2B: Multinomial outcomes: Extras

(C) A. Colin Cameron
U. of Calif. - Davis

OeNB Summer School 2010
Microeconometrics
Oesterreichische Nationalbank (OeNB), Vienna, Austria

Based on
A. Colin Cameron and Pravin K. Trivedi, Microeconometrics: Methods and Applications (MMA), ch. 14
Microeconometrics using Stata (MUS), ch.14.
Data examples are from MUS.

Aug 30 - Sep 3, 2010

1. Introduction

- For unordered data consider models that are richer than multinomial or conditional logit
- Some do not have a closed form expression for the $p_{i j}$, so use
^ Maximum simulated likelihood estimation
\star Bayesian methods
- Consider models for more complicated forms of multinomial data: sequential, multivariate.

Outline

(1) Introduction
(2) Multinomial data: Nested logit model
(3) Multinomial data: Random parameters multinomial logit (mixed logit)
(9) Maximum simulated likelihood estimation
(3) Multinomial data: Multinomial probit model
(0) Bayesian methods
(Multinomial data: Aggregate data
(8) Multinomial data: Further Models: sequential, multivariate

2. Nested Logit Model

- Create tree structure for alternatives.
- Within each branch errors are correlated.
- Across branches errors are not.
- Fishing mode choice.
- Assume fundamental distinction is between shore and boat fishing. Mode

- Shore/boat contrast is called level 1 (or a limb).
- Next level is called level 2 (or a branch).
- Here
- $\left(\varepsilon_{i, \text { beach }}, \varepsilon_{i, p i e r}\right)$ are a bivariate correlated pair
- $\left(\varepsilon_{i, \text { private }}, \varepsilon_{i, \text { charter }}\right)$ are a bivariate correlated pair
- the two pairs are independent.
- MNL/CL is special case all errors independent type I extreme value.
- Limitation is that need to specify the nest - not data determined.
- Two different nested logit models exist in the literature.
- Only one of these (in recent Stata) is consistent with utility maximization.
- And should have "dissimilarity parameter" in $(0,1)$ interval.
- Nested logit: first define the tree

```
. * Define the tree for nested logit
. nlogitgen type = fishmode(shore: pier | beach, boat: private | charter)
new variable type is generated with 2 groups
1abe1 1ist 1b_type
1b_type:
    1 shore
    2 boat
. * Check the tree
. nlogittree fishmode type, choice(d)
tree structure specified for the nested logit model
```



```
                        total 47281182
\(\mathrm{k}=\) number of times alternative is chosen
\(\mathrm{N}=\) number of observations at each leve1
```

- Nested logit then estimated using following command: nlogit d p q || type:, base(shore) || fishmode: income, case(id) nolog

RUM-Consistent nested logit regression	Number of obs	4728
Case variable: id	Number of cases	1182
Alternative variable: fishmode	Alts per case: min $=$	4
	avg =	4.0
	max	4
	Wald chist	212.37
Log likelihood =-1192.4236	Prob > chi2	0.0000

	d	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
fishmode							
	p	-.0267625	.0018937	-14.13	0.000	-.0304741	-.023051
	q	1.340091	.3080531	4.35	0.000	.7363177	1.943864

fishmode equations

beach income _cons	(base) (base)					
charter	$\begin{array}{r} -8.402017 \\ 69.96998 \end{array}$	$\begin{aligned} & 78.35482 \\ & 558.8972 \end{aligned}$	$\begin{array}{r} -0.11 \\ 0.13 \end{array}$	$\begin{aligned} & 0.915 \\ & 0.900 \end{aligned}$	$\begin{aligned} & -161.9746 \\ & -1025.448 \end{aligned}$	$\begin{aligned} & 145.1706 \\ & 1165.388 \end{aligned}$
income						
_cons						
pier						
income	-9.458089	80.30189	-0.12	0.906	-166.8469	147.9307
_cons	58.94369	500.7358	0.12	0.906	-922.4805	1040.368
private						
income	-1.634925	8.588643	-0.19	0.849	-18.46836	15.19851
_cons	37.52565	230.9065	0.16	0.871	-415.0428	490.094

dissimilarity parameters

type						
/shore_tau	83.4692	718.5336			-1324.831	1491.769
/boat_tau	52.55949	542.8918			-1011.489	1116.608
LR test for IIA ($\mathrm{tau}=1$)			chi22)	45.43	Prob > c	$=0.0000$

3. Random Parameters Logit Model

- The random parameters logit model introduces correlation across alternatives through an individual-specific random effect.
- Specifically, for an m-choice model we have

$$
\begin{aligned}
U_{i j} & =\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}_{i}+\varepsilon_{i j} \\
\varepsilon_{i j} & \sim \text { i.i.d. type I extreme value } \\
\boldsymbol{\beta}_{i} & \sim \mathcal{N}[\boldsymbol{\beta}, \Sigma]
\end{aligned}
$$

- $\beta_{i}=\boldsymbol{\beta}+\mathbf{u}_{i}$ induces correlation across alternatives as then

$$
U_{i j}^{\prime}=\mathbf{x}_{i j}^{\prime} \beta+\left(\mathbf{x}_{i j}^{\prime} \mathbf{u}_{i}+\varepsilon_{i j}\right) \text { where } \mathbf{u}_{i} \sim \mathcal{N}[\mathbf{0}, \Sigma] .
$$

- Conditional on β_{i} the model is easily estimated CL.
- But additionally need to integrate out $\boldsymbol{\beta}_{i}$.
- Use maximum simulated likelihood or Bayesian methods.
- Stata user-written command mixlogit has same format as command clogit.
- Here apply for three-choice example (with charter dropped).
- Specify just regressor p to have random coefficient.

