
|  |  |  | 0.0000 |
|  |  |  |  |


| mode | coef. | Std. Err. | z P>\|z| |  | [95\% Conf. Interval] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pier |  |  |  |  |  |  |
| income cons | $\begin{array}{r} -. .1434029 \\ .8141503 \end{array}$ | $\begin{aligned} & .0532882 \\ & .2286316 \end{aligned}$ | $\begin{array}{r} -2.69 \\ 3.56 \end{array}$ | $0.007$ | $\begin{array}{r} -.2478459 \\ .3660405 \end{array}$ | $\begin{aligned} & -.03896 \\ & 1.26226 \end{aligned}$ |
| private |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| _cons | . 7389208 | . 1967309 | 3.76 | 0.000 | . 3533352 | 1.124506 |
| charter |  |  |  |  |  |  |
| income | -. 0316399 | . 0418463 | -0.76 | 0.450 | -. 1136571 | . 0503774 |
| _cons | 1.341291 | . 1945167 | 6.90 | 0.000 | . 9600457 | 1.722537 |

(mode==beach is the base outcome)

- Predicted probabilities of each outcome:
$\widehat{\operatorname{Pr}}\left[y_{i j}=1\right]=\frac{e^{\mathbf{x}_{i}^{\prime}\left(\widehat{\alpha}_{j}+\widehat{\beta}_{j} \text { income }\right)}}{\sum_{k=1}^{4} e^{\mathbf{x}_{i}^{\prime}\left(\widehat{\alpha}_{k}+\widehat{\beta}_{k} \text { income }\right)}}$
. * Compare average predicted probabilities to sample average frequencies . predict pmlogit1 pmlogit2 pmlogit3 pmlogit4, pr
. summarize pmlogit* dbeach dpier dprivate dcharter, separator(4)

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| ---: | :---: | :---: | :---: | :---: | ---: |
| pmlogit1 | 1182 | .1133672 | .0036716 | .0947395 | .1153659 |
| pmlogit2 | 1182 | .1505922 | .0444575 | .0356142 | .2342903 |
| pmlogit3 | 1182 | .3536379 | .0797714 | .2396973 | .625706 |
| pmlogit4 | 1182 | .3824027 | .0346281 | .2439403 | .4158273 |
| dbeach | 1182 | .1133672 | .3171753 | 0 | 1 |
| dpier | 1182 | .1505922 | .3578023 | 0 | 1 |
| dprivate | 1182 | .3536379 | .4783008 | 0 | 1 |
| dcharter | 1182 | .3824027 | .4861799 | 0 | 1 |

- As expected average predicted probabilities sum to one.
- Furthermore average predicted probabilities of each outcome equals frequency of that outcome
- Property of multinomial logit and conditional logit
- Analog of OLS residuals sum to zero so $\overline{\hat{y}}=\bar{y}$.
- Parameter interpretation is complex.
- Consider marginal effects - there are many (one for each outcome value)
- Here $\mathrm{ME}_{i j}=\partial p_{i j} / \partial \mathbf{x}_{i}=p_{i j}\left(\boldsymbol{\beta}_{j}-\overline{\boldsymbol{\beta}}_{i}\right)$ where $\overline{\boldsymbol{\beta}}_{i}=\sum_{l} p_{i l} \boldsymbol{\beta}_{l}$.
- e.g. marginal effect (AME and MEM) of $\$ 1,000$ increase in annual income on probability fish from private boat (the third outcome).

```
. * MEM of income change for outcome 3
. mfx, predict(outcome(3))
Marginal effects after mlogit
    y = Pr(mode==3) (predict, outcome(3))
        = . }3522036
\begin{tabular}{r|rcccrrcc}
\hline variable & \(\mathrm{dy} / \mathrm{dx}\) & Std. Err. & z & \(\mathrm{P}>|\mathrm{z}|\) & {\([\)} & \(95 \%\) & C.I. & \(]\) \\
\hline income & .0325985 & .00569 & 5.73 & 0.000 & .021442 & .043755 & 4.09934 \\
\hline
\end{tabular}
```

