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1. Introduction

1. Introduction

@ For unordered data consider models that are richer than multinomial
or conditional logit

» Some do not have a closed form expression for the pj;, so use

* Maximum simulated likelihood estimation
* Bayesian methods

@ Consider models for more complicated forms of multinomial data:
sequential, multivariate.
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2. Multinomial Data Nested Logit NL Model

2. Nested Logit Model

o Create tree structure for alternatives.

» Within each branch errors are correlated.
» Across branches errors are not.

o Fishing mode choice.

» Assume fundamental distinction is between shore and boat fishing.

Mode
/ AN
Shore Boat
/ AN / AN
Beach Pier Charter Private
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2. Multinomial Data Nested Logit NL Model

Shore/boat contrast is called level 1 (or a limb).

Next level is called level 2 (or a branch).
@ Here

> (& beach €i,pier) are a bivariate correlated pair
> (& private: Ei,charter) are a bivariate correlated pair
> the two pairs are independent.

MNL/CL is special case all errors independent type | extreme value.

Limitation is that need to specify the nest - not data determined.

Two different nested logit models exist in the literature.

> Only one of these (in recent Stata) is consistent with utility
maximization.
> And should have "dissimilarity parameter" in (0,1) interval.
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BatalExemple
@ Nested logit: first define the tree

. * Define the tree for nested logit
. nlogitgen type = fishmode(shore: pier
new variable type is generated with 2 groups

label Tist Tb_type

Tb_type:

1 shore
2 boat

* Check the tree

. nlogittree fishmode type, choice(d)

tree structure specified for the nested logit model

type N fishmode N k
shore 2364 T beach 1182 134
pier 1182 178

boat 2364 T charter 1182 452
private 1182 418

total 4728 1182

k
N

number of times alternative is chosen
number of observations at each level

beach, boat: private | charter)

@ Nested logit then estimated using following command:

nlogit d p q || type:, base(shore) || fishmode:

case(id) nolog
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2. Multinomial Data Nested Logit Data Example

RUM-consistent nested logit regression Number of obs = 4728
Case variable: id Number of cases = 1182
Alternative variable: fishmode Alts per case: min = 4
avg = 4.0
max = 4
wald chixQ = 212.37
Log Tikelihood =-1192.4236 Prob > chi2 = 0.0000
d coef. std. Err. z P>|z| [95% conf. Interval]
fishmode
-.0267625 .0018937 -14.13  0.000 -.0304741 -.023051
q 1.340091  .3080531 4.35 0.000 .7363177 1.943864
fishmode equations
beach
income (base)
_cons (base)
charter
income -8.402017  78.35482 -0.11  0.915 -161.9746 145.1706
_cons 69.96998  558.8972 0.13  0.900 -1025.448 1165.388
pier
income -9.458089  80.30189 -0.12  0.906 -166.8469 147.9307
_cons 58.94369  500.7358 0.12  0.906 -922.4805 1040.368
private
income -1.634925  8.588643 -0.19 0.849 -18.46836 15.19851
_cons 37.52565  230.9065 0.16 0.871 -415.0428 490.094
dissimilarity parameters
type
/shore_tau 83.4692  718.5336 -1324.831 1491.769
/boat_tau 52.55949  542.8918 -1011.489 1116.608
LR test for IIA (tau = 1): chi2d) = 45.43 Prob > chi2 =0.0000
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3. Multinomial Data Random Parameters Logit RPL Model

3. Random Parameters Logit Model

@ The random parameters logit model introduces correlation across
alternatives through an individual-specific random effect.

@ Specifically, for an m—choice model we have

— / ..
Uj = x;B;+¢j
gj ~ iid. type | extreme value

B ~ N[,BZ]

> B; = B+ u; induces correlation across alternatives as then
Uj = xj;B + (xju; + ;) where u; ~ N{0,X].

o Conditional on B; the model is easily estimated CL.

> But additionally need to integrate out §;.
» Use maximum simulated likelihood or Bayesian methods.
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Deie Eanp
@ Stata user-written command mixlogit has same format as command
clogit.
> Here apply for three-choice example (with charter dropped).
> Specify just regressor p to have random coefficient.

