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1. Introduction

1. Introduction

For unordered data consider models that are richer than multinomial
or conditional logit

I Some do not have a closed form expression for the pij , so use

F Maximum simulated likelihood estimation
F Bayesian methods

Consider models for more complicated forms of multinomial data:
sequential, multivariate.
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1. Introduction

Outline

1 Introduction
2 Multinomial data: Nested logit model
3 Multinomial data: Random parameters multinomial logit (mixed logit)
4 Maximum simulated likelihood estimation
5 Multinomial data: Multinomial probit model
6 Bayesian methods
7 Multinomial data: Aggregate data
8 Multinomial data: Further Models: sequential, multivariate
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2. Multinomial Data Nested Logit NL Model

2. Nested Logit Model

Create tree structure for alternatives.
I Within each branch errors are correlated.
I Across branches errors are not.

Fishing mode choice.
I Assume fundamental distinction is between shore and boat �shing.

Mode
� �

Shore Boat
� � � �

Beach Pier Charter Private
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2. Multinomial Data Nested Logit NL Model

Shore/boat contrast is called level 1 (or a limb).

Next level is called level 2 (or a branch).

Here
I (εi ,beach , εi ,pier ) are a bivariate correlated pair
I (εi ,private , εi ,charter ) are a bivariate correlated pair
I the two pairs are independent.

MNL/CL is special case all errors independent type I extreme value.

Limitation is that need to specify the nest - not data determined.

Two di¤erent nested logit models exist in the literature.
I Only one of these (in recent Stata) is consistent with utility
maximization.

I And should have "dissimilarity parameter" in (0,1) interval.
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2. Multinomial Data Nested Logit Data Example

Nested logit: �rst de�ne the tree

N = number of observations at each level
k = number of times alternative is chosen

                  total 4728 1182

private 1182 418
boat 2364 charter 1182 452

pier 1182 178
shore 2364 beach 1182 134

 type   N       fishmode  N    k

tree structure specified for the nested logit model

. nlogittree fishmode type, choice(d)

. * Check the tree

.

2 boat
1 shore

lb_type:
label list lb_type
new variable type is generated with 2 groups
. nlogitgen type = fishmode(shore: pier | beach, boat: private | charter)
. * Define the tree for nested logit

Nested logit then estimated using following command:
nlogit d p q jj type:, base(shore) jj fishmode: income,
case(id) nolog
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2. Multinomial Data Nested Logit Data Example

LR test for IIA (tau = 1):           chi2(2) = 45.43 Prob > chi2 = 0.0000

   /boat_tau 52.55949 542.8918 -1011.489 1116.608
  /shore_tau 83.4692 718.5336 -1324.831 1491.769
type

dissimilarity parameters

       _cons 37.52565 230.9065 0.16 0.871 -415.0428 490.094
      income -1.634925 8.588643 -0.19 0.849 -18.46836 15.19851
private

       _cons 58.94369 500.7358 0.12 0.906 -922.4805 1040.368
      income -9.458089 80.30189 -0.12 0.906 -166.8469 147.9307
pier

       _cons 69.96998 558.8972 0.13 0.900 -1025.448 1165.388
      income -8.402017 78.35482 -0.11 0.915 -161.9746 145.1706
charter

       _cons      (base)
      income      (base)
beach

fishmode equations

           q 1.340091 .3080531 4.35 0.000 .7363177 1.943864
           p -.0267625 .0018937 -14.13 0.000 -.0304741 -.023051
fishmode

           d       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

Log likelihood = -1192.4236 Prob > chi2     = 0.0000
                                                  Wald chi2(5)    = 212.37

max = 4
avg = 4.0

Alternative variable: fishmode                 Alts per case: min = 4

Case variable: id                              Number of cases    = 1182
RUM-consistent nested logit regression         Number of obs      = 4728
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3. Multinomial Data Random Parameters Logit RPL Model

3. Random Parameters Logit Model

The random parameters logit model introduces correlation across
alternatives through an individual-speci�c random e¤ect.

Speci�cally, for an m�choice model we have

Uij = x0ijβi + εij

εij � i.i.d. type I extreme value

βi � N [β,Σ]

I βi = β+ ui induces correlation across alternatives as then
Uij = x0ijβ+ (x

0
ijui + εij ) where ui � N [0,Σ].