    * AME of income change for outcome 3
    margeff, outcome(3)
Average partial effects after mlogit
$y=\operatorname{Pr}(\operatorname{mode}=3)$

| variable | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interva1] |  |
| ---: | ---: | ---: | :---: | ---: | ---: | ---: |
| income | .0317562 | .0052589 | 6.04 | 0.000 | .021449 | .0420633 |

- Stata 11 use margins, dydx(*) predict(outcome(3))


## 3. Multinomial data: Estimation Theory

- There are $m$ mutually-exclusive alternatives.
- Dependent variable $y$ takes value $j$ if the outcome is alternative $j$, $j=1, \ldots, m$.
- Probability that the outcome is alternative $j$ is

$$
p_{j}=\operatorname{Pr}[y=j], \quad j=1, \ldots, m
$$

- Introduce $m$ binary variables for each observed $y$

$$
y_{j}=\left\{\begin{array}{ll}
1 & \text { if } y=j \\
0 & \text { if } y \neq j .
\end{array} .\right.
$$

- Thus $y_{j}$ equals 1 if alternative $j$ is chosen and $y_{j}$ equals 0 for all other non-chosen alternatives.
- For an individual exactly one of $y_{1}, y_{2}, \ldots, y_{m}$ will be non-zero.
- The density for one observation can then be conveniently written as

$$
f(y)=p_{1}^{y_{1}} \times p_{2}^{y_{2}} \times \ldots \times p_{m}^{y_{m}}=\prod_{j=1}^{m} p_{j}^{y_{j}} .
$$

## Estimation Theory: Multinomial regression models

- Probabilities depend on individual characteristics
- parameterize $p_{i j}$ in terms of observed data $\mathbf{x}_{i}$ and parameters $\beta$ :

$$
p_{i j}=\operatorname{Pr}\left[y_{i}=j\right]=F_{j}\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right), \quad j=1, \ldots, m .
$$

- these probabilities should lie between 0 and 1 and sum over $j$ to one.
- Examples
- multinomial logit (with normalization $\boldsymbol{\beta}_{1}=\mathbf{0}$ )

$$
p_{i j}=\operatorname{Pr}\left[y_{i}=j\right]=\frac{e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{j}}}{\sum_{k=1}^{m} e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{k}}}, j=1, \ldots, m
$$

- other models (conditional logit, nested logit, etc.) use different $p_{i j}$.
- Density for one observation is

$$
f\left(y_{i} \mid \mathbf{x}_{i}\right)=\prod_{j=1}^{m} p_{i j}^{y_{i j}}=\prod_{j=1}^{m} F_{j}\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right)^{y_{i j}} .
$$

- Likelihood is product of densities given independence over $i$

$$
L(\boldsymbol{\beta})=\prod_{i=1}^{N} f\left(y_{i} \mid \mathbf{x}_{i}\right)=\prod_{i=1}^{N} \prod_{j=1}^{m} p_{i j}^{y_{i j}}
$$

- Log-likelihood function:

$$
\begin{aligned}
\ln \mathrm{L}(\boldsymbol{\beta}) & =\ln \left(\prod_{i=1}^{N} \prod_{j=1}^{m} p_{i j}^{y_{i j}}\right) \\
& =\sum_{i=1}^{N} \sum_{j=1}^{m} y_{i j} \ln p_{i j} \\
& =\sum_{i=1}^{N} \sum_{j=1}^{m} y_{i j} \ln F_{j}\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right)
\end{aligned}
$$

## Estimation Theory: Maximum Likelihood Estimation

- Log-likelihood function:

$$
\ln \mathrm{L}(\boldsymbol{\beta})=\sum_{i=1}^{N} \sum_{j=1}^{m} y_{i j} \ln p_{i j}=\sum_{i=1}^{N} \sum_{j=1}^{m} y_{i j} \ln F_{j}\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right) .
$$

- MLE maximizes $\ln L(\boldsymbol{\beta})$ with first-order conditions:

$$
\frac{\partial \ln L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=\sum_{i=1}^{N} \sum_{j=1}^{m} \frac{y_{i j}}{F_{j}\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right)} \frac{\partial F_{j}\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right)}{\partial \boldsymbol{\beta}}=\mathbf{0} .
$$

- No explicit solution so use iterative gradient methods to compute $\widehat{\boldsymbol{\beta}}$.


