

5A: Censored and truncated data

© A. Colin Cameron
U. of Calif. - Davis

OeNB Summer School 2010
Microeometrics
Oesterreichische Nationalbank (OeNB), Vienna, Austria

Based on
A. Colin Cameron and Pravin K. Trivedi,
Microeometrics: Methods and Applications (MMA), ch.16.
Microeometrics using Stata (MUS), ch.16.
Data examples are from MUS.

Aug 30 - Sep 3, 2010

1. Introduction

- Censored Data:

- ▶ For part of the range of y we observe only that y is in that range, rather than observing the exact value of y .
 - ★ e.g. Expenditures or hours worked bunched at 0 (censored from below).
 - ★ e.g. Annual income top-coded at \$75,000 (censored from above).

- Truncated data:

- ▶ For part of range of y we do not observe y at all.
 - ★ e.g. Those with expenditures of \$0 are not observed.
 - ★ e.g. Sample excludes those with annual income $> \$75,000$ per year.

- Censored and truncated regression models
 - ▶ considerably more difficult conceptually than many other models.
 - ▶ sample is not reflective of the population (selection on y)
 - ★ whereas more common selection on x (exogenous stratification) okay
 - ▶ standard solutions rely on strong distributional assumptions.
- Focus on Tobit models
 - ▶ linear models with normal errors that are censored or truncated
- Issues carry over to censoring for other types of data
 - ▶ censored counts, censored durations, ...
- And also building block for more general selection models
 - ▶ sample selection model
 - ▶ Roy model

Outline

- ① Introduction
- ② Tobit: Example with Simulated Data
- ③ Tobit: Model Definition
- ④ Tobit: Censored and Truncated Means
- ⑤ Tobit: ML Estimation
- ⑥ Tobit: Data Example
- ⑦ Tobit: Extensions
- ⑧ Selection: Two-part models
- ⑨ Selection: Sample selection model

2. Tobit Example with Simulated Data

- Latent variable y^* , generated by model

$$y_i^* = -2500 + 1000x_i + \varepsilon_i, \quad i = 1, \dots, 250,$$

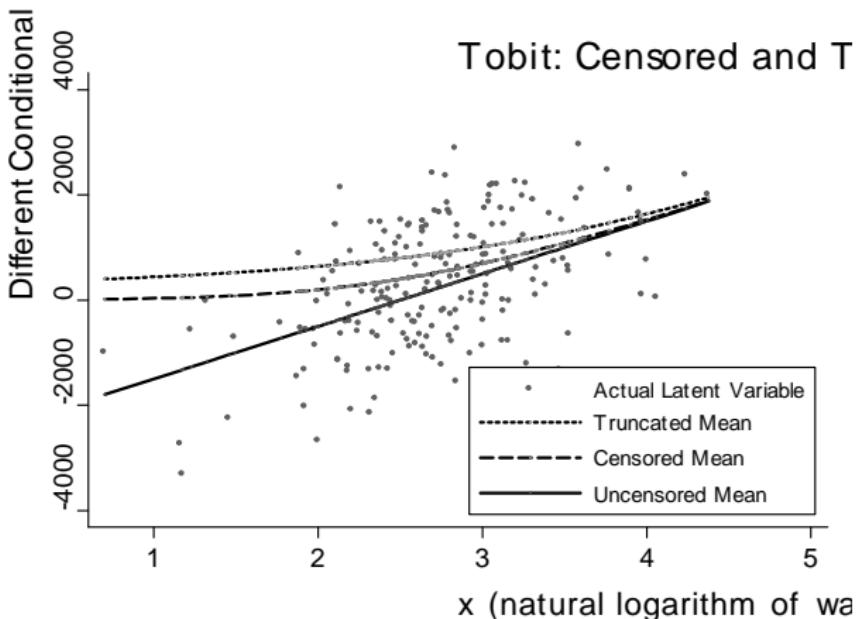
$$\varepsilon_i \sim \mathcal{N}[0, 1000^2],$$