Conditional on βi the model is easily estimated CL.
I But additionally need to integrate out βi .
I Use maximum simulated likelihood or Bayesian methods.
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3. Multinomial Data Random Parameters Logit Data Example

Stata user-written command mixlogit has same format as command
clogit.

I Here apply for three-choice example (with charter dropped).
I Specify just regressor p to have random coe¢ cient.

p .0598364 .0191597 3.12 0.002 .022284 .0973888
SD

p -.1069866 .0274475 -3.90 0.000 -.1607827 -.0531904
d4income .0518098 .0721527 0.72 0.473 -.0896068 .1932265
d3income -.1199613 .0492249 -2.44 0.015 -.2164404 -.0234822

d4 .5617395 .3158082 1.78 0.075 -.0572331 1.180712
d3 .7742955 .224233 3.45 0.001 .3348069 1.213784
q .7840088 .9147869 0.86 0.391 -1.008941 2.576958

Mean

d Coef. Std. Err. z P>|z| [95% Conf. Interval]

Log likelihood = -434.52844 Prob > chi2 = 0.0000
LR chi2(1) = 64.57

Mixed logit model Number of obs = 2190

Iteration 6: log likelihood = -434.52844
Iteration 5: log likelihood = -434.52844
Iteration 4: log likelihood = -434.52856
Iteration 3: log likelihood = -434.56105
Iteration 2: log likelihood = -435.29806
Iteration 1: log likelihood = -447.46013
Iteration 0: log likelihood = -602.33584 (not concave)

. mixlogit d q d3 d4 d3income d4income, group(id) rand(p)
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4. Maximum Simulated Likelihood Estimation General Theory

4. Maximum Simulated Likelihood Estimation
Problem: The MLE (with independent data over i) maximizes

ln L(θ) = ∑N
i=1 ln f (yi jxi , θ).

I but f (yi jxi , θ) does not have a closed form solution.
I e.g. f (yi jxi , θ) =

R
g(yi jxi , θ, α)h(α)dα =?

Solution: Maximum simulated likelihood estimator (MSL) maximizes

lnbL(θ) = ∑N
i=1 ln

bf (yi jxi , θ)
I where bf (yi jxi , θ) is a simulated approximation to f (yi jxi , θ)
I e.g. f (yi jxi , θ) = 1

S ∑Ss=1 g(yi jxi , θ, α(s)) where α(s) are draws from
the density h(α)

The MSL estimator is consistent and has the usual asymptotic
distribution as the MLE if

I bf (�) is an unbiased simulator and satis�es other conditions given below
I S ! ∞, N ! ∞ and

p
N/S ! 0 where S is number of simulations.

I Note that many draws S (to compute bf (�)) are required.
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4. Maximum Simulated Likelihood Estimation General Theory

Assumed properties of the simulator:
I bf (�) is an unbiased simulator with

E[bf (yi jxi , θ)] = f (yi jxi , θ)
I bf (�) is di¤erentiable in θ (or smooth simulator) so gradient methods
can be used

I the underlying draws to compute bf (�) are unchanged so no "chatter".
We need many draws S because simulator is biased for ln f (�)

E[bf (�)] = E[f (�)] ; E[lnbf (�)] 6= E[ln f (�)].

Binary probit example
I Density fi = Φ(x0i β)

yi (1�Φ(x0i β))
1�yi

I Frequency simulatorbfi = 1
S ∑Ss=1 1[ε

(s)
i � x0i β]yi (1� 1[ε

(s)
i � x0i β])1�yi

F ε
(s)
i , s = 1, ...,S , are random draws from N [0, 1]

F But here not smooth so need to use a di¤erent simulator.
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4. Maximum Simulated Likelihood Estimation Application to Random Parameters Logit

MSL Application to Random Parameters Logit
Recall Uij = x0ijβi + εij ; εij � type I extreme value; βi � N [β,Σ].
If βi known then have CL model with pij = e

x0ij βi / ∑m
l=1 e

x0il βl .
Instead βi random and needs to be integrated out

pij = Pr[yi = j ] =
Z ex

0
ij βi

∑m
l=1 e

x0il βl
φ(βi jβ,Σ).