## Consistency of MLE

- What are weakest conditions for consistency?
- The distribution is necessarily multinomial.
- So for consistency need correct specification of $p_{i j}=F_{j}\left(\mathbf{x}_{i}, \boldsymbol{\beta}\right)$.
- Again qualitatively similar to linear model.
- $\widehat{\boldsymbol{\beta}}$ is asymptotically normal by the usual asymptotic theory if the d.g.p. is correctly specified.
- For independent cross-section data there is no need to use robust se's.


## 4. Multinomial data: Types of Regressors

- Distinguish between two different types of regressors.
- Alternative-specific or case-specific or alternative-invariant regressors do not vary across alternatives.
* e.g. income (in our example), gender.
- Alternative-varying regressors may vary across alternatives.
$\star$ e.g. price.
- Models and commands can change
- Multinomial logit: all regressors are case-specific.
- Conditional logit: regressors are individual-varying.
- Required data format can change
- wide form: $N$ observations collapses data on all $m$ alternatives
- long form: $N \times m$ observations
- Stata command reshape moves between long and wide forms.


## 5. Multinomial data: Multinomial logit model

- The multinomial logit (MNL) model is used when all regressors are individual-specific or case-specific.

$$
p_{i j}=\operatorname{Pr}\left[y_{i}=j\right]=\frac{e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{j}}}{\sum_{k=1}^{m} \mathrm{e}^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{k}}}, \quad j=1, \ldots, m
$$

- Clearly these probabilities lie between 0 and 1 and sum over $j$ to one.
- A normalization such as $\beta_{1}=\mathbf{0}$ is needed ensure model identification.
- The parameters $\boldsymbol{\beta}_{2}, \ldots, \boldsymbol{\beta}_{m}$ are estimated by MLE.
- Some algebra gives f.o.c.

$$
\frac{\partial \ln L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}_{k}}=\sum_{i=1}^{N}\left(y_{i k}-p_{i k}\right) \mathbf{x}_{i}=\mathbf{0}, \quad k=2, \ldots, m,
$$

- Clearly consistent if $\mathrm{E}\left[y_{i k} \mid \mathbf{x}_{i}\right]=p_{i k}$, i.e. correct model for probabilities.


## Multinomial Logit: Marginal Effects

- For MNL (all case-specific) some algebra yields

$$
\frac{\partial p_{i j}}{\partial \mathbf{x}_{i}}=p_{i j}\left(\boldsymbol{\beta}_{j}-\overline{\boldsymbol{\beta}}_{i}\right),
$$

where $\overline{\boldsymbol{\beta}}_{i}=\sum_{l} p_{i l} \boldsymbol{\beta}_{I}$ is a probability weighted average of the $\boldsymbol{\beta}_{l}$.

- Coefficient signs $\neq$ sign of marginal effects (due to $\bar{\beta}_{i}$ )!!
- But can get sign if compare to base category (want good choice).
- Suppose $\boldsymbol{\beta}_{1}=\mathbf{0}$. Then for MNL it can be shown that

$$
\operatorname{Pr}\left[y_{i}=j \mid y_{i}=j \text { or } 1\right]=\frac{e^{\mathbf{x}_{i}^{\prime} \beta_{j}}}{1+e^{\mathbf{x}_{i}^{\prime} \beta_{j}}},
$$

- So $\widehat{\boldsymbol{\beta}}_{j}$ interpreted as parameters of a binary logit model between alternatives $j$ and 1.