Mixed logit mode1	Number of obs	$=$	2190
Log likelihood $=-434.52844$	LR chi2(1)	$=$	64.57
	Prob $>$ chi2	$=$	0.0000

d	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf	Interval]
Mean						
q	. 7840088	. 9147869	0.86	0.391	-1.008941	2.576958
d3	. 7742955	. 224233	3.45	0.001	. 3348069	1.213784
d4	. 5617395	. 3158082	1.78	0.075	-. 0572331	1.180712
d3income	-. 1199613	. 0492249	-2.44	0.015	-. 2164404	-. 0234822
d4income	. 0518098	. 0721527	0.72	0.473	-. 0896068	. 1932265
p	-. 1069866	. 0274475	-3.90	0.000	-. 1607827	-. 0531904
SD						
p	. 0598364	. 0191597	3.12	0.002	. 022284	. 0973888

4. Maximum Simulated Likelihood Estimation

- Problem: The MLE (with independent data over i) maximizes

$$
\ln L(\theta)=\sum_{i=1}^{N} \ln f\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)
$$

- but $f\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)$ does not have a closed form solution.
- e.g. $f\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)=\int g\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}, \alpha\right) h(\alpha) d \alpha=$?
- Solution: Maximum simulated likelihood estimator (MSL) maximizes

$$
\ln \widehat{L}(\boldsymbol{\theta})=\sum_{i=1}^{N} \ln \widehat{f}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)
$$

- where $\widehat{f}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)$ is a simulated approximation to $f\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)$
- e.g. $f\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)=\frac{1}{S} \sum_{s=1}^{S} g\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}, \alpha^{(s)}\right)$ where $\alpha^{(s)}$ are draws from the density $h(\alpha)$
- The MSL estimator is consistent and has the usual asymptotic distribution as the MLE if
- $\widehat{f}(\cdot)$ is an unbiased simulator and satisfies other conditions given below
- $S \rightarrow \infty, N \rightarrow \infty$ and $\sqrt{N} / S \rightarrow 0$ where S is number of simulations.
- Note that many draws S (to compute $\widehat{f}(\cdot)$) are required.
- Assumed properties of the simulator:
- $\widehat{f}(\cdot)$ is an unbiased simulator with

$$
\mathrm{E}\left[\widehat{f}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)\right]=f\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)
$$

- $\widehat{f}(\cdot)$ is differentiable in $\boldsymbol{\theta}$ (or smooth simulator) so gradient methods can be used
- the underlying draws to compute $\widehat{f}(\cdot)$ are unchanged so no "chatter".
- We need many draws S because simulator is biased for $\ln f(\cdot)$

$$
\mathrm{E}[\widehat{f}(\cdot)]=\mathrm{E}[f(\cdot)] \Rightarrow \mathrm{E}[\ln \widehat{f}(\cdot)] \neq \mathrm{E}[\ln f(\cdot)]
$$

- Binary probit example
- Density $f_{i}=\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)^{y_{i}}\left(1-\Phi\left(\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)\right)^{1-y_{i}}$
- Frequency simulator

$$
\begin{aligned}
\widehat{f}_{i} & =\frac{1}{S} \sum_{s=1}^{S} 1\left[\varepsilon_{i}^{(s)} \leq \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right]^{y_{i}}\left(1-1\left[\varepsilon_{i}^{(s)} \leq \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right]\right)^{1-y_{i}} \\
& \star \varepsilon_{i}^{(s)}, s=1, \ldots, S \text {, are random draws from } \mathcal{N}[0,1] \\
& \star \text { But here not smooth so need to use a different simulator. }
\end{aligned}
$$

MSL Application to Random Parameters Logit

- Recall $U_{i j}=\mathbf{x}_{i j}^{\prime} \beta_{i}+\varepsilon_{i j} ; \varepsilon_{i j} \sim$ type I extreme value; $\boldsymbol{\beta}_{i} \sim \mathcal{N}[\beta, \Sigma]$.
- If $\boldsymbol{\beta}_{i}$ known then have $C L$ model with $p_{i j}=e^{\mathbf{x}_{i j}^{\prime} \beta_{i}} / \sum_{l=1}^{m} e^{\mathbf{x}_{i l}^{\prime} \beta_{l}}$.
- Instead β_{i} random and needs to be integrated out

$$
p_{i j}=\operatorname{Pr}\left[y_{i}=j\right]=\int \frac{e^{x_{i j}^{\prime} \beta_{i}}}{\sum_{l=1}^{m} e^{x_{i}^{\prime} \beta_{l}}} \phi\left(\boldsymbol{\beta}_{i} \mid \boldsymbol{\beta}, \Sigma\right) .
$$

