

2B: Multinomial outcomes: Extras

© A. Colin Cameron
U. of Calif. - Davis

OeNB Summer School 2010
Microeometrics
Oesterreichische Nationalbank (OeNB), Vienna, Austria

Based on
A. Colin Cameron and Pravin K. Trivedi,
Microeometrics: Methods and Applications (MMA), ch.14
Microeometrics using Stata (MUS), ch.14.
Data examples are from MUS.

Aug 30 - Sep 3, 2010

1. Introduction

- For unordered data consider models that are richer than multinomial or conditional logit
 - ▶ Some do not have a closed form expression for the p_{ij} , so use
 - ★ Maximum simulated likelihood estimation
 - ★ Bayesian methods
- Consider models for more complicated forms of multinomial data: sequential, multivariate.

Outline

- ① Introduction
- ② Multinomial data: Nested logit model
- ③ Multinomial data: Random parameters multinomial logit (mixed logit)
- ④ Maximum simulated likelihood estimation
- ⑤ Multinomial data: Multinomial probit model
- ⑥ Bayesian methods
- ⑦ Multinomial data: Aggregate data
- ⑧ Multinomial data: Further Models: sequential, multivariate

2. Nested Logit Model

- Create tree structure for alternatives.
 - ▶ Within each branch errors are correlated.
 - ▶ Across branches errors are not.
- Fishing mode choice.
 - ▶ Assume fundamental distinction is between shore and boat fishing.

- Shore/boat contrast is called level 1 (or a limb).
- Next level is called level 2 (or a branch).
- Here
 - ▶ $(\varepsilon_{i,beach}, \varepsilon_{i,pier})$ are a bivariate correlated pair
 - ▶ $(\varepsilon_{i,private}, \varepsilon_{i,charter})$ are a bivariate correlated pair
 - ▶ the two pairs are independent.
- MNL/CL is special case all errors independent type I extreme value.
- Limitation is that need to specify the nest - not data determined.
- Two different nested logit models exist in the literature.
 - ▶ Only one of these (in recent Stata) is consistent with utility maximization.
 - ▶ And should have "dissimilarity parameter" in (0,1) interval.

- Nested logit: first define the tree

```

. * Define the tree for nested logit
. nlogitgen type = fishmode(shore: pier | beach, boat: private | charter)
new variable type is generated with 2 groups
label list lb_type
lb_type:
    1 shore
    2 boat

. * Check the tree
. nlogittree fishmode type, choice(d)

tree structure specified for the nested logit model

type      N      fishmode      N      k

```

type	N	fishmode	N	k
shore	2364	beach	1182	134
		pier	1182	178
boat	2364	charter	1182	452
		private	1182	418
			total	4728 1182

k = number of times alternative is chosen
 N = number of observations at each level

- Nested logit then estimated using following command:

```
nlogit d p q || type:, base(shore) || fishmode: income,
case(id) nolog
```

RUM-consistent nested logit regression
 Case variable: id
 Alternative variable: fishmode
 Log likelihood = -1192.4236

Number of obs = 4728
 Number of cases = 1182
 Alts per case: min = 4
 avg = 4.0
 max = 4

wald chi2(0) = 212.37
 Prob > chi2 = 0.0000

d	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]	
fishmode						
p	-.0267625	.0018937	-14.13	0.000	-.0304741	-.023051
q	1.340091	.3080531	4.35	0.000	.7363177	1.943864

fishmode equations

beach	income	(base)				
	_cons	(base)				
charter	income	-8.402017	78.35482	-0.11	0.915	-161.9746
	_cons	69.96998	558.8972	0.13	0.900	145.1706
						-1025.448
pier	income	-9.458089	80.30189	-0.12	0.906	-166.8469
	_cons	58.94369	500.7358	0.12	0.906	147.9307
						-922.4805
private	income	-1.634925	8.588643	-0.19	0.849	-18.46836
	_cons	37.52565	230.9065	0.16	0.871	15.19851
						490.094

dissimilarity parameters

type					
/shore_tau	83.4692	718.5336			
/boat_tau	52.55949	542.8918			

LR test for IIA (tau = 1): chi2(0) = 45.43 Prob > chi2 = 0.0000

3. Random Parameters Logit Model

- The random parameters logit model introduces correlation across alternatives through an individual-specific random effect.
- Specifically, for an m -choice model we have

$$U_{ij} = \mathbf{x}'_{ij}\beta_i + \varepsilon_{ij}$$

$\varepsilon_{ij} \sim$ i.i.d. type I extreme value

$$\beta_i \sim \mathcal{N}[\beta, \Sigma]$$

- ▶ $\beta_i = \beta + \mathbf{u}_i$ induces correlation across alternatives as then
 $U_{ij} = \mathbf{x}'_{ij}\beta + (\mathbf{x}'_{ij}\mathbf{u}_i + \varepsilon_{ij})$ where $\mathbf{u}_i \sim \mathcal{N}[\mathbf{0}, \Sigma]$.
- Conditional on β_i the model is easily estimated CL.
 - ▶ But additionally need to integrate out β_i .
 - ▶ Use maximum simulated likelihood or Bayesian methods.