## Multinomial Logit: Example

- Multinomial logit of fishing mode regressed on intercept and income
- repeats earlier output
- normalization that base outcome is beach fishing $(y=1)$
- so $\beta_{\text {priv, income }}=0.0919$ means $\operatorname{Pr}[$ priv $\mid$ beach or priv $] ~ \uparrow$ as income $\uparrow$

```
. * Multinomial logit with base outcome alternative 1
. mlogit mode income, baseoutcome(1)
```

Iteration 0: log likelihood $=-1497.7229$
Iteration 1: $\quad$ log likelihood $=-1477.5265$
Iteration 2: $\quad$ log likelihood $=-1477.1514$
Iteration 3: $\quad \log$ likelihood $=-1477.1506$
Multinomial logistic regression

Log likelihood =-1477.1506

| Number of obs $=$ <br> LR chi2 $(3)$  | 1182 |  |
| :--- | :--- | ---: |
| Prob $>$ chi2 | $=$ | 41.14 |
| Pseudo R2 | $=$ | 0.0000 |
|  |  |  |


| mode | Coef. | Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| pier |  |  |  |  |  |  |
| income | -.1434029 | .0532882 | -2.69 | 0.007 | -.2478459 | -.03896 |
| _cons | .8141503 | .2286316 | 3.56 | 0.000 | .3660405 | 1.26226 |
| private |  |  |  |  |  |  |
| income | .0919064 | .0406638 | 2.26 | 0.024 | .0122069 | .1716059 |
| _cons | .7389208 | .1967309 | 3.76 | 0.000 | .3533352 | 1.124506 |
| charter |  |  |  |  |  |  |
| income | -.0316399 | .0418463 | -0.76 | 0.450 | -.1136571 | .0503774 |
| _cons | 1.341291 | .1945167 | 6.90 | 0.000 | .9600457 | 1.722537 |

(mode==beach is the base outcome)

## 6. Multinomial data: Conditional logit model

- The conditional logit model (CL) is used when some or all regressors are alternative-specific.

$$
p_{i j}=\operatorname{Pr}\left[y_{i}=j\right]=\frac{e^{\mathbf{x}_{i j}^{\prime} \beta+\mathbf{z}_{i}^{\prime} \gamma_{j}}}{\sum_{k=1}^{m} e^{\mathbf{x}_{i k}^{\prime} \beta+\mathbf{z}_{i}^{\prime} \gamma_{k}}}, \quad j=1, \ldots, m .
$$

- Here $\mathbf{x}$ are alternative-specific, $\mathbf{z}$ are case-specific regressors
- A normalization such as $\gamma_{1}=\mathbf{0}$ is needed for case-specific regressors.
- Again these probabilities lie between 0 and 1 and sum over $j$ to one.
- The parameters $\gamma_{2}, \ldots, \gamma_{m}$ are estimated by MLE.


## Conditional Logit: Marginal Effects

- For CL some algebra yields

$$
\frac{\partial p_{i j}}{\partial \mathbf{x}_{i k}}=\left\{\begin{array}{cc}
p_{i j}\left(1-p_{i j}\right) \boldsymbol{\beta} & j=k \\
-p_{i j} p_{i k} \boldsymbol{\beta} & j \neq k
\end{array}\right.
$$

- It follows that if $\beta_{j}>0$ then effect of $x_{i j}$ increasing is
- probability of outcome $j$ increases
- probabilities of all other outcomes decrease.
- Marginal effects in Stata 11
- MEM and MER are computed using Stata command estat mfx
- No command for AME.


## Conditional Logit: Comparison to MNL

- The MNL and CL models are essentially the same model
- MNL can always be re-expressed as CL (and vice-versa)
- In particular, MNL can be estimated as a special case of CL.
- MNL formulation is often used in labor economics.
- e.g. for choice of occupation all individual specific regressors, such as education, age and gender, are invariant across alternatives.
- CL formulation is more commonly used in transportation mode choice.
- Then data is available on mode attributes such as price and time which vary over both individuals and alternatives.
- When case-specific regressors are also included this is sometimes called a mixed model.