- The MSL estimator of β and Σ maximizes

$$
\begin{aligned}
\ln \widehat{L}(\boldsymbol{\beta}, \Sigma) & =\sum_{i=1}^{N} \ln \widehat{f}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\beta}, \Sigma\right) \\
& =\sum_{i=1}^{N} \sum_{j=1}^{m} \ln \left[\frac{1}{S} \sum_{s=1}^{S} \frac{e^{\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}_{i}^{(s)}}}{\sum_{l=1}^{m} e^{\mathbf{x}_{i l}^{\prime} \boldsymbol{\beta}_{i}^{(s)}}}\right]
\end{aligned}
$$

- where $\boldsymbol{\beta}_{i}^{(s)}, s=1, \ldots, S$, are random draws from $\phi\left(\boldsymbol{\beta}_{i} \mid \boldsymbol{\beta}, \Sigma\right)$
- and at $r^{\text {th }}$ round of gradient method draw is from $\phi\left(\boldsymbol{\beta}_{i} \mid \boldsymbol{\beta}^{r}, \Sigma^{r}\right)$.

Method of Simulated Moments

- An alternative less efficient estimator is the method of simulated (MSM) estimator.
- Suppose $\widehat{\boldsymbol{\theta}}$ is a method of moments estimator (MM) that solves

$$
\sum_{i=1}^{N} \mathbf{m}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)=\mathbf{0}
$$

- Suppose there is unbiased simulator such that $\mathrm{E}\left[\widehat{\boldsymbol{m}}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)\right]=\mathbf{m}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)$.
- Then the method of simulated (MSM) solves

$$
\sum_{i=1}^{N} \widehat{\mathbf{m}}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)=\mathbf{0}
$$

is consistent even if S is small though there is an efficiency loss.

- When $\widehat{\boldsymbol{m}}(\cdot)$ is the frequency simulator $\mathrm{V}\left[\widehat{\boldsymbol{\theta}}_{\mathrm{MSM}}\right]=\left(1+\frac{1}{S}\right) \mathrm{V}\left[\widehat{\boldsymbol{\theta}}_{\mathrm{MM}}\right]$.
- In practice the MSL is used much more often even though larger S.

5. Multinomial Probit Model

- Consider three-choice example of the multinomial probit model.
- ARUM with errors multivariate normal distributed.

$$
\left[\begin{array}{l}
\varepsilon_{i 1} \\
\varepsilon_{i 2} \\
\varepsilon_{i 3}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{lll}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{2}^{2} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{3}^{2}
\end{array}\right]\right) .
$$

- Not all the variance components are identified.
- Only covariance matrix of differenced errors $\varepsilon_{j}-\varepsilon_{1}$, plus one normalization.
- Here e.g. $\sigma_{2}^{2}=1$, and σ_{32} and σ_{3}^{2} free.
- Even if error model is technically identified, parameters of the MNP model may be imprecisely estimated (like multicollinearity).
- Further restrictions are needed in practice.
- Use Stata command asmlogit
- Uses simulated maximum likelihood
- With GHK simulator which is a smooth simulator (meaning small change in β changes simulated value of $p_{i j}$ so that objective function is differentiable in $\boldsymbol{\beta}$)

```
.* Multinomial probit with case-specific regressors
. drop if fishmode=="charter" | mode = 4
(2538 observations deleted)
. asmprobit d p q, case(id) alternatives(fishmode) casevars(income) ///
> correlation(unstructured) structural vce(robust) nolog
note: variable p has }106\mathrm{ cases that are not alternative-specific: there is no
    within-case variability
Alternative-specific multinomial probit Number of obs = 2190
Case variable: id
Alternative variable: fishmode
Integration sequence: }\quad\mathrm{ Hammers7ey 
Number of obs 
Alts per case: min = 3
avg = 3.0
max = 3

Alts per case: min \(=\) avg = max \(=\)
```

wald chi2(4) =

```
```

wald chi2(4) =

```12.97
\[
\text { Prob }>\text { chi2 }=0.0114
\]
```

(Std. Err. adjusted for clustering on id)

d	Coef.	Robust Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Con	Interval]		
fishmode								
p	-. 0233627	. 0114346	-2.04	0.041	-. 0457741	-. 0009513		
q	1.399925	. 5395423	2.59	0.009	. 3424418	2.457409		
beach	(base alternative)							
pier	$\begin{aligned} & -.097985 \\ & .7549123 \end{aligned}$	$\begin{aligned} & .0413117 \\ & .2013551 \end{aligned}$	$\begin{array}{r} -2.37 \\ 3.75 \end{array}$	$\begin{aligned} & 0.018 \\ & 0.000 \end{aligned}$	$\begin{array}{r} -.1789543 \\ .3602636 \end{array}$	$\begin{array}{r} -.0170156 \\ 1.149561 \end{array}$		
income _cons								
private	$\begin{aligned} & .0413866 \\ & .6602584 \end{aligned}$	$\begin{aligned} & .0739083 \\ & .2766473 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 2.39 \end{aligned}$	$\begin{aligned} & 0.575 \\ & 0.017 \end{aligned}$	$\begin{aligned} & -.103471 \\ & .1180397 \end{aligned}$	$\begin{array}{r} 1862443 \\ 1.202477 \end{array}$		
income								
_cons								
/1nsigma3	. 4051391	. 5009809	0.81	0.419	-. 5767654	1.387044		
/atanhr3_2	. 1757361	. 2337267	0.75	0.452	-. 2823598	. 6338319		
sigma1 sigma2 sigma3	$\begin{array}{rl} 1 & \text { (base alternative) } \\ 1 & \text { (scale a1ternative) } \\ 1.499511 & .7512264 \end{array}$				$.5617123$	4.002998		
rho3_2	. 173949	. 2266545			-. 2750878	. 5606852		