- and $x_i \sim \mathcal{N}[2.75, 0.6^2]$.
- e.g. y : annual hours worked and x : log hourly wage ($w_i \sim [18.7, 12.3^2]$).
- Complication: y^* is not fully observed.
- Censored Tobit model: We observe y_i where

$$y_i = \begin{cases} y_i^* & \text{if } y_i^* > 0 \\ 0 & \text{if } y_i^* \leq 0. \end{cases}$$

- Here if desired hours are negative people do not work and $y = 0$.
- Truncated Tobit: We observe only $y_i = y_i^*$ if $y_i^* > 0$.

- Scatterplot & true regression curves (derived later) for three samples:
 - truncated (top), censored (middle) and completely observed (bottom).



- Censored and truncated data the model is now nonlinear
 - and linear model will be flatter line than true line ($\hat{\beta} \simeq 0.5\beta$).

3. Tobit Model Definition

- Latent dependent variable y^* follows regular linear regression

$$\begin{aligned} y^* &= \mathbf{x}'\boldsymbol{\beta} + \varepsilon \\ \varepsilon &\sim \mathcal{N}[0, \sigma^2] \end{aligned}$$

- But this latent variable is only partially observed.
- Censored regression (from below at 0): we observe

$$y = \begin{cases} y^* & \text{if } y^* > 0 \\ 0 & \text{if } y^* \leq 0. \end{cases}$$

- Truncated regression (from below at 0): we observe only

$$y = y^* \quad \text{if } y^* > 0.$$

Tobit Model Overview

- Consistency of the MLE (and other results such as prediction and marginal effects) requires
 - ▶ constant censoring point (here 0)
 - ▶ model errors to be normal
 - ▶ model errors to be homoskedastic.
- The Tobit model is therefore often too restrictive in practice.
- But it is the key building block for other models so analyze in detail.
- We consider
 - ▶ Censored and truncated means
 - ▶ ML Estimation
 - ▶ Prediction
 - ▶ Marginal effects

4. Tobit Model: Truncated Mean

- Truncated mean: We observe y only when $y > 0$.
- The truncated conditional mean (suppressing conditioning on \mathbf{x}) is

$$\begin{aligned}
 & E[y^* | y^* > 0] \\
 &= E[\mathbf{x}'\boldsymbol{\beta} + \varepsilon | \mathbf{x}'\boldsymbol{\beta} + \varepsilon > 0] \quad \text{as } y^* = \mathbf{x}'\boldsymbol{\beta} + \varepsilon \\
 &= \mathbf{x}'\boldsymbol{\beta} + E[\varepsilon | \varepsilon > -\mathbf{x}'\boldsymbol{\beta}] \quad \text{as } \mathbf{x} \text{ and } \varepsilon \text{ independent} \\
 &= \mathbf{x}'\boldsymbol{\beta} + \sigma E\left[\frac{\varepsilon}{\sigma} \middle| \frac{\varepsilon}{\sigma} > \frac{-\mathbf{x}'\boldsymbol{\beta}}{\sigma}\right] \quad \text{transform to } \varepsilon/\sigma \sim \mathcal{N}[0, 1] \\
 &= \mathbf{x}'\boldsymbol{\beta} + \sigma \lambda\left(\frac{\mathbf{x}'\boldsymbol{\beta}}{\sigma}\right) \quad \text{using next slide: key result for } \mathcal{N}[0, 1].
 \end{aligned}$$

- ▶ where $\lambda(z) = \phi(z)/\Phi(z)$ is called the inverse Mills ratio.
- The regression function is not just $\mathbf{x}'\boldsymbol{\beta}$ (and is nonlinear).
 - ▶ OLS of y on \mathbf{x} is inconsistent for $\boldsymbol{\beta}$
 - ▶ Need NLS or MLE for consistent estimates.