## Conditional Logit: Example

- Conditional logit regression of fishing mode on both:
- alternative-specific regressors: price and quality
- case-specific regressors: intercept and income.
- First need to convert data from wide form to long form.
- Then estimate using command asclogit
- This supplants older Stata command clogit.
* Original data are in wide form use mus15data.dta, clear
generate id = _n
summarize id d* p* q* income
* Convert data from wide form to long form reshape long d p q, i(id) j(fishmode beach pier ///
private charter) string
list in 1/4, clean noobs
summarize
* Conditional logit with alternative-specific and case-specific regressors asclogit d p q, case(id) alternatives(fishmode) /// casevars(income) basealternative(beach) nolog * Marg effect at mean of price change for each alternative estat mfx, varlist(p)
* Predicted probabilities of choice of each mode predict pasclogit, pr



## 7. CL and MNL: Independence of Irrelevant Alternatives

- Consider CL model with all regressors case-specific:
$p_{j}=e^{\mathbf{x}_{j}^{\prime} \beta} / \sum_{l} e^{\mathrm{x}_{\mathrm{l}} \boldsymbol{\beta} \beta}$.
- Probability of observing alternative $j$ given that either alternative $j$ or alternative $k$ is:

$$
\begin{aligned}
\operatorname{Pr}[y=j \mid y=j \text { or } k] & =\frac{p_{j}}{p_{j}+p_{k}} \\
& =\frac{e^{x_{j}^{\prime} \beta} / \sum_{l} e^{x_{l}^{\prime} \beta}}{\left(e^{x_{j}^{\prime} \beta} / \sum_{l=1}^{m} e^{e_{l}^{\prime} \beta}\right)+\left(e^{x_{k}^{\prime} \beta} / \sum_{l=1}^{m} e^{x_{l}^{\prime} \beta}\right)} \\
& =\frac{e^{e_{j}^{j_{j} \beta}}}{e^{x_{j}^{\prime} \beta}+e^{x_{k}^{\prime} \beta}} \\
& =\frac{\left.\exp \left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)^{\prime} \boldsymbol{\beta}\right)}{1+\exp \left(\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)^{\prime} \boldsymbol{\beta}\right)} .
\end{aligned}
$$

- The choice between $j$ and $k$ is a binary logit model!!
- The probability does not depend on other alternatives.
- This restriction is called the assumption of independence of irrelevant alternatives (IIA).
- The same result holds for the MNL model.


## CL and MNL: Red Bus - Blue Bus problem

- In many consumer choice situations IIA assumption is too restrictive.
- Extreme example (red bus - blue bus problem)
- In a CL or MNL model the conditional probability of commute by car given commute by car or red bus is independent of whether commuting by blue bus is an option.
- But in practice we expect introduction of a blue bus, same as red bus in every aspect except color to
* have no impact on car use
* halve use of blue bus (bus riders split evenly between red and blue)
- This leads to an increase in the conditional probability of car use given car or blue bus.
- This weakness of MNL and CL leads to extensions using a random utility approach in consumer choice applications.


## 8. Additive Random Utility Models (unordered models)

- For an m-alternative model the additive random utility model (ARUM) specifies utility of each alternative as

$$
\begin{array}{ccc}
U_{1} & =V_{1}+\varepsilon_{1} \\
U_{2} & =V_{2}+\varepsilon_{2} \\
\vdots & \vdots & \vdots \\
U_{m} & = & V_{m}+\varepsilon_{m}
\end{array}
$$

- Here $V_{j}$ is deterministic part of utility, e.g. $V_{j}=\mathbf{x}^{\prime} \boldsymbol{\beta}_{j}$ or $\mathbf{x}_{j}^{\prime} \boldsymbol{\beta}$, and $\varepsilon_{j}$ are errors.
- Then $j$ is chosen if it has the highest utility

$$
\begin{aligned}
\operatorname{Pr}[y=j] & =\operatorname{Pr}\left[U_{j} \geq U_{k}, \text { all } k \neq j\right] \\
& =\operatorname{Pr}\left[\varepsilon_{k}-\varepsilon_{j} \leq-\left(V_{k}-V_{j}\right), \text { all } k \neq j\right]
\end{aligned}
$$