The MSL estimator of β and Σ maximizes

lnbL(β,Σ) = ∑N
i=1 ln

bf (yi jxi , β,Σ)
= ∑N

i=1 ∑m
j=1 ln

24 1
S ∑S

s=1

ex
0
ij β

(s)
i

∑m
l=1 e

x0il β
(s)
l

35
I where β

(s)
i , s = 1, ...,S , are random draws from φ(βi jβ,Σ)

I and at r th round of gradient method draw is from φ(βi jβ
r ,Σr ).
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4. Maximum Simulated Likelihood Estimation Method of Simulated Moments

Method of Simulated Moments

An alternative less e¢ cient estimator is the method of simulated
(MSM) estimator.

Suppose bθ is a method of moments estimator (MM) that solves
∑N
i=1m(yi jxi , θ) = 0.

Suppose there is unbiased simulator such that
E[ bm(yi jxi , θ)] = m(yi jxi , θ).
Then the method of simulated (MSM) solves

∑N
i=1 bm(yi jxi , θ) = 0

is consistent even if S is small though there is an e¢ ciency loss.
I When bm(�) is the frequency simulator V[bθMSM ] = (1+ 1

S )V[
bθMM ].

In practice the MSL is used much more often even though larger S .
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5. Multinomial Data Multinomial Probit MNP Model

5. Multinomial Probit Model

Consider three-choice example of the multinomial probit model.
I ARUM with errors multivariate normal distributed.24 εi1

εi2
εi3

35 � N
0@24 0

0
0

35 ,
24 σ21 σ12 σ13

σ21 σ22 σ23
σ31 σ32 σ23

351A .
I Not all the variance components are identi�ed.
I Only covariance matrix of di¤erenced errors εj � ε1, plus one
normalization.

I Here e.g. σ22 = 1, and σ32 and σ23 free.

Even if error model is technically identi�ed, parameters of the MNP
model may be imprecisely estimated (like multicollinearity).

I Further restrictions are needed in practice.
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5. Multinomial Data Multinomial Probit Data Example

Use Stata command asmlogit
I Uses simulated maximum likelihood
I With GHK simulator which is a smooth simulator (meaning small
change in β changes simulated value of pij so that objective function is
di¤erentiable in β)

Log simulated-pseudolikelihood = -482.30128 Prob > chi2     = 0.0114
Integration points: 150       Wald chi2( 4)    = 12.97
Integration sequence:            Hammersley

max = 3
avg = 3.0

Alternative variable: fishmode                 Alts per case: min = 3

Case variable: id                              Number of cases    = 730
Alternative-specific multinomial probit        Number of obs      = 2190

       within-case variability
note: variable p has 106 cases that are not alternative-specific: there is no
>   correlation(unstructured) structural vce(robust) nolog
. asmprobit d p q, case(id) alternatives(fishmode) casevars(income) ///

(2538 observations deleted)
. drop if fishmode=="charter" | mode == 4
. * Multinomial probit with case-specific regressors
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5. Multinomial Data Multinomial Probit Data Example

(fishmode=pier is the alternative normalizing scale)
(fishmode=beach is the alternative normalizing location)

rho3_2 .173949 .2266545 -.2750878 .5606852

sigma3 1.499511 .7512264 .5617123 4.002998
sigma2 1 (scale alternative)
sigma1 1 (base alternative)

/atanhr3_2 .1757361 .2337267 0.75 0.452 -.2823598 .6338319

/lnsigma3 .4051391 .5009809 0.81 0.419 -.5767654 1.387044

_cons .6602584 .2766473 2.39 0.017 .1180397 1.202477
income .0413866 .0739083 0.56 0.575 -.103471 .1862443

private

_cons .7549123 .2013551 3.75 0.000 .3602636 1.149561
income -.097985 .0413117 -2.37 0.018 -.1789543 -.0170156

pier

beach (base alternative)

q 1.399925 .5395423 2.59 0.009 .3424418 2.457409
p -.0233627 .0114346 -2.04 0.041 -.0457741 -.0009513

fishmode

d Coef. Std. Err. z P>|z| [95% Conf. Interval]
Robust

(Std. Err. adjusted for clustering on id)
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5. Multinomial Data Multinomial Probit Data Example

private 0 .2608385 2.248533
pier 0 1

beach 1

beach pier private

. estat covariance

private 0.0000 0.1739 1.0000
pier 0.0000 1.0000

beach 1.0000

beach pier private

. estat correlation

. * Show correlations and covariance
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6. Bayesian Methods General Theory