- Proof: Truncated mean $E[z|z > c]$ for the standard normal

- key result used in the previous slide
- consider $z \sim \mathcal{N}[0, 1]$, with density $\phi(z)$ and c.d.f. $\Phi(z)$.
- conditional density of $z|z > c$ is $\phi(z)/(1 - \Phi(c))$.
- truncated conditional mean is

$$\begin{aligned}
 E[z|z > c] &= \int_c^{\infty} z (\phi(z)/(1 - \Phi(c))) \, dz \\
 &= \int_c^{\infty} z \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}z^2) \, dz \Big/ (1 - \Phi(c)) \\
 &= \left[-\frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}z^2) \right]_c^{\infty} \Big/ (1 - \Phi(c)) \\
 &= \frac{\phi(c)}{1 - \Phi(c)} \\
 &= \frac{\phi(-c)}{\Phi(-c)} \\
 &= \lambda(-c), \text{ where } \lambda(c) = \phi(c)/\Phi(c).
 \end{aligned}$$

Tobit Model: Censored Mean

- Censored mean: We observe $y = 0$ if $y^* < 0$ and $y = y^*$ otherwise.
- The censored conditional mean (suppressing conditioning on \mathbf{x}) is

$$\begin{aligned}
 E[y] &= E_{y^*}[E[y|y^*]] \\
 &= \Pr[y^* \leq 0] \times 0 + \Pr[y^* > 0] \times E[y^*|y^* > 0] \\
 &= 0 + \Phi(\mathbf{x}'\boldsymbol{\beta}/\sigma) \left\{ \mathbf{x}'\boldsymbol{\beta} + \sigma \frac{\phi(\mathbf{x}'\boldsymbol{\beta}/\sigma)}{\Phi(\mathbf{x}'\boldsymbol{\beta}/\sigma)} \right\} \\
 E[y|\mathbf{x}] &= \Phi(\mathbf{x}'\boldsymbol{\beta}/\sigma) \mathbf{x}'\boldsymbol{\beta} + \sigma \phi(\mathbf{x}'\boldsymbol{\beta}/\sigma),
 \end{aligned}$$

using earlier result for the truncated mean $E[y^*|y^* > 0]$.

- This conditional mean is again nonlinear.
 - ▶ OLS of y on \mathbf{x} is inconsistent for $\boldsymbol{\beta}$
 - ▶ Need NLS or MLE for consistent estimates.

5. Tobit Model: Censored MLE

- Density varies according to whether $y > 0$ or $y = 0$.
- Positives: for $y > 0$ we observe $y \sim \mathcal{N}[\mathbf{x}'\boldsymbol{\beta}, \sigma^2]$.

$$\begin{aligned}
 f(y) &= f^*(y) \\
 &= \left(1/\sqrt{2\pi\sigma^2}\right) \times \exp\left(-(y - \mathbf{x}'\boldsymbol{\beta})^2/2\sigma^2\right) \\
 &= \frac{1}{\sigma} \phi\left(\frac{y - \mathbf{x}'\boldsymbol{\beta}}{\sigma}\right) \text{ where } \phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.
 \end{aligned}$$

- Zeroes: for $y = 0$ we observe only that $y^* \leq 0$.

$$\begin{aligned}
 f(0) &= \Pr[y = 0] = \Pr[y^* \leq 0] \\
 &= \Pr[\mathbf{x}'\boldsymbol{\beta} + \varepsilon \leq 0] \\
 &= \Pr[\varepsilon/\sigma \leq -\mathbf{x}'\boldsymbol{\beta}/\sigma] = \Phi\left(\frac{-\mathbf{x}'\boldsymbol{\beta}}{\sigma}\right),
 \end{aligned}$$

- Now combine positives and zeroes.