- Stata user-written command `mixlogit` has same format as command `clogit`.
 - ▶ Here apply for three-choice example (with charter dropped).
 - ▶ Specify just regressor `p` to have random coefficient.

```
. mixlogit d q d3 d4 d3income d4income, group(id) rand(p)
```

```
Iteration 0:  log likelihood = -602.33584  (not concave)
Iteration 1:  log likelihood = -447.46013
Iteration 2:  log likelihood = -435.29806
Iteration 3:  log likelihood = -434.56105
Iteration 4:  log likelihood = -434.52856
Iteration 5:  log likelihood = -434.52844
Iteration 6:  log likelihood = -434.52844
```

```
Mixed logit model                               Number of obs = 2190
                                                LR chi2(1) = 64.57
Log likelihood = -434.52844                  Prob > chi2 = 0.0000
```

d	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
Mean					
q	.7840088	.9147869	0.86	0.391	-1.008941 2.576958
d3	.7742955	.224233	3.45	0.001	.3348069 1.213784
d4	.5617395	.3158082	1.78	0.075	-.0572331 1.180712
d3income	-.1199613	.0492249	-2.44	0.015	-.2164404 -.0234822
d4income	.0518098	.0721527	0.72	0.473	-.0896068 .1932265
p	-.1069866	.0274475	-3.90	0.000	-.1607827 -.0531904
SD					
p	.0598364	.0191597	3.12	0.002	.022284 .0973888

4. Maximum Simulated Likelihood Estimation

- Problem: The MLE (with independent data over i) maximizes

$$\ln L(\theta) = \sum_{i=1}^N \ln f(y_i | \mathbf{x}_i, \theta).$$

- ▶ but $f(y_i | \mathbf{x}_i, \theta)$ does not have a closed form solution.
- ▶ e.g. $f(y_i | \mathbf{x}_i, \theta) = \int g(y_i | \mathbf{x}_i, \theta, \alpha) h(\alpha) d\alpha = ?$
- Solution: Maximum simulated likelihood estimator (MSL) maximizes

$$\ln \hat{L}(\theta) = \sum_{i=1}^N \ln \hat{f}(y_i | \mathbf{x}_i, \theta)$$

- ▶ where $\hat{f}(y_i | \mathbf{x}_i, \theta)$ is a simulated approximation to $f(y_i | \mathbf{x}_i, \theta)$
- ▶ e.g. $\hat{f}(y_i | \mathbf{x}_i, \theta) = \frac{1}{S} \sum_{s=1}^S g(y_i | \mathbf{x}_i, \theta, \alpha^{(s)})$ where $\alpha^{(s)}$ are draws from the density $h(\alpha)$
- The MSL estimator is consistent and has the usual asymptotic distribution as the MLE if
 - ▶ $\hat{f}(\cdot)$ is an unbiased simulator and satisfies other conditions given below
 - ▶ $S \rightarrow \infty$, $N \rightarrow \infty$ and $\sqrt{N}/S \rightarrow 0$ where S is number of simulations.
 - ▶ Note that many draws S (to compute $\hat{f}(\cdot)$) are required.

- Assumed properties of the simulator:

- $\hat{f}(\cdot)$ is an unbiased simulator with

$$E[\hat{f}(y_i | \mathbf{x}_i, \boldsymbol{\theta})] = f(y_i | \mathbf{x}_i, \boldsymbol{\theta})$$

- $\hat{f}(\cdot)$ is differentiable in $\boldsymbol{\theta}$ (or smooth simulator) so gradient methods can be used
- the underlying draws to compute $\hat{f}(\cdot)$ are unchanged so no "chatter".

- We need many draws S because simulator is biased for $\ln f(\cdot)$

$$E[\hat{f}(\cdot)] = E[f(\cdot)] \Rightarrow E[\ln \hat{f}(\cdot)] \neq E[\ln f(\cdot)].$$

- Binary probit example

- Density $f_i = \Phi(\mathbf{x}'_i \boldsymbol{\beta})^{y_i} (1 - \Phi(\mathbf{x}'_i \boldsymbol{\beta}))^{1-y_i}$
- Frequency simulator

$$\hat{f}_i = \frac{1}{S} \sum_{s=1}^S 1[\varepsilon_i^{(s)} \leq \mathbf{x}'_i \boldsymbol{\beta}]^{y_i} (1 - 1[\varepsilon_i^{(s)} \leq \mathbf{x}'_i \boldsymbol{\beta}])^{1-y_i}$$

- ★ $\varepsilon_i^{(s)}$, $s = 1, \dots, S$, are random draws from $\mathcal{N}[0, 1]$

- ★ But here not smooth so need to use a different simulator.