6. Bayesian Methods
Bayesian methods begin with

I Likelihood: L(yjθ,X)
I Prior on θ : π(θ)

This yields the posterior distribution for θ

p(θjy,X) = L(yjθ,X)�π(θ)

f (yjX)

I where f (yjX) =
R
L(yjθ,X)�π(θ)dθ is called the marginal

likelihood.
I This uses the result that Pr[AjB ] = Pr[A\ B ]/Pr[B ].

Bayesian analysis then bases inference on the posterior distribution.
I e.g. Best point estimate of θ may be the mean of the posterior
distribution.

I e.g. A 95% con�dence interval for θ is from the 2.5 to 97.5 percentiles
of the posterior distribution.
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6. Bayesian Methods General Theory

Bayesian inference is a di¤erent inference method
I treats θ as intrinsically random
I whereas classical inference treats θ as �xed and bθ as random.

Modern Bayesian methods (Markov chain Monte Carlo)
I make it much easier to compute the posterior distribution than to
maximize the log-likelihood.

So classical statisticians:
I use Bayesian methods to compute the posterior
I use an uninformative prior so p(θjy,X) ' L(yjθ,X)
I so θ that maximizes the posterior is also the MLE.

Or can go all the way and be Bayesian.
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6. Bayesian Methods Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC)

The challenge is to compute the posterior
I analytical results are only available in special cases.
I e.g. If yjX is normal with mean Xβ and known variance and the prior
for β is normal with speci�ed mean and variance then the posterior for
βjy,X is also normal.

Instead use Markov chain Monte Carlo methods:
I Make sequential random draws θ(1), θ(2), ....
I where θ(s) depends in part on θ(s�1)

I in such a way that after an initial burn-in (discard these draws)
I θ(s) are (correlated) draws from the posterior p(θjy,X).

MCMC methods include
I Gibbs sampler
I Metropolis and Metropolis-Hastings algorithms
I Data augmentation
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6. Bayesian Methods Probit Example

Probit example

Likelihood: Probit model with single regressor
I ln L(βjy,X) = ∑i yi lnΦ(β1 + β2x) + (1� yi ) ln(1�Φ(β1 + β2x))

Prior: uniform prior (all values equally likely)
I π(β) = π(β1, β2) = 1

Posterior: no closed form solution
I though proper even though the prior was improper
I instead use Gibbs sampler and data augmentation

Example: the above with generated data
I β1 = 0, β2 = 1, N = 100, x � N [0, 1]

Gibbs sampler yields 1,000 correlated draws from the posterior.
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6. Bayesian Methods Correlated draws

Correlated draws
The last 100 draws from the posterior density of β2

0
.2

.4
.6

.8
b

900 920 940 960 980 1000
s
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6. Bayesian Methods Correlated draws

Correlations of the 1,000 draws of β2 die out quickly

10 -0.0255 -0.0315 346.95 0.0000
9 -0.0086 -0.0070 346.29 0.0000
8 -0.0126 0.0144 346.21 0.0000
7 -0.0330 0.0198 346.05 0.0000
6 -0.0440 -0.0685 344.95 0.0000
5 0.0137 0.0159 343.01 0.0000
4 0.0299 -0.0153 342.82 0.0000
3 0.1061 -0.0330 341.92 0.0000
2 0.2581 -0.0068 330.6 0.0000
1 0.5127 0.5128 263.7 0.0000

LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]
-1 0 1 -1 0 1

. corrgram b, lags(10)
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6. Bayesian Methods Posterior density

Posterior density
Kernel density estimate of the 1,000 draws of β2

I centered around 0.4-0.5 with standard deviation of 0.1-0.2.
0

1
2

3
D

en
sit

y

0 .2 .4 .6 .8 1
b

Kernel density estimate
Normal density

kernel = epanechnikov, bandwidth = 0.0301

Kernel density estimate
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6. Bayesian Methods Posterior density

More precisely
I Posterior mean of β2 is 0.434 and standard deviation is 0.132
I A 95% percent Bayesian con�dence interval for β2 is (0.195, 0.701).