- Introduce indicator:

$$d = \begin{cases} 1 & \text{if } y > 0 \\ 0 & \text{if } y = 0. \end{cases}$$

- Censored Tobit density:

$$f(y) = \left[\frac{1}{\sigma} \phi \left(\frac{y - \mathbf{x}'\beta}{\sigma} \right) \right]^d \times \left[\Phi \left(\frac{-\mathbf{x}'\beta}{\sigma} \right) \right]^{1-d}.$$

- Log-likelihood function for censored Tobit:

$$\ln L(\beta, \sigma^2) = \sum_{i=1}^N \left\{ d_i \ln \frac{1}{\sigma} \phi \left(\frac{y_i - \mathbf{x}'_i\beta}{\sigma} \right) + (1 - d_i) \ln \Phi \left(\frac{-\mathbf{x}'_i\beta}{\sigma} \right) \right\}.$$

- MLE maximizes this with respect to β and σ^2 .

Truncated MLE

- For left truncated at 0 the density is

$$\begin{aligned}
 f(y) &= f^*(y^* | y^* > 0) \\
 &= f^*(y) / \Pr[y^* > 0] \\
 &= \left(1/\sqrt{2\pi\sigma^2}\right) \times \exp\left(-(y - \mathbf{x}'\boldsymbol{\beta})^2/2\sigma^2\right) / \Phi\left(\frac{\mathbf{x}'\boldsymbol{\beta}}{\sigma}\right) \\
 &= \frac{1}{\sigma} \phi\left(\frac{y - \mathbf{x}'\boldsymbol{\beta}}{\sigma}\right) / \Phi\left(\frac{\mathbf{x}'\boldsymbol{\beta}}{\sigma}\right) .
 \end{aligned}$$

- Log-likelihood function for truncated Tobit:

$$\ln L(\boldsymbol{\beta}, \sigma^2) = \sum_{i=1}^N \left\{ \ln \frac{1}{\sigma} \phi\left(\frac{y_i - \mathbf{x}'_i \boldsymbol{\beta}}{\sigma}\right) - \ln \Phi\left(\frac{\mathbf{x}'_i \boldsymbol{\beta}}{\sigma}\right) \right\} .$$

6. Tobit MLE: Data Example

- Data from 2001 Medical Expenditure Panel Survey (MUS chapter 16).
 - ▶ ambexp (ambulatory expenditure = physician and hospital outpatient).
 - ▶ dambexp (=1 if ambexp>0 and =0 if ambexp=0).
 - ▶ Regressors: age (in tens of years), female, educ (years of completed schooling), blhisp (=1 if black or hispanic) , totchr (number of chronic conditions), and ins (=1 if PPO or HMO health insurance).

variable	Obs	Mean	Std. Dev.	Min	Max
ambexp	3328	1386.519	2530.406	0	49960
dambexp	3328	.8419471	.3648454	0	1
age	3328	4.056881	1.121212	2.1	6.4
female	3328	.5084135	.5000043	0	1
educ	3328	13.40565	2.574199	0	17
blhisp	3328	.3085938	.4619824	0	1
totchr	3328	.4831731	.7720426	0	5
ins	3328	.3650841	.4815261	0	1

- 16% of sample are censored (since dambexp has mean 0.84).

Censored MLE

- Stata command `tobit`, `ll(0)` yields

```
. * Tobit on censored data
. tobit ambexp age female educ blhisp totchr ins, ll(0)
```

Tobit regression

	Number of obs	=	3328
LR chi2(6)	=	694.07	
Prob > chi2	=	0.0000	
Pseudo R2	=	0.0130	

Log likelihood = -26359.424

ambexp	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
age	314.1479	42.63358	7.37	0.000	230.5572 397.7387
female	684.9918	92.85445	7.38	0.000	502.9341 867.0495
educ	70.8656	18.57361	3.82	0.000	34.44873 107.2825
blhisp	-530.311	104.2667	-5.09	0.000	-734.7443 -325.8776
totchr	1244.578	60.51364	20.57	0.000	1125.93 1363.226
ins	-167.4714	96.46068	-1.74	0.083	-356.5998 21.65696
_cons	-1882.591	317.4299	-5.93	0.000	-2504.969 -1260.214
/sigma	2575.907	34.79296			2507.689 2644.125

obs. summary: 526 left-censored observations at ambexp<=0
 2802 uncensored observations
 0 right-censored observations

- The OLS coefficients were 250, 374, 33, -310, 1076 and -237.