MSL Application to Random Parameters Logit

- Recall $U_{ij} = \mathbf{x}'_{ij}\beta_i + \varepsilon_{ij}$; $\varepsilon_{ij} \sim$ type I extreme value; $\beta_i \sim \mathcal{N}[\beta, \Sigma]$.
- If β_i known then have CL model with $p_{ij} = e^{\mathbf{x}'_{ij}\beta_i} / \sum_{l=1}^m e^{\mathbf{x}'_{il}\beta_l}$.
- Instead β_i random and needs to be integrated out

$$p_{ij} = \Pr[y_i = j] = \int \frac{e^{\mathbf{x}'_{ij}\beta_i}}{\sum_{l=1}^m e^{\mathbf{x}'_{il}\beta_l}} \phi(\beta_i | \beta, \Sigma).$$

- The MSL estimator of β and Σ maximizes

$$\begin{aligned} \ln \hat{L}(\beta, \Sigma) &= \sum_{i=1}^N \ln \hat{f}(y_i | \mathbf{x}_i, \beta, \Sigma) \\ &= \sum_{i=1}^N \sum_{j=1}^m \ln \left[\frac{1}{S} \sum_{s=1}^S \frac{e^{\mathbf{x}'_{ij}\beta_i^{(s)}}}{\sum_{l=1}^m e^{\mathbf{x}'_{il}\beta_l^{(s)}}} \right] \end{aligned}$$

- ▶ where $\beta_i^{(s)}$, $s = 1, \dots, S$, are random draws from $\phi(\beta_i | \beta, \Sigma)$
- ▶ and at r^{th} round of gradient method draw is from $\phi(\beta_i | \beta^r, \Sigma^r)$.

Method of Simulated Moments

- An alternative less efficient estimator is the method of simulated (MSM) estimator.
- Suppose $\hat{\theta}$ is a method of moments estimator (MM) that solves

$$\sum_{i=1}^N \mathbf{m}(y_i | \mathbf{x}_i, \theta) = \mathbf{0}.$$

- Suppose there is unbiased simulator such that $E[\hat{\mathbf{m}}(y_i | \mathbf{x}_i, \theta)] = \mathbf{m}(y_i | \mathbf{x}_i, \theta)$.
- Then the method of simulated (MSM) solves

$$\sum_{i=1}^N \hat{\mathbf{m}}(y_i | \mathbf{x}_i, \theta) = \mathbf{0}$$

is consistent even if S is small though there is an efficiency loss.

- ▶ When $\hat{\mathbf{m}}(\cdot)$ is the frequency simulator $V[\hat{\theta}_{MSM}] = (1 + \frac{1}{S})V[\hat{\theta}_{MM}]$.
- In practice the MSL is used much more often even though larger S .

5. Multinomial Probit Model

- Consider three-choice example of the multinomial probit model.
 - ▶ ARUM with errors multivariate normal distributed.

$$\begin{bmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \\ \varepsilon_{i3} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_2^2 & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 \end{bmatrix} \right).$$

- ▶ Not all the variance components are identified.
- ▶ Only covariance matrix of differenced errors $\varepsilon_j - \varepsilon_1$, plus one normalization.
- ▶ Here e.g. $\sigma_2^2 = 1$, and σ_{32} and σ_3^2 free.
- Even if error model is technically identified, parameters of the MNP model may be imprecisely estimated (like multicollinearity).
 - ▶ Further restrictions are needed in practice.

- Use Stata command `asmlogit`

- ▶ Uses simulated maximum likelihood
- ▶ With GHK simulator which is a smooth simulator (meaning small change in β changes simulated value of p_{ij} so that objective function is differentiable in β)

```
. * Multinomial probit with case-specific regressors
. drop if fishmode=="charter" | mode = 4
(2538 observations deleted)

. asmprobit d p q, case(id) alternatives(fishmode) casevars(income) ///
> correlation(unstructured) structural vce(robust) nolog
note: variable p has 106 cases that are not alternative-specific: there is no
within-case variability

Alternative-specific multinomial probit          Number of obs      =      2190
Case variable: id                            Number of cases    =      730
                                               
Alternative variable: fishmode          Alts per case: min =          3
                                                avg =        3.0
                                                max =          3
                                               
Integration sequence:          Hammersley
Integration points:          150          wald chi2( 4) =      12.97
Log simulated-pseudolikelihood = -482.30128          Prob > chi2 =      0.0114
```

(Std. Err. adjusted for clustering on id)

d	Coef.	Robust Std. Err.	z	P> z	[95% Conf. Interval]	
fishmode						
	p	-.0233627	.0114346	-2.04	0.041	-.0457741
	q	1.399925	.5395423	2.59	0.009	.3424418
beach	(base alternative)					
pier	income	-.097985	.0413117	-2.37	0.018	-.1789543
	_cons	.7549123	.2013551	3.75	0.000	.3602636
private	income	.0413866	.0739083	0.56	0.575	-.103471
	_cons	.6602584	.2766473	2.39	0.017	.1180397
/lnsigma3		.4051391	.5009809	0.81	0.419	-.5767654
/atanhr3_2		.1757361	.2337267	0.75	0.452	-.2823598
	sigma1	1	(base alternative)			
	sigma2	1	(scale alternative)			
	sigma3	1.499511	.7512264		.5617123	4.002998
rho3_2		.173949	.2266545		-.2750878	.5606852

(fishmode=beach is the alternative normalizing location)