97.5 .701408 .6852426 .7263849
b 1000 2.5 .194546 .1848584 .2014523

Variable Obs Percentile Centile [95% Conf. Interval]
Binom. Interp.

. centile b, centile(2.5, 97.5)

b 1000 .4345774 .1329711 .0379931 .94584

Variable Obs Mean Std. Dev. Min Max

. summarize b
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6. Bayesian Methods Gibbs sampler

Gibbs Sampler
Gibbs sampler is simple MCMC method

used when
I we can partition θ into θ1 and θ2
I we do not know the posterior p(θ1, θ2)
I but we do know the conditional posteriors p(θ1 jθ2) and p(θ2 jθ1)

Then make alternating draws from p(θ1jθ2) and p(θ2jθ1)
I Start with θ

(1)
1

I Draw θ
(1)
2 from p(θ2 jθ(1)1 )

I Draw θ
(2)
1 from p(θ1 jθ(1)2 )

I Draw θ
(2)
2 from p(θ2 jθ(2)1 ) etc.

Gibbs eventually gives (correlated) draws from p(θ1, θ2) even though

p(θ1, θ2) = p(θ1jθ2)� p(θ2)
6= p(θ1jθ2)� p(θ2jθ1).
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6. Bayesian Methods Data augmentation

Data Augmentation

Consider latent variable model where observed data y are determined
completely by y �.

I We have data yi , xi
I where yi = g(y�i ) with g(�) known
I and y�i depends on xi and θ
I probit is an example.

Furthermore suppose that Bayesian analysis would be easy if y �i was
observed

I so the posterior p(θjy�1 , ...., y�N ,data) is known.

Then data augmentation
I treats the parameters as θ and y�1 , ...., y

�
N

I then do Gibbs sampler

F draw θ from p(θjy �1 , ...., y �N ,data)
F and draw y �1 , ...., y

�
N from p(y �1 , ...., y

�
N jθ,data).
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6. Bayesian Methods Probit example

Probit example
Likelihood: Probit model

I y�i = x
0
i β+ εi , εi � N [0, 1].

I yi =
�
1 y�i > 0
0 y�i � 0

Prior: uniform prior (all values equally likely)
I π(β) = 1

Known tractable result: for y� � N [Xβ, I] and uniform prior on β

I p(βjy�,X) is N [bβ, (X0X)�1 ] where bβ = (X0X)�1X0y�.
Data augmentation add y �1 , ..., y

�
N as parameters.

I Then p(βjy�1 , ..., y�N , y,X) is N [bβ, (X0X)�1 ]
I And p(y�1 , ..., y

�
N jβ, y,X) is truncated normal

F If yi = 1 draw from N [x0i β, 1] left truncated at 0
F If yi = 0 draw from N [x0i β, 1] right truncated at 0

So draw β(s) from p(βjy �(s�1)1 , ..., y �(s�1)N , y,X)
and draw y �(s)1 , ..., y �(s)N from p(y �1 , ..., y

�
N jβ

(s), y,X)
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6. Bayesian Methods Multinomial Probit example

Multinomial probit example

Likelihood: Multinomial probit model
I U�ij = x

0
ijβ+ εij , εi � N [0,Σε]

I yij = 1 if U�ij > U
�
ik all k 6= j

Prior for β and Σε may be normal-Wishart

Data augmentation
I Latent utilities Ui = (Ui1, ...,Uim) are introduced as auxiliary variables
I Let U = (U1, ...,UN ) and y = (y1, ..., yN )

Gibbs sampler cycles between
I 1. Conditional posterior for βjU,Σε, y,X
I 2. Conditional posterior for Σεjβ,U, y,X, and
I 3. Conditional posterior for Ui jβ,Σε, y,X.

Albert and Chib (1993) provide a quite general treatment.

McCulloch and Rossi (1994) provide a substantive MNP application.
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7. Multinomial data: Aggregate data Data and model

7. Aggregate Data for individual random parameters logit
Can do regular multinomial logit or NLSUR on aggregated data

I Here consider harder problem of linking to individual behavior.

The data available are for brand j in market t :
I market share sjt , average prices pjt , other product characteristics wjt .