Marginal Effects

- Question: How do we interpret the coefficients?
- Marginal effects for uncensored mean:

$$\frac{\partial E[y^* | \mathbf{x}]}{\partial x_j} = \beta_j.$$

- ▶ cannot always interpret this - what is y^* ?
- MEs for censored mean (after some algebra):

$$\frac{\partial E[y | \mathbf{x}]}{\partial x_j} = \Phi(\mathbf{x}' \boldsymbol{\beta} / \sigma) \beta_j.$$

- ▶ this is of more interest
- ▶ the AME approximately equals β_j times the fraction uncensored
- ▶ AME in Stata 11 use margins, dydx(*) predict(ystar(0,.))
- ▶ MEM in Stata 10 use mfx, predict(ystar(0,.))
- ▶ can decompose into ME at corner and ME at interior

Tobit Marginal Effects: Example for Censored Mean

- Marginal effect for censored mean $E[y|x]$ evaluated at $x = \bar{x}$ (MEM).

```
. * Marginal effects for censored conditional mean evaluated at x = xbar
. mfx compute, predict(ystar(0,.))
```

Marginal effects after tobit

```
y = E(ambexp*|ambexp>0) (predict, ystar(0,.))
= 1647.8507
```

variable	dy/dx	Std. Err.	z	P> z	[95% C.I.]	x
age	207.526	28.205	7.36	0.000	152.245	262.807	4.05688	
female*	451.6399	61.029	7.40	0.000	332.026	571.254	.508413	
educ	46.81378	12.265	3.82	0.000	22.7739	70.8537	13.4056	
blhisp*	-342.4803	65.756	-5.21	0.000	-471.361	-213.6	.308594	
totchr	822.1678	40.61	20.25	0.000	742.573	901.763	.483173	
ins*	-110.0883	63.117	-1.74	0.081	-233.795	13.6185	.365084	

(*) dy/dx is for discrete change of dummy variable from 0 to 1

- The marginal effects are approximately 65% of the estimated coefficients (314, 684, 70, -530, 1244 and -167).
- The OLS coefficients were 250, 374, 33, -310, 1076 and -237.

7. Tobit Extensions

- We focused on Tobit
 - ▶ Linear model with normal errors and left-censored at zero.
 - ★ e.g. annual hours worked or annual expenditure on automobiles.
- Extensions include
 - ▶ Censoring from above
 - ★ e.g. top-coded income
 - ▶ Interval censoring
 - ★ e.g. income reported in ranges
 - ▶ Semiparametric methods
 - ★ relax distributional assumptions
 - ▶ Nonnormal and nonlinear models
 - ★ e.g. number of doctor visits top-coded
 - ▶ Two part model and richer models with selection
 - ★ different (possibly correlated) processes for censoring and outcome.

Top-coded and interval Censored Data

- Top-coded example: if $y > 100000$ only observe this fact
 - ▶ straightforward adaptation of previous Tobit MLE
 - ▶ Stata command `tobit y x, ul(100000)`
- Interval-censored data example: observe annual income in intervals of \$10,000's
 - ▶ $y \leq 0, 0 < y \leq 10000, \dots, 90000 < y \leq 100000, y > 100000$.
 - ▶ contribution to the likelihood is probability of being in each interval
 - ▶ e.g. $\Pr[90000 < y^* \leq 100000]$ where $y^* \sim \mathcal{N}[x'\beta, \sigma^2]$.
 - ▶ Stata command `intreg`.