. mixlogit d q d3 d4 d3income d4income, group(id) rand(p)

Iteration O: Tog 1ikelihood = .33584 (not concave)
Iteration 1: log likelihood = .46013
Iteration 2: log likelihood = .29806
Iteration 3: log likelihood = .56105
Iteration 4: log 1ikelihood = .52856
Iteration 5: log likelihood = .52844
Iteration 6: log likelihood = .52844
Mixed Togit model Number of obs = 2190
LR chi2(1) = 64.57
Log Tikelihood = -434.52844 Prob > chi2 = 0.0000
d Coef. std. Err. z P>|z| [95% Conf. Interval]
Mean
q .7840088 .9147869 0.86 0.391 -1.008941 2.576958
d3 .7742955 .224233 3.45 0.001 .3348069 1.213784
d4 .5617395 .3158082 1.78 0.075 -.0572331 1.180712
d3income -.1199613 .0492249 -2.44 0.015 -.2164404 -.0234822
d4income .0518098 .0721527 0.72 0.473 -.0896068 .1932265
p -.1069866 .0274475 -3.90 0.000 -.1607827 -.0531904
sb
p .0598364 .0191597 3.12  0.002 .022284 .0973888
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4. Maximum Simulated Likelihood Estimation General Theory

4. Maximum Simulated Likelihood Estimation

@ Problem: The MLE (with independent data over /) maximizes

InL(6) = Y Inf(yi|x;.6).

> but f(y;|x;, 8) does not have a closed form solution.
> eg f(yilx;, 0) = [g(yilx;, 6, a)h(a)da =2
@ Solution: Maximum simulated likelihood estimator (MSL) maximizes

InZ(6) =Y ', Inf(ylx:.6)

» where f(y;|x;, 0) is a simulated approximation to f(y;|x;, 8)
> eg fyi|x;,0) = %255:1 g(yilxi, 0, 2(9)) where a(s) are draws from
the density h(a)
@ The MSL estimator is consistent and has the usual asymptotic
distribution as the MLE if
> ?() is an unbiased simulator and satisfies other conditions given below

» S —>o00, N— ooand V/N/S—0 whele S is number of simulations.
> Note that many draws S (to compute f(-)) are required.
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4. Maximum Simulated Likelihood Estimation General Theory

@ Assumed properties of the simulator:

» 7(-) is an unbiased simulator with

E[F(yi|x;. 0)] = f(y;|x;, 0)

(-) is differentiable in @ (or smooth simulator) so gradient methods
can be used

> the underlying draws to compute ?() are unchanged so no "chatter".

e We need many draws S because simulator is biased for In f(-)

E[F()] = E[f()] =+ Enf(-)]# Enf(-)].
@ Binary probit example

> Density f; = ®(x/B)¥i(1— q)(xj_ﬁ))l—yi
» Frequency simulator

F=1yS 1l <xpi(1— 1l < xig])t

i =

* sl(-s), s=1,...,S, are random draws from N[0, 1]
* But here not smooth so need to use a different simulator.
@© A. Colin Cameron  U. of Calif. - Davis .
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Application to Random Parameters Logit
MSL Application to Random Parameters Logit

© Recall Uj = x[;B,; + ¢€j;; € ~ type | extreme value; B, ~ N[B, Z].

o If B, known then have CL model with p; = e%ifi/ Y| eXifi.
@ Instead B. random and needs to be integrated out

ex:'jﬁi

pi=Plyi=jl= | (B,16.2).

Y A
@ The MSL estimator of B and X maximizes

nL(B.x) = Yo Inflylx.B.E)
m 1
= Z,{V:lzj':ﬂn §ZS

=1
g 271:1 exf'/ﬁgs)

1 als)
eXiPi

> where ﬁgs), s=1,.., S, are random draws from ¢(B,|B,%)
» and at rt" round of gradient method draw is from ¢(B;|B", Z").
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4. Maximum Simulated Likelihood Estimation Method of Simulated Moments

Method of Simulated Moments

@ An alternative less efficient estimator is the method of simulated
(MSM) estimator.

e Suppose 8 is a method of moments estimator (MM) that solves

Z,,'V:;[ m(y;|x;,0) = 0.