The underlying model is one of individual behavior
I utility of individual i for brand j in market t is

Uijt = w0jtγi � αipjt + ξjt + εijt

= x0jtβi + ξjt + εijt ,

I where εijt is i.i.d. type I extreme value

Consider the following situations
I No individual heterogeneity: βi = β (only heterogeneity is εijt )
I No individual heterogeneity and endogenous xjt (e.g. prices).
I Individual heterogeneity: βi is normally distributed.
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7. Multinomial data: Aggregate data No individual heterogeneity

No individual heterogeneity
Given εijt i.i.d. extreme value, then get usual conditional logit model

Pr[yijt = 1] =
exp(x0jtβ+ ξ jt )

1+∑m
k=1 exp(x0ktβ+ ξkt )

We have aggregate market data so estimate the share

sjt =
exp(x0jtβ+ ξ jt )

1+∑m
k=1 exp(x0ktβ+ ξkt )

.

Introduce an outside good, good 0, normalized so that x0jtβ = 0.
I Then s0t = 1/[1+∑mk=1 exp(x

0
ktβ+ ξkt )]

I So sjt = exp(x0jtβ+ ξjt )/s0t and

ln sjt � ln s0t = x0jtβ+ ξjt .

I So can estimate β by OLS using market share data.

Empirical results will depend on the outside good
I and need to get a share �gure for the outside good.
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7. Multinomial data: Aggregate data Endogeneity but no individual heterogeneity

Endogeneity but no individual heterogeneity

Now suppose the unobserved heterogeneity ξ jt is correlated with
prices pjt or other characteristics xjt .
Then estimate by IV

ln sjt � ln s0t = x0jtβjt + ξ jt ,

I where instruments zjt satisfy E[zjt ξjt ] = 0
I e.g. instruments from supply-side if modelling demand.
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7. Multinomial data: Aggregate data Individual heterogeneity

Individual heterogeneity
Suppose Uijt = x0jtβi + ξ jt + εijt where βi is normally distributed

I then with εijt i.i.d. extreme value, get RPL model at individual level.

But we have only market share data
I Let βi = β+ ui and rewrite

Uijt = x0jtβi + ξjt + εijt

= x0jtβ+ ξjt + x
0
jtui + εijt

Integrate out ui and εijt to leave model depending on xjt and ξ jt .
I The set of individuals choosing brand j in market t is

Ajt (xjt , ξjt ) = fui , εi0t , ..., εimt jUijt � Uilt for all l = 0, ...,mg.
I Integrate out individual heterogeneity to get the market share

sjt (xjt , ξjt jβ,Σβ) =
Z
Ajt
df (ui , εi0t , ..., εimt )

where f (ui , εi0t , ..., εimt ) is the joint distribution of the errors
F iid type 1 extreme value for the εijt
F N [0,Σβ] for ui
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7. Multinomial data: Aggregate data Individual heterogeneity

Now predicted share sjt (xjt , ξ jt jβ,Σβ) is very nonlinear
I the error ξjt is nonadditive
I so can�t just do NLS of sjt on sjt (xjt , ξjt jβ,Σβ)
I also may be concerend about endogeneity of xjt

Berry (1984) instead proposed the following (see also Nevo (2000))
I Solve for ξjt (viewed as a structural error) as a function of
sjt , xjt , β,Σβ.

I Assume there are instruments zjt (allows for e.g. endogenous prices)
I Stack ξjt and zjt into ξ and Z and estimate β and Σβ by GMM
estimator that minimizes

Q(β,Σβ) = [Z0jtξ(β,Σβ)]
0W[Z0jtξ(β,Σβ)]

This is computationally challenging
I Computation of sjt (xjt , ξjt jβ,Σβ) requires numerical methods
I Inversion to get x0jtβ+ ξjt and hence ξjt requires numerical methods
I Knittel and Metaxoglou (2008) �nd problems with many optima that
lead to quite di¤erent estimated price elasticities.
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8. Multinomial Data Further Models Sequential Models

8. Further Models: Sequential Models

Example is sequential probit with three alternatives.
I First choose whether y = 1 or y 6= 1.
I Second, if y 6= 1 choose whether y = 2 or y = 3.

Assume a probit model at each stage, with regressors x2 at the �rst
stage and regressors x1 at the second stage.