## Additive Random Utility Model: Examples

- Different error distributions lead to different multinomial models.
- 1. MNL and CL: $\varepsilon_{j}$ are i.i.d. type I extreme value.
- 2. Nested logit: $\varepsilon_{j}$ are correlated type I extreme value.
- 3. Random parameters logit: $\varepsilon_{j}$ are i.i.d. type I extreme value but additionally parameters $\boldsymbol{\beta}_{i}$ are multivariate normal.
- 4. Multinomial probit: $\varepsilon_{j}$ are multivariate normal.
- 1 and 2 are tractable.

3 and 4 are not and require simulation methods to estimate.

## Additive Random Utility Model: Three alternatives

- Choice probabilities can be complicated.
- For example, with three alternatives

$$
\begin{aligned}
\operatorname{Pr}[y=3] & =\operatorname{Pr}\left[U_{3} \geq U_{1}, U_{3} \geq U_{2}\right] \\
& =\operatorname{Pr}\left[V_{3}+\varepsilon_{3} \geq V_{1}+\varepsilon_{1}, \quad V_{3}+\varepsilon_{3} \geq V_{2}+\varepsilon_{2}\right] \\
& =\operatorname{Pr}\left[\varepsilon_{1}-\varepsilon_{3} \leq-\left(V_{1}-V_{3}\right), \quad \varepsilon_{2}-\varepsilon_{3} \leq-\left(V_{2}-V_{3}\right)\right] \\
& =\operatorname{Pr}\left[\widetilde{\varepsilon}_{13} \leq \widetilde{V}_{13}, \quad \widetilde{\varepsilon}_{23} \leq-\widetilde{V}_{23}\right] \\
& =\int_{-\infty}^{-\widetilde{V}_{13}} \int_{-\infty}^{-\infty} f\left(\widetilde{\varepsilon}_{13}, \widetilde{\varepsilon}_{23}\right) d \widetilde{\varepsilon}_{13} d \widetilde{\varepsilon}_{23} .
\end{aligned}
$$

- For a 3 -alternative model probabilities require a bivariate integral.
- For an m-alternative model there is an $(m-1)$-variate integral.
- Methods have been developed to enable estimate models even if no analytical solution.


## Additive Random Utility Model: MNL and CL

- Suppose the errors $\varepsilon_{j}$ are i.i.d. type $I$ extreme value distributed (also called $\log$ Weibull) with density

$$
f\left(\varepsilon_{j}\right)=e^{-\varepsilon_{j}} \exp \left(e^{-\varepsilon_{j}}\right), \quad j=1,2, \ldots, m .
$$

- Then it can be shown that there is an analytical solution for probabilities

$$
\begin{aligned}
\operatorname{Pr}[y=j] & =\operatorname{Pr}\left[U_{j} \geq U_{k}, \text { all } k \neq j\right] \\
& =\operatorname{Pr}\left[\varepsilon_{k}-\varepsilon_{j} \leq-\left(V_{k}-V_{j}\right), \text { all } k \neq j\right] \\
& =\operatorname{Pr}\left[\widetilde{\varepsilon}_{k j} \leq-\widetilde{V}_{k j}\right] \\
& =\frac{e^{V_{j}}}{\sum_{k} e^{V_{k}}}
\end{aligned}
$$

- MNL model is obtained when $V_{j}=\mathbf{x}^{\prime} \boldsymbol{\beta}_{j}$
- CL model is obtained when $V_{j}=\mathbf{x}_{j}^{\prime} \boldsymbol{\beta}$.


## ARUM: Independence of Irrelevant Alternatives revisited

- CL and MNL models arise when errors $\varepsilon_{j}$ are independent across $j$.
- This is certain to be violated if two alternatives are similar:
- Suppose alternatives 1 and 2 are similar
- A low draw of $\varepsilon_{1}$ leads to overprediction of utility of alternative 1
- But then expect to overpredict utility of alternative $1 \Rightarrow \varepsilon_{2}$ is low.
- Low (or high) values of $\varepsilon_{1}$ and $\varepsilon_{2} \Rightarrow$ errors are correlated.
- The earlier red bus - blue bus problem is an extreme case.
- So use richer models with correlated errors at the expense of increased computational burden: NL, RPL and MNP.