(fishmode=pier is the alternative normalizing scale)

```
. * Show correlations and covariance  
. estat correlation
```

	beach	pier	private
beach	1.0000		
pier	0.0000	1.0000	
private	0.0000	0.1739	1.0000

```
. estat covariance
```

	beach	pier	private
beach	1		
pier	0	1	
private	0	.2608385	2.248533

6. Bayesian Methods

- Bayesian methods begin with

- ▶ Likelihood: $L(\mathbf{y}|\boldsymbol{\theta}, \mathbf{X})$
- ▶ Prior on $\boldsymbol{\theta}$: $\pi(\boldsymbol{\theta})$

- This yields the posterior distribution for $\boldsymbol{\theta}$

$$p(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}) = \frac{L(\mathbf{y}|\boldsymbol{\theta}, \mathbf{X}) \times \pi(\boldsymbol{\theta})}{f(\mathbf{y}|\mathbf{X})}$$

- ▶ where $f(\mathbf{y}|\mathbf{X}) = \int L(\mathbf{y}|\boldsymbol{\theta}, \mathbf{X}) \times \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$ is called the marginal likelihood.
- ▶ This uses the result that $\Pr[A|B] = \Pr[A \cap B] / \Pr[B]$.
- Bayesian analysis then bases inference on the posterior distribution.
 - ▶ e.g. Best point estimate of $\boldsymbol{\theta}$ may be the mean of the posterior distribution.
 - ▶ e.g. A 95% confidence interval for $\boldsymbol{\theta}$ is from the 2.5 to 97.5 percentiles of the posterior distribution.

- Bayesian inference is a different inference method
 - ▶ treats θ as intrinsically random
 - ▶ whereas classical inference treats θ as fixed and $\hat{\theta}$ as random.
- Modern Bayesian methods (Markov chain Monte Carlo)
 - ▶ make it much easier to compute the posterior distribution than to maximize the log-likelihood.
- So classical statisticians:
 - ▶ use Bayesian methods to compute the posterior
 - ▶ use an uninformative prior so $p(\theta|\mathbf{y}, \mathbf{X}) \simeq L(\mathbf{y}|\theta, \mathbf{X})$
 - ▶ so θ that maximizes the posterior is also the MLE.
- Or can go all the way and be Bayesian.

Markov chain Monte Carlo (MCMC)

- The challenge is to compute the posterior
 - ▶ analytical results are only available in special cases.
 - ▶ e.g. If $\mathbf{y}|\mathbf{X}$ is normal with mean $\mathbf{X}\boldsymbol{\beta}$ and known variance and the prior for $\boldsymbol{\beta}$ is normal with specified mean and variance then the posterior for $\boldsymbol{\beta}|\mathbf{y}, \mathbf{X}$ is also normal.
- Instead use Markov chain Monte Carlo methods:
 - ▶ Make sequential random draws $\boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)}, \dots$
 - ▶ where $\boldsymbol{\theta}^{(s)}$ depends in part on $\boldsymbol{\theta}^{(s-1)}$
 - ▶ in such a way that after an initial burn-in (discard these draws)
 - ▶ $\boldsymbol{\theta}^{(s)}$ are (correlated) draws from the posterior $p(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X})$.
- MCMC methods include
 - ▶ Gibbs sampler
 - ▶ Metropolis and Metropolis-Hastings algorithms
 - ▶ Data augmentation

Probit example

- Likelihood: Probit model with single regressor

- ▶ $\ln L(\beta | \mathbf{y}, \mathbf{X}) = \sum_i y_i \ln \Phi(\beta_1 + \beta_2 x) + (1 - y_i) \ln(1 - \Phi(\beta_1 + \beta_2 x))$

- Prior: uniform prior (all values equally likely)

- ▶ $\pi(\beta) = \pi(\beta_1, \beta_2) = 1$

- Posterior: no closed form solution

- ▶ though proper even though the prior was improper
 - ▶ instead use Gibbs sampler and data augmentation

- Example: the above with generated data

- ▶ $\beta_1 = 0, \beta_2 = 1, N = 100, x \sim \mathcal{N}[0, 1]$

- Gibbs sampler yields 1,000 correlated draws from the posterior.

Correlated draws

- The last 100 draws from the posterior density of β_2

- Correlations of the 1,000 draws of β_2 die out quickly

```
. corrgram b, lags(10)
```

LAG	AC	PAC	Q	Prob>Q	-1 [Autocorrelation]	0 [Partial Autocor]	1 0 1
1	0.5127	0.5128	263.7	0.0000			
2	0.2581	-0.0068	330.6	0.0000			
3	0.1061	-0.0330	341.92	0.0000			
4	0.0299	-0.0153	342.82	0.0000			
5	0.0137	0.0159	343.01	0.0000			
6	-0.0440	-0.0685	344.95	0.0000			
7	-0.0330	0.0198	346.05	0.0000			
8	-0.0126	0.0144	346.21	0.0000			
9	-0.0086	-0.0070	346.29	0.0000			
10	-0.0255	-0.0315	346.95	0.0000			

Posterior density

- Kernel density estimate of the 1,000 draws of β_2
 - centered around 0.4-0.5 with standard deviation of 0.1-0.2.