@ Suppose there is unbiased simulator such that
E[m(yi[x;, 0)] = m(yi|x;, 6).
@ Then the method of simulated (MSM) solves

YV m(yilxi,0) =0

is consistent even if S is small though there is an efficiency loss.
» When m(-) is the frequency simulator V[Bysm] = (1 + %)V[@MM].

@ In practice the MSL is used much more often even though larger S.
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5. Multinomial Data Multinomial Probit MNP Model

5. Multinomial Probit Model

@ Consider three-choice example of the multinomial probit model.

» ARUM with errors multivariate normal distributed.

i 0 (7% 0—%2 013
g | ~N 0], 021 05 023
€3 0 031 032 0'%

» Not all the variance components are identified.
> Only covariance matrix of differenced errors ¢; — €1, plus one

normalization.
> Here e.g. (7% =1, and 03» and U% free.

@ Even if error model is technically identified, parameters of the MNP
model may be imprecisely estimated (like multicollinearity).

> Further restrictions are needed in practice.

Aug 30 - Sep 3,2010 14 / 42
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5. Multinomial Data Multinomial Probit Data Example

@ Use Stata command asmlogit

> Uses simulated maximum likelihood

» With GHK simulator which is a smooth simulator (meaning small
change in B changes simulated value of p;; so that objective function is
differentiable in B)

. * Multinomial probit with case-specific regressors
. drop if fishmode=="charter" | mode = 4
(2538 observations deleted)

. asmprobit d p g, case(id) alternatives(fishmode) casevars(income) ///

> correlation(unstructured) structural vce(robust) nolog

note: variable p has 106 cases that are not alternative-specific: there is no
within-case variability

Alternative-specific multinomial probit Number of obs = 2190

Case variable: id Number of cases = 730

Alternative variable: fishmode Alts per case: min = 3
avg = 3.0
max = 3

Integration sequence: Hammersley

Integration points: 150 wald chi2( 4) = 12.97

Log simulated-pseudolikelihood = -482.30128 Prob > chi2 = 0.0114
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5. Multinomial Data Multinomial Probit Data Example

(std. Err. adjusted for clustering on 1id)

Robust
d Coef. std. Err. z P>|z]| [95% Cconf. Interval]
fishmode
p -.0233627 .0114346 -2.04 0.041 -.0457741 -.0009513
q 1.399925 .5395423 2.59 0.009 .3424418 2.457409
beach (base alternative)
pier
income -.097985 .0413117 -2.37 0.018 -.1789543 -.0170156
_cons .7549123 .2013551 3.75 0.000 .3602636 1.149561
private
income .0413866 .0739083 0.56 0.575 -.103471 .1862443
_cons .6602584 .2766473 2.39 0.017 .1180397 1.202477
/Insigma3 .4051391 .5009809 0.81 0.419 -.5767654 1.387044
/atanhr3_2 .1757361 .2337267 0.75 0.452 -.2823598 .6338319
sigmal 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 1.499511 .7512264 .5617123 4.002998
rho3_2 .173949 .2266545 -.2750878 .5606852
(fishmode=beach is the alternative normalizing location)
(fishmode=pier is the alternative normalizing scale)
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5. Multinomial Data Multinomial Probit

* Show correlations and covariance
estat correlation

beach pier private
beach 1.0000
pier 0.0000 1.0000
private 0.0000 0.1739 1.0000
estat covariance
beach pier private
beach 1
pier 0 1
private 0 .2608385  2.248533
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6. Bayesian Methods

@ Bayesian methods begin with

> Likelihood: L(y|6, X)
> Prioron 6: ()

@ This yields the posterior distribution for 6

L(y[6,X) x 7(6)
p(Oly, X) =
(O] FyX)
» where f(y|X) = [ L(y|6,X) x 77(8)d®0 is called the marginal

likelihood.
» This uses the result that Pr[A|B] = Pr[AN B]/ Pr[B].

@ Bayesian analysis then bases inference on the posterior distribution.

> e.g. Best point estimate of @ may be the mean of the posterior
distribution.

> e.g. A 95% confidence interval for 0 is from the 2.5 to 97.5 percentiles
of the posterior distribution.
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(EEVCSELNVYEH I General Theory

Bayesian inference is a different inference method

> treats 0 as intrinsically random
» whereas classical inference treats 0 as fixed and 6 as random.

e Modern Bayesian methods (Markov chain Monte Carlo)

» make it much easier to compute the posterior distribution than to
maximize the log-likelihood.