## 9. Multinomial data further models: unordered models

- Unordered model: no obvious ordering of alternatives.
- 1. MNL and CL logit models
- Easy to estimate
- Too restrictive:
« binary logit comparison between any pair of alternatives without consideration of other alternatives
* red-bus blue-bus problem
- 2. Nested logit
- Easy to estimate
- But need to specify nesting structure
- 3. Random parameters logit:
- Difficult to estimate but now feasible.
- 4. Multinomial probit:
- Difficult to estimate but now feasible.
- Currently random parameters logit is preferred.


## Multinomial data furtehr models: ordered models

- For outcomes for which there is a natural ordering
- e.g. health status poor/fair $(y=1)$, good $(y=2)$, excellent $(y=3)$.
- Model is based on a single latent variable

$$
y^{*}=\mathbf{x}^{\prime} \boldsymbol{\beta}+u
$$

- Multinomial outcomes depend on magnitude of $y^{*}$. For 3 outcomes:

$$
y_{i}= \begin{cases}1 & \text { if } y^{*} \leq \alpha_{1} \\ 2 & \text { if } \alpha_{1}<y^{*} \leq \alpha_{2} \\ 3 & \text { if } y^{*}>\alpha_{2}\end{cases}
$$

- MLE estimates $\beta$ and the threshold parameters $\alpha$
- Standard models are
- Ordered probit model
- Ordered logit model.


## Multinomial data: model selection

- First choose between ordered and unordered.
- Within these if models are nested then can do a likelihood ratio test
- CL and MNL are special case of nested logit
- CL is special case of random parameters logit
- If models are not nonnested then use information criteria
- These are log-likelihood with a degrees of freedom penalty.

$$
\begin{aligned}
& \star \mathrm{AIC}=-2 \ln L+2 k \\
& \star \mathrm{BIC}=-2 \ln L+k \ln N
\end{aligned}
$$

- Prefer model with smaller IC (as then larger $\ln L$ )
- BIC is preferred as AIC has too small a penalty for model size.
- Note: a likelihood ratio test of one restriction has critical value of $\chi_{.05}^{2}(1)=3.84$
- So LR tests favors more general model if $-2 \ln L$ falls by $>3.84$
- Also Vuong (1989) proposes LR test for nonnested models.


## Multinomial data: Stata commands

- Stata commands

| Command | Model |
| :--- | :--- |
| mlogit | multinomial logit |
| asclogit | conditional logit |
| clogit | older command for conditional logit |
| nlogit | nested logit (ARUM version) |
| mprobit | multinomial probit |
| asmprobit | multinomial probit |
| mixlogit | random parameters logit (Stata add-on) |

- Commands mlogit and mprobit for individual-specific regressors only
- data in wide form (one obs is all alternatives for individual)
- Other commands allow individual-varying regressors (e.g. price)
- data in long form (one obs is one alternative for individual)
- commands reshape to move from wide to long form.


## 10. Multinomial data: Ordered logit example

- Data example with health status poor/fair, good, or excellent.
. * Create multinomial ordered outcome variable with values $y=1,2,3$
. use mus18data.dta, clear
. quietly keep if year=2
. generate h1thpf = h7thp + h7thf
. generate h1the $=(1-\mathrm{h} 1$ thpf $-\mathrm{h} 1 \mathrm{thg})$
. quietly generate h1thstat $=1$ if h7thpf $==1$
. quietly replace h1thstat $=2$ if h7thg $=1$
. quietly replace h7thstat $=3$ if h7the $=1$
. labe1 variable h1thstat "health status"
. Tabel define hsvalue 1 poor_or_fair 2 good 3 excellent
. 1abe1 values h7thstat hsvalue