- More precisely

- Posterior mean of β_2 is 0.434 and standard deviation is 0.132
- A 95% percent Bayesian confidence interval for β_2 is (0.195, 0.701).

. summarize b

variable	obs	Mean	Std. Dev.	Min	Max
b	1000	.4345774	.1329711	.0379931	.94584

. centile b, centile(2.5, 97.5)

variable	obs	Percentile	Centile	— Binom. Interp. —	
				[95% Conf. Interval]	
b	1000	2.5 97.5	.194546 .701408	.1848584 .6852426	.2014523 .7263849

Gibbs Sampler

- Gibbs sampler is simple MCMC method
- used when
 - ▶ we can partition θ into θ_1 and θ_2
 - ▶ we do not know the posterior $p(\theta_1, \theta_2)$
 - ▶ but we do know the conditional posteriors $p(\theta_1|\theta_2)$ and $p(\theta_2|\theta_1)$
- Then make alternating draws from $p(\theta_1|\theta_2)$ and $p(\theta_2|\theta_1)$
 - ▶ Start with $\theta_1^{(1)}$
 - ▶ Draw $\theta_2^{(1)}$ from $p(\theta_2|\theta_1^{(1)})$
 - ▶ Draw $\theta_1^{(2)}$ from $p(\theta_1|\theta_2^{(1)})$
 - ▶ Draw $\theta_2^{(2)}$ from $p(\theta_2|\theta_1^{(2)})$ etc.
- Gibbs eventually gives (correlated) draws from $p(\theta_1, \theta_2)$ even though

$$\begin{aligned} p(\theta_1, \theta_2) &= p(\theta_1|\theta_2) \times p(\theta_2) \\ &\neq p(\theta_1|\theta_2) \times p(\theta_2|\theta_1). \end{aligned}$$

Data Augmentation

- Consider latent variable model where observed data y are determined completely by y^* .
 - ▶ We have data y_i, \mathbf{x}_i
 - ▶ where $y_i = g(y_i^*)$ with $g(\cdot)$ known
 - ▶ and y_i^* depends on \mathbf{x}_i and θ
 - ▶ probit is an example.
- Furthermore suppose that Bayesian analysis would be easy if y_i^* was observed
 - ▶ so the posterior $p(\theta|y_1^*, \dots, y_N^*, \text{data})$ is known.
- Then data augmentation
 - ▶ treats the parameters as θ and y_1^*, \dots, y_N^*
 - ▶ then do Gibbs sampler
 - ★ draw θ from $p(\theta|y_1^*, \dots, y_N^*, \text{data})$
 - ★ and draw y_1^*, \dots, y_N^* from $p(y_1^*, \dots, y_N^*|\theta, \text{data})$.

Probit example

- Likelihood: Probit model

- ▶ $y_i^* = \mathbf{x}'_i \boldsymbol{\beta} + \varepsilon_i, \varepsilon_i \sim \mathcal{N}[0, 1].$

- ▶ $y_i = \begin{cases} 1 & y_i^* > 0 \\ 0 & y_i^* \leq 0 \end{cases}$

- Prior: uniform prior (all values equally likely)

- ▶ $\pi(\boldsymbol{\beta}) = 1$

- Known tractable result: for $\mathbf{y}^* \sim \mathcal{N}[\mathbf{X}\boldsymbol{\beta}, \mathbf{I}]$ and uniform prior on $\boldsymbol{\beta}$

- ▶ $p(\boldsymbol{\beta}|\mathbf{y}^*, \mathbf{X})$ is $\mathcal{N}[\hat{\boldsymbol{\beta}}, (\mathbf{X}'\mathbf{X})^{-1}]$ where $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}^*.$

- Data augmentation add y_1^*, \dots, y_N^* as parameters.

- ▶ Then $p(\boldsymbol{\beta}|y_1^*, \dots, y_N^*, \mathbf{y}, \mathbf{X})$ is $\mathcal{N}[\hat{\boldsymbol{\beta}}, (\mathbf{X}'\mathbf{X})^{-1}]$

- ▶ And $p(y_1^*, \dots, y_N^*|\boldsymbol{\beta}, \mathbf{y}, \mathbf{X})$ is truncated normal

- ▶ If $y_i = 1$ draw from $\mathcal{N}[\mathbf{x}'_i \boldsymbol{\beta}, 1]$ left truncated at 0

- ▶ If $y_i = 0$ draw from $\mathcal{N}[\mathbf{x}'_i \boldsymbol{\beta}, 1]$ right truncated at 0

- So draw $\boldsymbol{\beta}^{(s)}$ from $p(\boldsymbol{\beta}|y_1^{*(s-1)}, \dots, y_N^{*(s-1)}, \mathbf{y}, \mathbf{X})$

- and draw $y_1^{*(s)}, \dots, y_N^{*(s)}$ from $p(y_1^*, \dots, y_N^*|\boldsymbol{\beta}^{(s)}, \mathbf{y}, \mathbf{X})$