(fishmode=beach is the alternative normalizing location)
(fishmode=pier is the alternative normalizing scale)
. * Show correlations and covariance

- estat correlation

	beach	pier	private
beach	1.0000		
pier	0.0000	1.0000	
private	0.0000	0.1739	1.0000

. estat covariance

	beach	pier	private
beach	1		
pier	0	1	
private	0	.2608385	2.248533

6. Bayesian Methods

- Bayesian methods begin with
- Likelihood: $L(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X})$
- Prior on $\boldsymbol{\theta}: \boldsymbol{\pi}(\boldsymbol{\theta})$
- This yields the posterior distribution for $\boldsymbol{\theta}$

$$
p(\boldsymbol{\theta} \mid \mathbf{y}, \mathbf{X})=\frac{L(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}) \times \pi(\boldsymbol{\theta})}{f(\mathbf{y} \mid \mathbf{X})}
$$

- where $f(\mathbf{y} \mid \mathbf{X})=\int L(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}) \times \pi(\boldsymbol{\theta}) d \boldsymbol{\theta}$ is called the marginal likelihood.
- This uses the result that $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A \cap B] / \operatorname{Pr}[B]$.
- Bayesian analysis then bases inference on the posterior distribution.
- e.g. Best point estimate of $\boldsymbol{\theta}$ may be the mean of the posterior distribution.
- e.g. A 95% confidence interval for $\boldsymbol{\theta}$ is from the 2.5 to 97.5 percentiles of the posterior distribution.
- Bayesian inference is a different inference method
- treats $\boldsymbol{\theta}$ as intrinsically random
- whereas classical inference treats $\boldsymbol{\theta}$ as fixed and $\widehat{\boldsymbol{\theta}}$ as random.
- Modern Bayesian methods (Markov chain Monte Carlo)
- make it much easier to compute the posterior distribution than to maximize the log-likelihood.
- So classical statisticians:
- use Bayesian methods to compute the posterior
- use an uninformative prior so $p(\boldsymbol{\theta} \mid \mathbf{y}, \mathbf{X}) \simeq L(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X})$
- so $\boldsymbol{\theta}$ that maximizes the posterior is also the MLE.
- Or can go all the way and be Bayesian.

Markov chain Monte Carlo (MCMC)

- The challenge is to compute the posterior
- analytical results are only available in special cases.
- e.g. If $\mathbf{y} \mid \mathbf{X}$ is normal with mean $\mathbf{X} \boldsymbol{\beta}$ and known variance and the prior for β is normal with specified mean and variance then the posterior for $\beta \mid \mathbf{y}, \mathbf{X}$ is also normal.
- Instead use Markov chain Monte Carlo methods:
- Make sequential random draws $\boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)}, \ldots$.
- where $\boldsymbol{\theta}^{(s)}$ depends in part on $\boldsymbol{\theta}^{(s-1)}$
- in such a way that after an initial burn-in (discard these draws)
- $\boldsymbol{\theta}^{(s)}$ are (correlated) draws from the posterior $p(\boldsymbol{\theta} \mid \mathbf{y}, \mathbf{X})$.
- MCMC methods include
- Gibbs sampler
- Metropolis and Metropolis-Hastings algorithms
- Data augmentation

Probit example

- Likelihood: Probit model with single regressor
- $\ln L(\boldsymbol{\beta} \mid \mathbf{y}, \mathbf{X})=\sum_{i} y_{i} \ln \Phi\left(\beta_{1}+\beta_{2} x\right)+\left(1-y_{i}\right) \ln \left(1-\Phi\left(\beta_{1}+\beta_{2} x\right)\right)$
- Prior: uniform prior (all values equally likely)
- $\pi(\boldsymbol{\beta})=\pi\left(\beta_{1}, \beta_{2}\right)=1$
- Posterior: no closed form solution
- though proper even though the prior was improper
- instead use Gibbs sampler and data augmentation
- Example: the above with generated data
- $\beta_{1}=0, \beta_{2}=1, N=100, x \sim \mathcal{N}[0,1]$
- Gibbs sampler yields 1,000 correlated draws from the posterior.

Correlated draws

- The last 100 draws from the posterior density of β_{2}

- Correlations of the 1,000 draws of β_{2} die out quickly
. corrgram b, lags(10)

Posterior density

- Kernel density estimate of the 1,000 draws of β_{2}
- centered around 0.4-0.5 with standard deviation of 0.1-0.2.