So classical statisticians:

» use Bayesian methods to compute the posterior
> use an uninformative prior so p(0y, X) ~ L(y|6, X)
> so 0 that maximizes the posterior is also the MLE.

@ Or can go all the way and be Bayesian.
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(PEEVESEGNVYEETEEN  Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC)

@ The challenge is to compute the posterior

» analytical results are only available in special cases.

> e.g. If y|X is normal with mean XB and known variance and the prior
for B is normal with specified mean and variance then the posterior for
Bly, X is also normal.

@ Instead use Markov chain Monte Carlo methods:

v

Make sequential random draws o) 9 .

where 6(%) depends in part on 8(s~1)

in such a way that after an initial burn-in (discard these draws)
0(*) are (correlated) draws from the posterior p(6]y, X).

o MCMC methods include

v

v

v

> Gibbs sampler
» Metropolis and Metropolis-Hastings algorithms
» Data augmentation
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6. Bayesian Methods Probit Example

Probit example

Likelihood: Probit model with single regressor

> InL(Bly, X) = £ yiIn®(By + Box) + (1= yi) In(1 = D(B; + B,x))
Prior: uniform prior (all values equally likely)

> n(B) = 7(By. Bo) =1

Posterior: no closed form solution

» though proper even though the prior was improper
> instead use Gibbs sampler and data augmentation

Example: the above with generated data
> ,3120, '82:1, N:].OO,XNN{O,].]

@ Gibbs sampler yields 1,000 correlated draws from the posterior.
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(EEVCSENRVYEH I Correlated draws

Correlated draws

@ The last 100 draws from the posterior density of 3,

900 920 940 960 980 1000
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6. Bayesian Methods

Correlated draws

@ Correlations of the 1,000 draws of 8, die out quickly

. corrgram b, lags(10)
-1 0 1-1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]
1 0.5127 0.5128 263.7 0.0000 — —
2 0.2581 -0.0068 330.6 0.0000 —
3 0.1061 -0.0330 341.92 0.0000
4 0.0299 -0.0153 342.82 0.0000
5 0.0137 0.0159 343.01 0.0000
6 -0.0440 -0.0685 344.95 0.0000
7 -0.0330 0.0198 346.05 0.0000
8 -0.0126 0.0144 346.21 0.0000
9 -0.0086 -0.0070 346.29 0.0000
10 -0.0255 -0.0315 346.95 0.0000
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[EEVCSENNVY ST Posterior density

Posterior density
o Kernel density estimate of the 1,000 draws of S,
» centered around 0.4-0.5 with standard deviation of 0.1-0.2.

Kernel density estimate

0 2 4
b

Kernel density estimate
Normal density

kernel=epanechnikov,bandwidth = 0.0301
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[EEVCSENNVY ST Posterior density

@ More precisely

> Posterior mean of f, is 0.434 and standard deviation is 0.132
> A 95% percent Bayesian confidence interval for B, is (0.195, 0.701).

. summarize b

variable Obs Mean Std. Dev. Min Max

b 1000 .4345774 .1329711 .0379931 .94584

. centile b, centile(2.5, 97.5)
— Binom. Interp. —

variable Obs Percentile Centile [95% conf. Interval]
b 1000 2.5 .194546 .1848584 .2014523
97.5 .701408 .6852426 .7263849
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Gibbs sampler
Gibbs Sampler
@ Gibbs sampler is simple MCMC method

@ used when

> we can partition 0 into 61 and 0>
> we do not know the posterior p(61, 05)
> but we do know the conditional posteriors p(61|62) and p(62]61)

@ Then make alternating draws from p(61|62) and p(62|6:)
> Start with 6}V
» Draw Bgl) from p(62|6§1))
> Draw 9%2) from p(61|9§1))
> Draw 652) from p(62|6§2)) etc.
@ Gibbs eventually gives (correlated) draws from p(61, 82) even though

p(61,02) = p(61|62) x p(62)
#  p(01]62) x p(62(61).

@© A. Colin Cameron  U. of Calif. - Davis . 2B: Multinomial outcomes: Extras Aug 30 - Sep 3, 2010 26 / 42



REEVCSENNYS B Data augmentation

Data Augmentation

o Consider latent variable model where observed data y are determined
completely by y*.