Multinomial probit example

- Likelihood: Multinomial probit model
 - ▶ $U_{ij}^* = \mathbf{x}'_{ij}\beta + \varepsilon_{ij}$, $\varepsilon_i \sim \mathcal{N}(\mathbf{0}, \Sigma_\varepsilon)$
 - ▶ $y_{ij} = 1$ if $U_{ij}^* > U_{ik}^*$ all $k \neq j$
- Prior for β and Σ_ε may be normal-Wishart
- Data augmentation
 - ▶ Latent utilities $\mathbf{U}_i = (U_{i1}, \dots, U_{im})$ are introduced as auxiliary variables
 - ▶ Let $\mathbf{U} = (\mathbf{U}_1, \dots, \mathbf{U}_N)$ and $\mathbf{y} = (y_1, \dots, y_N)$
- Gibbs sampler cycles between
 - ▶ 1. Conditional posterior for $\beta | \mathbf{U}, \Sigma_\varepsilon, \mathbf{y}, \mathbf{X}$
 - ▶ 2. Conditional posterior for $\Sigma_\varepsilon | \beta, \mathbf{U}, \mathbf{y}, \mathbf{X}$, and
 - ▶ 3. Conditional posterior for $\mathbf{U}_i | \beta, \Sigma_\varepsilon, \mathbf{y}, \mathbf{X}$.
- Albert and Chib (1993) provide a quite general treatment.
- McCulloch and Rossi (1994) provide a substantive MNP application.

7. Aggregate Data for individual random parameters logit

- Can do regular multinomial logit or NLSUR on aggregated data
 - ▶ Here consider harder problem of linking to individual behavior.
- The data available are for brand j in market t :
 - ▶ market share s_{jt} , average prices p_{jt} , other product characteristics \mathbf{w}_{jt} .
- The underlying model is one of individual behavior
 - ▶ utility of individual i for brand j in market t is

$$\begin{aligned} U_{ijt} &= \mathbf{w}'_{jt} \gamma_i - \alpha_i p_{jt} + \xi_{jt} + \varepsilon_{ijt} \\ &= \mathbf{x}'_{jt} \beta_i + \xi_{jt} + \varepsilon_{ijt}, \end{aligned}$$

- ▶ where ε_{ijt} is i.i.d. type I extreme value
- Consider the following situations
 - ▶ No individual heterogeneity: $\beta_i = \beta$ (only heterogeneity is ε_{ijt})
 - ▶ No individual heterogeneity and endogenous \mathbf{x}_{jt} (e.g. prices).
 - ▶ Individual heterogeneity: β_i is normally distributed.

No individual heterogeneity

- Given ε_{ijt} i.i.d. extreme value, then get usual conditional logit model

$$\Pr[y_{ijt} = 1] = \frac{\exp(\mathbf{x}'_{jt}\beta + \xi_{jt})}{1 + \sum_{k=1}^m \exp(\mathbf{x}'_{kt}\beta + \xi_{kt})}$$

- We have aggregate market data so estimate the share

$$s_{jt} = \frac{\exp(\mathbf{x}'_{jt}\beta + \xi_{jt})}{1 + \sum_{k=1}^m \exp(\mathbf{x}'_{kt}\beta + \xi_{kt})}.$$

- Introduce an outside good, good 0, normalized so that $\mathbf{x}'_{jt}\beta = 0$.

- Then $s_{0t} = 1/[1 + \sum_{k=1}^m \exp(\mathbf{x}'_{kt}\beta + \xi_{kt})]$
- So $s_{jt} = \exp(\mathbf{x}'_{jt}\beta + \xi_{jt})/s_{0t}$ and

$$\ln s_{jt} - \ln s_{0t} = \mathbf{x}'_{jt}\beta + \xi_{jt}.$$

- So can estimate β by OLS using market share data.
- Empirical results will depend on the outside good
 - and need to get a share figure for the outside good.

Endogeneity but no individual heterogeneity

- Now suppose the unobserved heterogeneity ξ_{jt} is correlated with prices p_{jt} or other characteristics \mathbf{x}_{jt} .
- Then estimate by IV

$$\ln s_{jt} - \ln s_{0t} = \mathbf{x}'_{jt} \boldsymbol{\beta}_{jt} + \xi_{jt},$$

- where instruments \mathbf{z}_{jt} satisfy $E[\mathbf{z}_{jt} \xi_{jt}] = 0$
- e.g. instruments from supply-side if modelling demand.

Individual heterogeneity

- Suppose $U_{ijt} = \mathbf{x}'_{jt} \boldsymbol{\beta}_i + \xi_{jt} + \varepsilon_{ijt}$ where $\boldsymbol{\beta}_i$ is normally distributed
 - then with ε_{ijt} i.i.d. extreme value, get RPL model at individual level.
- But we have only market share data
 - Let $\boldsymbol{\beta}_i = \boldsymbol{\beta} + \mathbf{u}_i$ and rewrite

$$\begin{aligned} U_{ijt} &= \mathbf{x}'_{jt} \boldsymbol{\beta}_i + \xi_{jt} + \varepsilon_{ijt} \\ &= \mathbf{x}'_{jt} \boldsymbol{\beta} + \xi_{jt} + \mathbf{x}'_{jt} \mathbf{u}_i + \varepsilon_{ijt} \end{aligned}$$