- More precisely
- Posterior mean of β_{2} is 0.434 and standard deviation is 0.132
- A 95% percent Bayesian confidence interval for β_{2} is $(0.195,0.701)$.
. summarize b

Variable	Obs	Mean	Std. Dev.	Min	Max
b	1000	.4345774	.1329711	.0379931	.94584

. centile b, centile(2.5, 97.5)

Variable	obs	Percentile	Centile	Binom. Interp.	
[95\% Conf. Interva1]					
b	1000	2.5	.194546	.1848584	.2014523
		97.5	.701408	.6852426	.7263849

Gibbs Sampler

- Gibbs sampler is simple MCMC method
- used when
- we can partition $\boldsymbol{\theta}$ into $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{2}$
- we do not know the posterior $p\left(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$
- but we do know the conditional posteriors $p\left(\boldsymbol{\theta}_{1} \mid \boldsymbol{\theta}_{2}\right)$ and $p\left(\boldsymbol{\theta}_{2} \mid \boldsymbol{\theta}_{1}\right)$
- Then make alternating draws from $p\left(\boldsymbol{\theta}_{1} \mid \boldsymbol{\theta}_{2}\right)$ and $p\left(\boldsymbol{\theta}_{2} \mid \boldsymbol{\theta}_{1}\right)$
- Start with $\boldsymbol{\theta}_{1}^{(1)}$
- Draw $\boldsymbol{\theta}_{2}^{(1)}$ from $p\left(\boldsymbol{\theta}_{2} \mid \boldsymbol{\theta}_{1}^{(1)}\right)$
- Draw $\boldsymbol{\theta}_{1}^{(2)}$ from $p\left(\boldsymbol{\theta}_{1} \mid \boldsymbol{\theta}_{2}^{(1)}\right)$
- Draw $\boldsymbol{\theta}_{2}^{(2)}$ from $p\left(\boldsymbol{\theta}_{2} \mid \boldsymbol{\theta}_{1}^{(2)}\right)$ etc.
- Gibbs eventually gives (correlated) draws from $p\left(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)$ even though

$$
\begin{aligned}
p\left(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right) & =p\left(\boldsymbol{\theta}_{1} \mid \boldsymbol{\theta}_{2}\right) \times p\left(\boldsymbol{\theta}_{2}\right) \\
& \neq p\left(\boldsymbol{\theta}_{1} \mid \boldsymbol{\theta}_{2}\right) \times p\left(\boldsymbol{\theta}_{2} \mid \boldsymbol{\theta}_{1}\right)
\end{aligned}
$$

Data Augmentation

- Consider latent variable model where observed data y are determined completely by y^{*}.
- We have data y_{i}, \mathbf{x}_{i}
- where $y_{i}=g\left(y_{i}^{*}\right)$ with $g(\cdot)$ known
- and y_{i}^{*} depends on \mathbf{x}_{i} and $\boldsymbol{\theta}$
- probit is an example.
- Furthermore suppose that Bayesian analysis would be easy if y_{i}^{*} was observed
- so the posterior $p\left(\boldsymbol{\theta} \mid y_{1}^{*}, \ldots ., y_{N}^{*}\right.$, data $)$ is known.
- Then data augmentation
- treats the parameters as $\boldsymbol{\theta}$ and $y_{1}^{*}, \ldots ., y_{N}^{*}$
- then do Gibbs sampler
* draw $\boldsymbol{\theta}$ from $p\left(\boldsymbol{\theta} \mid y_{1}^{*}, \ldots ., y_{N}^{*}\right.$, data)
\star and draw $y_{1}^{*}, \ldots ., y_{N}^{*}$ from $p\left(y_{1}^{*}, \ldots ., y_{N}^{*} \mid \boldsymbol{\theta}\right.$, data $)$.

Probit example

- Likelihood: Probit model
- $y_{i}^{*}=\mathbf{x}_{i}^{\prime} \beta+\varepsilon_{i}, \varepsilon_{i} \sim \mathcal{N}[0,1]$.
- $y_{i}= \begin{cases}1 & y_{i}^{*}>0 \\ 0 & y_{i}^{*} \leq 0\end{cases}$
- Prior: uniform prior (all values equally likely)
- $\pi(\boldsymbol{\beta})=1$
- Known tractable result: for $\mathbf{y}^{*} \sim \mathcal{N}[\mathbf{X} \boldsymbol{\beta}, \mathbf{I}]$ and uniform prior on β
- $p\left(\boldsymbol{\beta} \mid \mathbf{y}^{*}, \mathbf{X}\right)$ is $\mathcal{N}\left[\widehat{\boldsymbol{\beta}},\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]$ where $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}^{*}$.
- Data augmentation add $y_{1}^{*}, \ldots, y_{N}^{*}$ as parameters.
- Then $p\left(\boldsymbol{\beta} \mid y_{1}^{*}, \ldots, y_{N}^{*}, \mathbf{y}, \mathbf{X}\right)$ is $\mathcal{N}\left[\widehat{\boldsymbol{\beta}},\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]$
- And $p\left(y_{1}^{*}, \ldots, y_{N}^{*} \mid \boldsymbol{\beta}, \mathbf{y}, \mathbf{X}\right)$ is truncated normal
\star If $y_{i}=1$ draw from $\mathcal{N}\left[\mathbf{x}_{i}^{\prime} \beta, 1\right]$ left truncated at 0
\star If $y_{i}=0$ draw from $\mathcal{N}\left[\mathbf{x}_{i}^{\prime} \beta, 1\right]$ right truncated at 0
- So draw $\boldsymbol{\beta}^{(s)}$ from $p\left(\boldsymbol{\beta} \mid y_{1}^{*(s-1)}, \ldots, y_{N}^{*(s-1)}, \mathbf{y}, \mathbf{X}\right)$ and draw $y_{1}^{*(s)}, \ldots, y_{N}^{*(s)}$ from $p\left(y_{1}^{*}, \ldots, y_{N}^{*} \mid \boldsymbol{\beta}^{(s)}, \mathbf{y}, \mathbf{X}\right)$