I Then

p1 = Pr[y = 1] = Φ(x01β1),
p2

p2 + p2
= Pr[yi = 2jyi 6= 1] = Φ(x02β2),

I This implies after some algebra

p2 = Pr[y 6= 1]� Pr[y = 2jy 6= 1] = (1�Φ(x01β1))�Φ(x02β2)

p3 = 1� p1 � p2.

I The likelihood function is then easily obtained and estimation is by ML.
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8. Multinomial Data Further Models Multivariate Models

Further Models: Multivariate Models

Multivariate models have more than one discrete dependent variable.
I Example: jointly model labor supply and fertility

y1 =

�
0 if do not work
1 if work

y2 =

�
0 if no children
1 if children

I There are four probabilities

p00 = Pr[y1 = 0, y2 = 0]

p01 = Pr[y1 = 0, y2 = 1]

p10 = Pr[y1 = 1, y2 = 0]

p11 = Pr[y1 = 1, y2 = 1].

I These are mutually exclusive and exhaust all possibilities, so that
p00 + p00 + p00 + p00 = 1.
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8. Multinomial Data Further Models Bivariate Probit Model

Further Models: Bivariate Probit

From these probabilities one can form the log-likelihood, and estimate
by ML.

I This is essentially the same as a four-choice multinomial model.
I All that di¤ers is the story told to derive the functional forms for the
probabilities.

Bivariate probit model is a leading example.
I Observe y1 = 1 or 0 if y�1 > or < 0
and y2 = 1 or 0 if y�2 > or < 0 where

y�1 = x01β1 + ε1

y�2 = x02β2 + ε1�
ε1
ε1

�
� N

��
0
0

�
,
�
1 ρ
ρ 1

��
.
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8. Multinomial Data Further Models Bivariate Probit Model

Further Models: Bivariate Probit Data Example

Bivariate probit example: y1 is health excellent and y2 is visit doctor.

dmdu -0.0110 1.0000
hlthe 1.0000

hlthe dmdu

(obs=5574)
. correlate hlthe dmdu

Total 1,832 3,742 5,574

1 1,006 2,011 3,017
0 826 1,731 2,557

hlthe 0 1 Total
mdu > 0

any MD visit = 1 if

. tabulate hlthe dmdu

. * Two binary dependent variables: hlthe and dmdvs
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8. Multinomial Data Further Models Bivariate Probit Model

Estimate using Stata command biprobit

Likelihood-ratio test of rho=0: chi2(1) = 1.5295 Prob > chi2 = 0.2162

rho .0282183 .0228088 -.0165127 .0728366

/athrho .0282258 .022827 1.24 0.216 -.0165142 .0729658

_cons -1.032527 .1290517 -8.00 0.000 -1.285464 -.7795907
ndisease .0347111 .0028908 12.01 0.000 .0290452 .0403771

linc .1212519 .0142512 8.51 0.000 .09332 .1491838
age .0020038 .0010927 1.83 0.067 -.0001379 .0041455

dmdu

_cons -.2297079 .1334526 -1.72 0.085 -.4912703 .0318545
ndisease -.0326656 .0027589 -11.84 0.000 -.0380729 -.0272583

linc .132468 .0149632 8.85 0.000 .1031406 .1617953
age -.0178246 .0010827 -16.46 0.000 -.0199466 -.0157025

hlthe

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Log likelihood = -6958.0751 Prob > chi2 = 0.0000
Wald chi2(6) = 770.00

Bivariate probit regression Number of obs = 5574

. biprobit hlthe dmdu age linc ndisease, nolog

. * Bivariate probit estimates
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8. Multinomial Data Further Models Further Models

Further Models

Ranked Data
I With stated preference data we know the second-preferred choice, not
just the most-preferred choice.

I Using this can increase e¢ ciency of estimation
I e.g. For MNL �rst preference is MNL with m alternatives, and second
preference is MNL with (m� 1) alternatives.

Simultaneous Equations
I Two binary variables that are simultaneous.
I Easiest if simultaneity is in latent variables (y�1 , y

�
2 ).

Then work with reduced form in (y�1 , y
�
2 ).

I More di¢ cult if simultaneous in the binary outcomes (y1, y2).
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9. References
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