## - Summary statistics

. tabulate h7thstat

| health <br> status | Freq. | Percent | Cum. |
| ---: | ---: | ---: | ---: |
| poor_or_fair | 523 | 9.38 | 9.38 |
| exce11eod | 2,034 | 36.49 | 45.87 |
| Tota1 | 5,017 | 54.13 | 100.00 |
|  | 5,574 | 100.00 |  |

. * Summarize dependent and explanatory variables . summarize h1thstat age linc ndisease

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| ---: | ---: | ---: | ---: | ---: | ---: |
| h1thstat | 5574 | 2.447435 | .659524 | 1 | 3 |
| age | 5574 | 25.57613 | 16.73011 | .0253251 | 63.27515 |
| 1inc | 5574 | 8.696929 | 1.220592 | 0 | 10.28324 |
| ndisease | 5574 | 11.20526 | 6.788959 | 0 | 58.6 |

- Estimate using Stata command ologit
. * Ordered logit estimates
. ologit hlthstat age linc ndisease, nolog

| Ordered logistic regression | Number of obs <br> LR chi2( 3) | $=$ | 5574 |
| :--- | :--- | :--- | :--- |
| Log 1ikelihood $=-4769.8525$ | Prob $>$ chi2 | $=$ | 740.39 |
|  | Pseudo R2 | $=$ | 0.0000 |
|  |  |  |  |


| h7thstat | Coef. | Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Conf. Interval] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age | -. 0292944 | . 001681 | -17.43 | 0.000 | -. 0325891 | -. 0259996 |
| linc | . 2836537 | . 0231097 | 12.27 | 0.000 | . 2383594 | . 328948 |
| ndisease | -. 0549905 | . 0040692 | -13.51 | 0.000 | -. 062966 | -. 047015 |
| /cut1 | -1.39598 | . 2061293 |  |  | -1.799986 | -. 9919736 |
| /cut2 | . 9513097 | . 2054294 |  |  | . 5486755 | 1.353944 |

- Compare fitted and actual frequencies and compute MEM
- In Stata 11: margins, predict(outcome(3)) dydx(*) gives AME.
. summarize h1thpf h7thg h1the p1ologit p2ologit p3ologit, separator(0)

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| ---: | :---: | :---: | ---: | ---: | ---: |
| h1thpf | 5574 | .0938285 | .2916161 | 0 | 1 |
| h1thg | 5574 | .3649085 | .4814477 | 0 | 1 |
| hlthe | 5574 | .541263 | .4983392 | 0 | 1 |
| p1ologit | 5574 | .0946903 | .0843148 | .0233629 | .859022 |
| p2ologit | 5574 | .3651672 | .0946158 | .1255265 | .5276064 |
| p3ologit | 5574 | .5401425 | .1640575 | .0154515 | .7999009 |

. * Marginal effect at mean for 3rd outcome (health status excellent)
. mfx, predict(outcome(3))
Marginal effects after ologit
$\begin{aligned} y & =\operatorname{Pr}(\text { h thstat }=3)(\text { predict, outcome(3) }) \\ & =.53747616\end{aligned}$

| variable | $\mathrm{dy} / \mathrm{dx}$ | Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [ | $95 \%$ C.I. | $]$ |
| ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| age | -.0072824 | .00042 | -17.43 | 0.000 | -.008101 | -.006463 | 25.5761 |
| linc | .070515 | .00575 | 12.26 | 0.000 | .05924 | .08179 | 8.69693 |
| ndisease | -.0136704 | .00101 | -13.50 | 0.000 | -.015655 | -.011686 | 11.2053 |

## 11. Some References

- The material is covered in graduate level texts including
- CT(2005) MMA chapter 15 and CT(2009) MUS chapter 15
- Wooldridge, J.M. (2002), Econometric Analysis of Cross Section and Panel Data, MIT Press.
- Greene, W.H. (2007), Econometric Analysis, Prentice-Hall, Sixth edition.
- A classic book is
- Maddala, G.S. (1986), Limited-Dependent and Qualitative Variables in Econometrics, Cambridge University Press.