Multinomial probit example

- Likelihood: Multinomial probit model
- $U_{i j}^{*}=\mathbf{x}_{i j}^{\prime} \boldsymbol{\beta}+\varepsilon_{i j}, \varepsilon_{i} \sim \mathcal{N}\left[\mathbf{0}, \Sigma_{\varepsilon}\right]$
- $y_{i j}=1$ if $U_{i j}^{*}>U_{i k}^{*}$ all $k \neq j$
- Prior for β and Σ_{ε} may be normal-Wishart
- Data augmentation
- Latent utilities $\mathbf{U}_{i}=\left(U_{i 1}, \ldots, U_{i m}\right)$ are introduced as auxiliary variables
- Let $\mathbf{U}=\left(\mathbf{U}_{1}, \ldots, \mathbf{U}_{N}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$
- Gibbs sampler cycles between
- 1. Conditional posterior for $\boldsymbol{\beta} \mid \mathbf{U}, \Sigma_{\varepsilon}, \mathbf{y}, \mathbf{X}$
- 2. Conditional posterior for $\Sigma_{\varepsilon} \mid \boldsymbol{\beta}, \mathbf{U}, \mathbf{y}, \mathbf{X}$, and
- 3. Conditional posterior for $\mathbf{U}_{i} \mid \boldsymbol{\beta}, \Sigma_{\varepsilon}, \mathbf{y}, \mathbf{X}$.
- Albert and Chib (1993) provide a quite general treatment.
- McCulloch and Rossi (1994) provide a substantive MNP application.

7. Aggregate Data for individual random parameters logit

- Can do regular multinomial logit or NLSUR on aggregated data
- Here consider harder problem of linking to individual behavior.
- The data available are for brand j in market t :
- market share $s_{j t}$, average prices $p_{j t}$, other product characteristics $\mathbf{w}_{j t}$.
- The underlying model is one of individual behavior
- utility of individual i for brand j in market t is

$$
\begin{aligned}
U_{i j t} & =\mathbf{w}_{j t}^{\prime} \gamma_{i}-\alpha_{i} p_{j t}+\xi_{j t}+\varepsilon_{i j t} \\
& =\mathbf{x}_{j t}^{\prime} \boldsymbol{\beta}_{i}+\xi_{j t}+\varepsilon_{i j t}
\end{aligned}
$$

- where $\varepsilon_{i j t}$ is i.i.d. type I extreme value
- Consider the following situations
- No individual heterogeneity: $\beta_{i}=\beta$ (only heterogeneity is $\varepsilon_{i j t}$)
- No individual heterogeneity and endogenous $\mathbf{x}_{j t}$ (e.g. prices).
- Individual heterogeneity: $\boldsymbol{\beta}_{i}$ is normally distributed.

No individual heterogeneity

- Given $\varepsilon_{i j t}$ i.i.d. extreme value, then get usual conditional logit model

$$
\operatorname{Pr}\left[y_{i j t}=1\right]=\frac{\exp \left(\mathbf{x}_{j t}^{\prime} \boldsymbol{\beta}+\xi_{j t}\right)}{1+\sum_{k=1}^{m} \exp \left(\mathbf{x}_{k t}^{\prime} \boldsymbol{\beta}+\xi_{k t}\right)}
$$

- We have aggregate market data so estimate the share

$$
s_{j t}=\frac{\exp \left(\mathbf{x}_{j t}^{\prime} \boldsymbol{\beta}+\xi_{j t}\right)}{1+\sum_{k=1}^{m} \exp \left(\mathbf{x}_{k t}^{\prime} \boldsymbol{\beta}+\xi_{k t}\right)} .
$$

- Introduce an outside good, good 0 , normalized so that $x_{j t}^{\prime} \beta=0$.
- Then $s_{0 t}=1 /\left[1+\sum_{k=1}^{m} \exp \left(\mathbf{x}_{k t}^{\prime} \boldsymbol{\beta}+\xi_{k t}\right)\right]$
- So $s_{j t}=\exp \left(\mathbf{x}_{j t}^{\prime} \beta+\xi_{j t}\right) / s_{0 t}$ and

$$
\ln s_{j t}-\ln s_{0 t}=\mathbf{x}_{j t}^{\prime} \beta+\xi_{j t} .
$$

- So can estimate β by OLS using market share data.
- Empirical results will depend on the outside good
- and need to get a share figure for the outside good.

Endogeneity but no individual heterogeneity

- Now suppose the unobserved heterogeneity $\xi_{j t}$ is correlated with prices $p_{j t}$ or other characteristics $\mathbf{x}_{j t}$.
- Then estimate by IV

$$
\ln s_{j t}-\ln s_{0 t}=\mathbf{x}_{j t}^{\prime} \beta_{j t}+\xi_{j t}
$$

- where instruments $\mathbf{z}_{j t}$ satisfy $\mathrm{E}\left[\mathbf{z}_{j t} \xi_{j t}\right]=0$
- e.g. instruments from supply-side if modelling demand.