We have data y;, x;

where y; = g(y;) with g(-) known
and y;" depends on x; and 0
probit is an example.

vV vy VY Vv

@ Furthermore suppose that Bayesian analysis would be easy if y;* was
observed

> so the posterior p(6|y;, ...., y5 . data) is known.
@ Then data augmentation

> treats the parameters as 6 and y{', ..., yy
> then do Gibbs sampler

* draw 6 from p(8ly;, ...., y;.data)
* and draw yf', ..., 5 from p(y{, ..., yy|0,data).
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6. Bayesian Methods Probit example

Probit example

@ Likelihood: Probit model
> y,.* = x:.[%—l—s,-, th NN[O, 1].
1 y>0
@ Prior: uniform prior (all values equally likely)
- () =1
e Known tractable result: for y* ~ N[XB, 1] and uniform prior on B
> p(Bly*, X) is N[B, (X'X) 1] where B = (X'X)~1X'y*.
e Data augmentation add y7', ..., yy as parameters.
> Then p(BIyi . vjp.y. X) is NB, (X'X) 1

> And p(y{,.... yy|B.y. X) is truncated normal

* If y; =1 draw from N[x/B, 1] left truncated at 0
* If y; = 0 draw from N[x!B, 1] right truncated at 0

@ So draw ,B(S) from P(.B‘}’f(s_l), ...,y*(s_l) Y. X)
and draw yl*(S), __.,yl"\‘/(S) from p(y;, .. ,yN|[3 Ly, X)
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6. Bayesian Methods Multinomial Probit example

Multinomial probit example

@ Likelihood: Multinomial probit model

> Uij*' :x:-jﬁ-i-e,'j, g~ N[O,Ze]

>y,-j:1ifU,-j->U,-’;(aIIk7éj

Prior for B and X may be normal-Wishart

Data augmentation

> Latent utilities U; = (U1, ..., Ujm) are introduced as auxiliary variables
» Let U= (Uy,...,Uy) andy = (y1, ..., yn)

@ Gibbs sampler cycles between

» 1. Conditional posterior for B|U, X¢, y, X
» 2. Conditional posterior for Z€|ﬂ, Uy, X, and
» 3. Conditional posterior for U,-|ﬁ,25,y,X.

Albert and Chib (1993) provide a quite general treatment.
McCulloch and Rossi (1994) provide a substantive MNP application.

@© A. Colin Cameron  U. of Calif. - Davis . 2B: Multinomial outcomes: Extras Aug 30 - Sep 3, 2010 29 / 42



7. Multinomial data: Aggregate data Data and model

7. Aggregate Data for individual random parameters logit
@ Can do regular multinomial logit or NLSUR on aggregated data

» Here consider harder problem of linking to individual behavior.

@ The data available are for brand j in market ¢ :

» market share sj;, average prices pj;, other product characteristics wj;.
@ The underlying model is one of individual behavior

» utility of individual i for brand j in market t is
Uje = Wiy — ipje + &je + €t
= le'tﬁi + & +€ijt.

> where g;; is i.i.d. type | extreme value

@ Consider the following situations
> No individual heterogeneity: B; = B (only heterogeneity is &)
> No individual heterogeneity and endogenous x;; (e.g. prices).
> Individual heterogeneity: B; is normally distributed.
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7. Multinomial data: Aggregate data No individual heterogeneity

No individual heterogeneity

o Given g i.i.d. extreme value, then get usual conditional logit model

_ exp(Xj-tﬁ +Gje)

1+ Y5 exp(xj B+ Cyr)
@ We have aggregate market data so estimate the share
et

1+ Yy exp(xj B+ Cpe)

P"[}/ijt =1]

Sjt

@ Introduce an outside good, good 0, normalized so that x}tﬁ =0.

> Then spr = 1/[14 131 exp(X}, B+ Ct)]
> So sjp = exp(xjtﬁ +Gjt)/sot and
Insj —Inspe = xj’-tﬂ + G-
> So can estimate 8 by OLS using market share data.

@ Empirical results will depend on the outside good
» and need to get a share figure for the outside good.
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Endogeneity but no individual heterogeneity
Endogeneity but no individual heterogeneity

o Now suppose the unobserved heterogeneity ¢, is correlated with
prices pj; or other characteristics x;;.