- Integrate out \mathbf{u}_i and ε_{ijt} to leave model depending on \mathbf{x}_{jt} and ξ_{jt} .
 - The set of individuals choosing brand j in market t is

$$A_{jt}(\mathbf{x}_{jt}, \xi_{jt}) = \{\mathbf{u}_i, \varepsilon_{i0t}, \dots, \varepsilon_{imt} \mid U_{ijt} \geq U_{ilt} \text{ for all } l = 0, \dots, m\}.$$

- Integrate out individual heterogeneity to get the market share

$$s_{jt}(\mathbf{x}_{jt}, \xi_{jt} \mid \boldsymbol{\beta}, \Sigma_{\boldsymbol{\beta}}) = \int_{A_{jt}} df(\mathbf{u}_i, \varepsilon_{i0t}, \dots, \varepsilon_{imt})$$

where $f(\mathbf{u}_i, \varepsilon_{i0t}, \dots, \varepsilon_{imt})$ is the joint distribution of the errors

- ★ iid type 1 extreme value for the ε_{ijt}
- ★ $\mathcal{N}[\mathbf{0}, \Sigma_{\boldsymbol{\beta}}]$ for \mathbf{u}_i

- Now predicted share $s_{jt}(\mathbf{x}_{jt}, \xi_{jt} | \boldsymbol{\beta}, \Sigma_{\boldsymbol{\beta}})$ is very nonlinear
 - the error ξ_{jt} is nonadditive
 - so can't just do NLS of s_{jt} on $s_{jt}(\mathbf{x}_{jt}, \xi_{jt} | \boldsymbol{\beta}, \Sigma_{\boldsymbol{\beta}})$
 - also may be concerned about endogeneity of \mathbf{x}_{jt}
- Berry (1984) instead proposed the following (see also Nevo (2000))
 - Solve for ξ_{jt} (viewed as a structural error) as a function of $s_{jt}, \mathbf{x}_{jt}, \boldsymbol{\beta}, \Sigma_{\boldsymbol{\beta}}$.
 - Assume there are instruments \mathbf{z}_{jt} (allows for e.g. endogenous prices)
 - Stack ξ_{jt} and \mathbf{z}_{jt} into ξ and \mathbf{Z} and estimate $\boldsymbol{\beta}$ and $\Sigma_{\boldsymbol{\beta}}$ by GMM estimator that minimizes

$$Q(\boldsymbol{\beta}, \Sigma_{\boldsymbol{\beta}}) = [\mathbf{Z}'_{jt} \xi(\boldsymbol{\beta}, \Sigma_{\boldsymbol{\beta}})]' \mathbf{W} [\mathbf{Z}'_{jt} \xi(\boldsymbol{\beta}, \Sigma_{\boldsymbol{\beta}})]$$

- This is computationally challenging
 - Computation of $s_{jt}(\mathbf{x}_{jt}, \xi_{jt} | \boldsymbol{\beta}, \Sigma_{\boldsymbol{\beta}})$ requires numerical methods
 - Inversion to get $\mathbf{x}'_{jt} \boldsymbol{\beta} + \xi_{jt}$ and hence ξ_{jt} requires numerical methods
 - Knittel and Metaxoglou (2008) find problems with many optima that lead to quite different estimated price elasticities.

8. Further Models: Sequential Models

- Example is sequential probit with three alternatives.
 - ▶ First choose whether $y = 1$ or $y \neq 1$.
 - ▶ Second, if $y \neq 1$ choose whether $y = 2$ or $y = 3$.
- Assume a probit model at each stage, with regressors \mathbf{x}_2 at the first stage and regressors \mathbf{x}_1 at the second stage.
 - ▶ Then

$$p_1 = \Pr[y = 1] = \Phi(\mathbf{x}'_1 \boldsymbol{\beta}_1),$$

$$\frac{p_2}{p_2 + p_1} = \Pr[y_i = 2 | y_i \neq 1] = \Phi(\mathbf{x}'_2 \boldsymbol{\beta}_2),$$

- ▶ This implies after some algebra

$$p_2 = \Pr[y \neq 1] \times \Pr[y = 2 | y \neq 1] = (1 - \Phi(\mathbf{x}'_1 \boldsymbol{\beta}_1)) \times \Phi(\mathbf{x}'_2 \boldsymbol{\beta}_2)$$

$$p_3 = 1 - p_1 - p_2.$$

- ▶ The likelihood function is then easily obtained and estimation is by ML.

Further Models: Multivariate Models

- Multivariate models have more than one discrete dependent variable.
 - ▶ Example: jointly model labor supply and fertility

$$y_1 = \begin{cases} 0 & \text{if do not work} \\ 1 & \text{if work} \end{cases}$$
$$y_2 = \begin{cases} 0 & \text{if no children} \\ 1 & \text{if children} \end{cases}$$

- ▶ There are four probabilities

$$p_{00} = \Pr[y_1 = 0, y_2 = 0]$$

$$p_{01} = \Pr[y_1 = 0, y_2 = 1]$$

$$p_{10} = \Pr[y_1 = 1, y_2 = 0]$$

$$p_{11} = \Pr[y_1 = 1, y_2 = 1].$$

- ▶ These are mutually exclusive and exhaust all possibilities, so that $p_{00} + p_{01} + p_{10} + p_{11} = 1$.