Individual heterogeneity

- Suppose $U_{i j t}=\mathbf{x}_{j t}^{\prime} \boldsymbol{\beta}_{i}+\xi_{j t}+\varepsilon_{i j t}$ where $\boldsymbol{\beta}_{i}$ is normally distributed
- then with $\varepsilon_{i j t}$ i.i.d. extreme value, get RPL model at individual level.
- But we have only market share data
- Let $\boldsymbol{\beta}_{i}=\boldsymbol{\beta}+\mathbf{u}_{i}$ and rewrite

$$
\begin{aligned}
U_{i j t} & =\mathbf{x}_{j t}^{\prime} \boldsymbol{\beta}_{i}+\xi_{j t}+\varepsilon_{i j t} \\
& =\mathbf{x}_{j t}^{\prime} \boldsymbol{\beta}+\xi_{j t}+\mathbf{x}_{j t}^{\prime} \mathbf{u}_{i}+\varepsilon_{i j t}
\end{aligned}
$$

- Integrate out \mathbf{u}_{i} and $\varepsilon_{i j t}$ to leave model depending on $\mathbf{x}_{j t}$ and $\xi_{j t}$.
- The set of individuals choosing brand j in market t is

$$
A_{j t}\left(\mathbf{x}_{j t}, \xi_{j t}\right)=\left\{\mathbf{u}_{i}, \varepsilon_{i 0 t}, \ldots, \varepsilon_{i m t} \mid U_{i j t} \geq U_{i l t} \text { for all } I=0, \ldots, m\right\} .
$$

- Integrate out individual heterogeneity to get the market share

$$
s_{j t}\left(\mathbf{x}_{j t}, \xi_{j t} \mid \boldsymbol{\beta}, \Sigma_{\beta}\right)=\int_{A_{j t}} d f\left(\mathbf{u}_{i}, \varepsilon_{i 0 t}, \ldots, \varepsilon_{i m t}\right)
$$

where $f\left(\mathbf{u}_{i}, \varepsilon_{i 0 t}, \ldots, \varepsilon_{i m t}\right)$ is the joint distribution of the errors
\star iid type 1 extreme value for the $\varepsilon_{i j t}$
$\star \mathcal{N}\left[\mathbf{0}, \Sigma_{\beta}\right]$ for \mathbf{u}_{i}

- Now predicted share $s_{j t}\left(\mathbf{x}_{j t}, \xi_{j t} \mid \beta, \Sigma_{\beta}\right)$ is very nonlinear
- the error $\xi_{j t}$ is nonadditive
- so can't just do NLS of $s_{j t}$ on $s_{j t}\left(\mathbf{x}_{j t}, \xi_{j t} \mid \beta, \Sigma_{\beta}\right)$
- also may be concerend about endogeneity of $\mathbf{x}_{j t}$
- Berry (1984) instead proposed the following (see also Nevo (2000))
- Solve for $\xi_{j t}$ (viewed as a structural error) as a function of $s_{j t}, \mathbf{x}_{j t}, \boldsymbol{\beta}, \Sigma_{\beta}$.
- Assume there are instruments $\mathbf{z}_{j t}$ (allows for e.g. endogenous prices)
- Stack $\xi_{j t}$ and $\mathbf{z}_{j t}$ into ξ and \mathbf{Z} and estimate β and Σ_{β} by GMM estimator that minimizes

$$
Q\left(\beta, \Sigma_{\beta}\right)=\left[\mathbf{Z}_{j t}^{\prime} \xi\left(\beta, \Sigma_{\beta}\right)\right]^{\prime} \mathbf{W}\left[\mathbf{Z}_{j t}^{\prime} \xi\left(\beta, \Sigma_{\beta}\right)\right]
$$

- This is computationally challenging
- Computation of $s_{j t}\left(\mathbf{x}_{j t}, \xi_{j t} \mid \boldsymbol{\beta}, \Sigma_{\beta}\right)$ requires numerical methods
- Inversion to get $\mathbf{x}_{j t}^{\prime} \beta+\xi_{j t}$ and hence $\xi_{j t}$ requires numerical methods
- Knittel and Metaxoglou (2008) find problems with many optima that lead to quite different estimated price elasticities.

8. Further Models: Sequential Models

- Example is sequential probit with three alternatives.
- First choose whether $y=1$ or $y \neq 1$.
- Second, if $y \neq 1$ choose whether $y=2$ or $y=3$.
- Assume a probit model at each stage, with regressors \mathbf{x}_{2} at the first stage and regressors \mathbf{x}_{1} at the second stage.
- Then

$$
\begin{aligned}
p_{1} & =\operatorname{Pr}[y=1]=\Phi\left(\mathbf{x}_{1}^{\prime} \boldsymbol{\beta}_{1}\right), \\
\frac{p_{2}}{p_{2}+p_{2}} & =\operatorname{Pr}\left[y_{i}=2 \mid y_{i} \neq 1\right]=\Phi\left(\mathbf{x}_{2}^{\prime} \boldsymbol{\beta}_{2}\right),
\end{aligned}
$$

- This implies after some algebra

$$
\begin{aligned}
& p_{2}=\operatorname{Pr}[y \neq 1] \times \operatorname{Pr}[y=2 \mid y \neq 1]=\left(1-\Phi\left(\mathbf{x}_{1}^{\prime} \boldsymbol{\beta}_{1}\right)\right) \times \Phi\left(\mathbf{x}_{2}^{\prime} \boldsymbol{\beta}_{2}\right) \\
& p_{3}=1-p_{1}-p_{2} .
\end{aligned}
$$

- The likelihood function is then easily obtained and estimation is by ML.