@ Then estimate by IV
Insj; —Insp: = x;tﬂjt + Gt

> where instruments zj; satisfy E[z;;¢;] =0
> e.g. instruments from supply-side if modelling demand.
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7. Multinomial data: Aggregate data Individual heterogeneity

Individual heterogeneity
o Suppose Ujr = x, B; + §;: + € where B, is normally distributed

> then with g;; i.i.d. extreme value, get RPL model at individual level.

@ But we have only market share data
> Let B; = B+ u; and rewrite

Uje = Xj’tﬁ/ + G + ijt
= X}tﬂ+€jt+le‘tui+£ijt
o Integrate out u; and ¢ to leave model depending on x;; and Gj;.
> The set of individuals choosing brand j in market t is

Ajt(Xjt: Gjt) = {uj, €ioe, -1 €ime| Uit = Uy for all =0, ..., m}.

> Integrate out individual heterogeneity to get the market share
5jt(xjtv€jt|/3vzﬂ) :/A df (uj, €0t -, €imt)
it

where f(uj, €t, ..., €ime) i the joint distribution of the errors

* iid type 1 extreme value for the ¢;;
* N0, Zg] for u;

@© A. Colin Cameron  U. of Calif. - Davis . 2B: Multinomial outcomes: Extras Aug 30 - Sep 3, 2010

33/ 42



7. Multinomial data: Aggregate data Individual heterogeneity

o Now predicted share s;:(x;t, §;;|B, Z) is very nonlinear

> the error §;; is nonadditive
» so can't just do NLS of s on sj;(x;t, §jtl B, Zg)
> also may be concerend about endogeneity of x;;

@ Berry (1984) instead proposed the following (see also Nevo (2000))

> Solve for & (viewed as a structural error) as a function of
Sit Xje, B X _
> Assume there are instruments zj; (allows for e.g. endogenous prices)
> Sta.ck Gj+ and th.iljlto. ¢ and Z and estimate B and £g by GMM
estimator that minimizes

Q(B.Zp) = [Zj:Z(B. Zp)'W[Z}:Z(B. Zp)]
@ This is computationally challenging

» Computation of sj;(x;t, {j¢|B, Lg) requires numerical methods
> Inversion to get xj-tﬁ + & and hence {j; requires numerical methods

> Knittel and Metaxoglou (2008) find problems with many optima that
lead to quite different estimated price elasticities.
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8. Further Models: Sequential Models

@ Example is sequential probit with three alternatives.

» First choose whether y =1 or y# 1.
» Second, if y # 1 choose whether y =2 or y = 3.

@ Assume a probit model at each stage, with regressors x, at the first
stage and regressors x; at the second stage.

» Then

pp = Prly=1]=®(xp,),

P2 Prlyi = 2y; # 1] = ©(x,,).

p2 + p2

> This implies after some algebra
pa = Prly #1 xPrly =2y #1] = (1 - ®(x18;)) x P(x38,)
p3 = l—p1—p2.

> The likelihood function is then easily obtained and estimation is by ML.
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8. Multinomial Data Further Models BYINEVETRETENY IS

Further Models: Multivariate Models

@ Multivariate models have more than one discrete dependent variable.

» Example: jointly model labor supply and fertility

- 0 if do not work
no= 1 if work

_ 0 if no children
2. = 1 if children

» There are four probabilities

poo = Prly1 =0,y =0]
por = Prly1 =0y =1]
pro = Prly1 =1,y =0]
pi1 = Priyn =1y =1]

» These are mutually exclusive and exhaust all possibilities, so that
Poo + poo + poo + Poo = 1.
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AT IO ETRDEY EN AT ST VI S Bivariate Probit Model

Further Models: Bivariate Probit

@ From these probabilities one can form the log-likelihood, and estimate

by ML.
» This is essentially the same as a four-choice multinomial model.
» All that differs is the story told to derive the functional forms for the

probabilities.
@ Bivariate probit model is a leading example.

> Observe y; = 1or 0 if y > or <0
and y» = 1or 0 if y5 > or < 0 where

vi = XiB+e
3 = xPyte

HER(HERY)]
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AT IO ETRDEY EN AT ST VI S Bivariate Probit Model

Further Models: Bivariate Probit Data Example

@ Bivariate probit example: y; is health excellent and y» is visit doctor.