Further Models: Bivariate Probit

- From these probabilities one can form the log-likelihood, and estimate by ML.
 - This is essentially the same as a four-choice multinomial model.
 - All that differs is the story told to derive the functional forms for the probabilities.
- Bivariate probit model is a leading example.
 - Observe $y_1 = 1$ or 0 if $y_1^* > 0$ or < 0
and $y_2 = 1$ or 0 if $y_2^* > 0$ or < 0 where

$$\begin{aligned}y_1^* &= \mathbf{x}_1' \boldsymbol{\beta}_1 + \varepsilon_1 \\y_2^* &= \mathbf{x}_2' \boldsymbol{\beta}_2 + \varepsilon_2 \\\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix} &\sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right).\end{aligned}$$

Further Models: Bivariate Probit Data Example

- Bivariate probit example: y_1 is health excellent and y_2 is visit doctor.

. * Two binary dependent variables: hlthe and dmdvs
 . tabulate hlthe dmdvs

hlthe	any MD visit = 1 if mdu > 0		Total
	0	1	
0	826	1,731	2,557
1	1,006	2,011	3,017
Total	1,832	3,742	5,574

. correlate hlthe dmdu
 (obs=5574)

	hlthe	dmdu
hlthe	1.0000	
dmdu	-0.0110	1.0000

- Estimate using Stata command biprobit

```
. * Bivariate probit estimates
. biprobit hlthe dmdu age linc ndisease, nolog

Bivariate probit regression
Number of obs      =      5574
Wald chi2(6)      =     770.00
Prob > chi2        =     0.0000
Log likelihood = -6958.0751
```

	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
hlthe					
age	-.0178246	.0010827	-16.46	0.000	-.0199466 -.0157025
linc	.132468	.0149632	8.85	0.000	.1031406 .1617953
ndisease	-.0326656	.0027589	-11.84	0.000	-.0380729 -.0272583
_cons	-.2297079	.1334526	-1.72	0.085	-.4912703 .0318545
dmdu					
age	.0020038	.0010927	1.83	0.067	-.0001379 .0041455
linc	.1212519	.0142512	8.51	0.000	.09332 .1491838
ndisease	.0347111	.0028908	12.01	0.000	.0290452 .0403771
_cons	-1.032527	.1290517	-8.00	0.000	-1.285464 -.7795907
/athrho	.0282258	.022827	1.24	0.216	-.0165142 .0729658
rho	.0282183	.0228088			-.0165127 .0728366

Likelihood-ratio test of rho=0: chi2(1) = 1.5295 Prob > chi2 = 0.2162

Further Models

• Ranked Data

- ▶ With stated preference data we know the second-preferred choice, not just the most-preferred choice.
- ▶ Using this can increase efficiency of estimation
- ▶ e.g. For MNL first preference is MNL with m alternatives, and second preference is MNL with $(m - 1)$ alternatives.

• Simultaneous Equations

- ▶ Two binary variables that are simultaneous.
- ▶ Easiest if simultaneity is in latent variables (y_1^*, y_2^*) .
Then work with reduced form in (y_1^*, y_2^*) .
- ▶ More difficult if simultaneous in the binary outcomes (y_1, y_2) .

9. Some References

- These references are mainly ones that refer to the recent literature.
- For random parameters logit see
 - ▶ Hole, A.R. (2007), "Fitting Mixed Logit Models by using Simulated Maximum Likelihood," *Stata Journal*, 7, 388-401.
- For multinomial probit see
 - ▶ Liesenfeld, R., and J.-F. Richard (2010), "The dynamic invariant multinomial probit model: Identification, pretesting and estimation," *Journal of Econometrics*, 155, 117-127.
- For maximum simulated likelihood and Bayesian for multinomial data see
 - ▶ Train, K. (2004), *Discrete choice methods with simulation*, Cambridge University Press.

- For recent Bayesian multinomial applications see
 - ▶ Munkin, M.K., and P.K. Trivedi (2008), "Bayesian analysis of the ordered probit model with endogenous selection," *Journal of Econometrics*, 144, 334-348.
 - ▶ Imai, S., N. Jain, and A. Ching (2009), "Bayesian Estimation of Dynamic Discrete Choice Models," *Econometrica*, 1865-1900.
- For individual choice with aggregate market share data see
 - ▶ Berry, S.T. (1994), "Estimating Discrete-Choice Models of Product Differentiation," *Rand Journal of Economics*, 25, 242-262.
 - ▶ Berry, Steven, Levinsohn, James, Pakes, Ariel, 1995. Automobile prices in market equilibrium. *Econometrica* 63 (4), 841 890.
 - ▶ Knittel, C.R., and K. Metaxoglou (2008), "Estimation of Random Coefficient Demand Models: Challenges, Difficulties and Warnings," Manuscript, University of California - Davis.
 - ▶ Jiang, R., P. Manchandab and P.E. Rossi (2009), "Bayesian analysis of random coefficient logit models using aggregate data," *Journal of Econometrics*, 149, 136-148.