Further Models: Multivariate Models

- Multivariate models have more than one discrete dependent variable.
- Example: jointly model labor supply and fertility

$$
\begin{aligned}
& y_{1}= \begin{cases}0 & \text { if do not work } \\
1 & \text { if work }\end{cases} \\
& y_{2}= \begin{cases}0 & \text { if no children } \\
1 & \text { if children }\end{cases}
\end{aligned}
$$

- There are four probabilities

$$
\begin{aligned}
p_{00} & =\operatorname{Pr}\left[y_{1}=0, y_{2}=0\right] \\
p_{01} & =\operatorname{Pr}\left[y_{1}=0, y_{2}=1\right] \\
p_{10} & =\operatorname{Pr}\left[y_{1}=1, y_{2}=0\right] \\
p_{11} & =\operatorname{Pr}\left[y_{1}=1, y_{2}=1\right] .
\end{aligned}
$$

- These are mutually exclusive and exhaust all possibilities, so that $p_{00}+p_{00}+p_{00}+p_{00}=1$.

Further Models: Bivariate Probit

- From these probabilities one can form the log-likelihood, and estimate by ML.
- This is essentially the same as a four-choice multinomial model.
- All that differs is the story told to derive the functional forms for the probabilities.
- Bivariate probit model is a leading example.
- Observe $y_{1}=1$ or 0 if $y_{1}^{*}>$ or <0 and $y_{2}=1$ or 0 if $y_{2}^{*}>$ or <0 where

$$
\begin{aligned}
y_{1}^{*} & =\mathbf{x}_{1}^{\prime} \boldsymbol{\beta}_{1}+\varepsilon_{1} \\
y_{2}^{*} & =\mathbf{x}_{2}^{\prime} \boldsymbol{\beta}_{2}+\varepsilon_{1} \\
{\left[\begin{array}{r}
\varepsilon_{1} \\
\varepsilon_{1}
\end{array}\right] } & \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right) .
\end{aligned}
$$

Further Models: Bivariate Probit Data Example

- Bivariate probit example: y_{1} is health excellent and y_{2} is visit doctor.
. * Two binary dependent variables: h1the and dmdvs
. tabulate h7the dmdu

	any MD visit $=1$ if		
h1the	mdu >0		
	0	1	Tota1
0	826	1,731	2,557
1	1,006	2,011	3,017
Tota1	1,832	3,742	5,574

. correlate h1the dmdu
(obs=5574)

	h7the	dmdu
h7the	1.0000	
dmdu	-0.0110	1.0000

- Estimate using Stata command biprobit
. * Bivariate probit estimates
. biprobit h1the dmdu age linc ndisease, nolog
Bivariate probit regression
Log likelihood = -6958.0751

Number of obs	$=$	5574
wald chi2(6)	$=$	770.00
Prob > chi2	$=$	0.0000

Further Models

- Ranked Data
- With stated preference data we know the second-preferred choice, not just the most-preferred choice.
- Using this can increase efficiency of estimation
- e.g. For MNL first preference is MNL with m alternatives, and second preference is MNL with $(m-1)$ alternatives.
- Simultaneous Equations
- Two binary variables that are simultaneous.
- Easiest if simultaneity is in latent variables $\left(y_{1}^{*}, y_{2}^{*}\right)$. Then work with reduced form in $\left(y_{1}^{*}, y_{2}^{*}\right)$.
- More difficult if simultaneous in the binary outcomes $\left(y_{1}, y_{2}\right)$.

9. Some References

- These references are mainly ones that refer to the recent literature.
- For random parameters logit see
- Hole, A.R. (2007), "Fitting Mixed Logit Models by using Simulated Maximum Likelihood," Stata Journal, 7, 388-401.
- For multinomial probit see
- Liesenfeld, R., and J.-F. Richard (2010), "The dynamic invariant multinomial probit model: Identification, pretesting and estimation," Journal of Econometrics, 155, 117-127.
- For maximum simulated likelihood and Bayesian for multinomial data see
- Train, K. (2004), Discrete choice methods with simulation, Cambridge University Press.
- For recent Bayesian multinomial applications see
- Munkin, M.K., and P.K. Trivedi (2008), "Bayesian analysis of the ordered probit model with endogenous selection," Journal of Econometrics, 144, 334-348.
- Imai, S., N. Jain, and A. Ching (2009), "Bayesian Estimation of Dynamic Discrete Choice Models," Econometrica, 1865-1900.
- For individual choice with aggregate market share data see
- Berry, S.T. (1994), "Estimating Discrete-Choice Models of Product Differentiation," Rand Journal of Economics, 25, 242-262.
- Berry, Steven, Levinsohn, James, Pakes, Ariel, 1995. Automobile prices in market equilibrium. Econometrica 63 (4), 841890.
- Knittel, C.R., and K. Metaxoglou (2008), "Estimation of Random Coefficient Demand Models: Challenges, Difficulties and Warnings," Manuscript, University of California - Davis.
- Jiang, R., P. Manchandab and P.E. Rossi (2009), "Bayesian analysis of random coefficient logit models using aggregate data," Journal of Econometrics, 149, 136-148.