* Two binary dependent variables: hlthe and dmdvs
. tabulate hlthe dmdu

any MD visit = 1 if
mdu > 0
h1the 0 1 Total
0 826 1,731 2,557
1 1,006 2,011 3,017
Total 1,832 3,742 5,574

. correlate hlthe dmdu

(obs=5574)
h1the dmdu
h1the 1.0000
dmdu -0.0110 1.0000
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8. Multinomial Data Further Models Bivariate Probit Model

o Estimate using Stata command biprobit

. * Bivariate probit estimates
. biprobit h1the dmdu age linc ndisease, nolog

Bivariate probit regression Number of obs = 5574
wald chi2(6) = 770.00
Log Tikelihood = -6958.0751 Prob > chi2 = 0.0000

Ccoef. std. Err. z P>|z]| [95% conf. Interval]

h1the
age -.0178246 .0010827 -16.46  0.000 -.0199466 -.0157025
Tinc .132468 .0149632 8.85 0.000 .1031406 .1617953
ndisease -.0326656 .0027589 -11.84 0.000 -.0380729 -.0272583
_cons -.2297079 .1334526 -1.72 0.085 -.4912703 .0318545

dmdu

age .0020038 .0010927 1.83 0.067 -.0001379 .0041455
Tinc .1212519 .0142512 8.51 0.000 .09332 .1491838
ndisease .0347111 .0028908 12.01  0.000 .0290452 .0403771
_cons -1.032527 .1290517 -8.00 0.000 -1.285464 -.7795907
/athrho .0282258 .022827 1.24 0.216 -.0165142 .0729658
rho .0282183 .0228088 -.0165127 .0728366
Likelihood-ratio test of rho=0: chi2(1) = 1.5295 Prob > chi2 = 0.2162
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8. Multinomial Data Further Models IETE @Y EYe[H1E

Further Models

@ Ranked Data

» With stated preference data we know the second-preferred choice, not
just the most-preferred choice.

» Using this can increase efficiency of estimation

» e.g. For MNL first preference is MNL with m alternatives, and second
preference is MNL with (m — 1) alternatives.

@ Simultaneous Equations

» Two binary variables that are simultaneous.
> Easiest if simultaneity is in latent variables (yj", y5).
Then work with reduced form in (y;', y5).
» More difficult if simultaneous in the binary outcomes (y1,y»).
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9. Some References

These references are mainly ones that refer to the recent literature.

°
@ For random parameters logit see
» Hole, A.R. (2007), "Fitting Mixed Logit Models by using Simulated
Maximum Likelihood,” Stata Journal, 7, 388-401.
@ For multinomial probit see

> Liesenfeld, R., and J.-F. Richard (2010), “The dynamic invariant
multinomial probit model: ldentification, pretesting and estimation,”
Journal of Econometrics, 155, 117-127.

@ For maximum simulated likelihood and Bayesian for multinomial data
see

> Train, K. (2004), Discrete choice methods with simulation, Cambridge
University Press.
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@ For recent Bayesian multinomial applications see

» Munkin, M.K., and P.K. Trivedi (2008), “Bayesian analysis of the
ordered probit model with endogenous selection,” Journal of
Econometrics, 144, 334-348.

» Imai, S., N. Jain, and A. Ching (2009), “Bayesian Estimation of
Dynamic Discrete Choice Models,” Econometrica, 1865-1900.

@ For individual choice with aggregate market share data see

» Berry, S.T. (1994), “Estimating Discrete-Choice Models of Product
Differentiation,” Rand Journal of Economics, 25, 242-262.

» Berry, Steven, Levinsohn, James, Pakes, Ariel, 1995. Automobile prices
in market equilibrium. Econometrica 63 (4), 841 890.

» Knittel, C.R., and K. Metaxoglou (2008), “Estimation of Random
Coefficient Demand Models: Challenges, Difficulties and Warnings,”
Manuscript, University of California - Dauvis.

» Jiang, R., P. Manchandab and P.E. Rossi (2009), “Bayesian analysis of
random coefficient logit models using aggregate data,” Journal of
Econometrics, 149, 136-148.
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