Tobit in logs

- Tobit is often applied to right-skewed data, e.g. income or expenditure
 - ▶ these are closer to lognormal than normal
 - ▶ so should do Tobit model in logs
 - ▶ most people do not do this.
- For lognormal y^* we specify

$$\begin{aligned} y^* &= \exp(\mathbf{x}'\boldsymbol{\beta} + \varepsilon) \\ \varepsilon &\sim \mathcal{N}[0, \sigma^2]. \end{aligned}$$

- We observe

$$y_i = \begin{cases} y_i^* & \text{if } \ln y_i^* > \gamma \\ 0 & \text{if } \ln y_i^* \leq \gamma. \end{cases}$$

- ▶ The censoring point for $\ln y$ is no longer 0 but is $\gamma \neq 0$.
- ▶ When data are censored $y = 0$ (and not $\ln \gamma$).
- ▶ Follow Carson and Sun (2007) and let $\hat{\gamma} = \min(\text{uncensored } \ln y^*)$.

- To implement use Stata command `tobit lny x` with option `ll(#)` where
 - ▶ the threshold $\#$ is $\hat{\gamma} =$ the minimum uncensored value of $\ln y$ (or better $\hat{\gamma} - \Delta$ where Δ is very small)
 - ▶ the censored observations set $\ln y$ equal to $\#$
- The censored conditional mean in levels (not logs) is

$$E[y|\mathbf{x}] = \exp\left(\mathbf{x}'\boldsymbol{\beta} + \frac{\sigma^2}{2}\right)\left(1 - \Phi\left(\frac{\gamma - \mathbf{x}'\boldsymbol{\beta} - \sigma^2}{\sigma}\right)\right).$$

- ▶ This can be used to get marginal effects in levels.

Nonnormal and nonlinear models

- For count data may only observe positive counts
 - ▶ then truncated data with density $\Pr[y = k|y > 0]$
 - ▶ for Poisson $\Pr[y > 0] = 1 - \Pr[y = 0] = 1 - \exp(-\lambda)$
so $\Pr[y = k|y > 0] = [\exp(-\lambda)\lambda^y/y!]/[1 - \exp(-\lambda)]$
 - ▶ Stata commands `ztp` and `ztnb`
- For duration data usually have right-censored data
 - ▶ e.g. length of an incomplete unemployment spell
 - ▶ can use parametric methods analogous to above
 - ▶ e.g. Stata command `streg y x, dist(Weibull)`
- For duration data more popular is semiparametric method
 - ▶ Cox proportional hazards
 - ▶ Model the conditional hazard of spell ending rather than mean duration
 - ▶ e.g. Stata command `stcox y x`.

8. Two-Part Model (here in logs)

- Consider separate models for zeroes (nonparticipant) and nonzeroes (participant with outcome observed):
 - ▶ 1. Participation: Model for $d = 1$ (participation) or $d = 0$ (nonparticipation).
 - ▶ 2. Outcome: Model for outcome y conditional on participation
 - ★ the outcome is 0 for nonparticipants.
- Medical expenditure example
 - ▶ 1. Probit (or logit) for whether any expenditure
 - ▶ 2. Lognormal for positive expenditures.

- Separately estimate probit and lognormal models

$$\begin{aligned}\Pr[d = 1] &= \Phi(\mathbf{x}'_1 \boldsymbol{\beta}_1) \\ \ln y | d = 1 &\sim \mathcal{N}[\mathbf{x}'_2 \boldsymbol{\beta}_2, \sigma_2^2]\end{aligned}$$

- These can then be combined to predict y using

$$\begin{aligned}E[y|\mathbf{x}] &= \Pr[d = 0|\mathbf{x}] \times 0 + \Pr[d = 1|\mathbf{x}] \times E[y|\mathbf{x}, d = 1] \\ &= \Phi(\mathbf{x}'_1 \boldsymbol{\beta}_1) \times \exp(\mathbf{x}'_2 \boldsymbol{\beta}_2 + \sigma_2^2/2).\end{aligned}$$

Two-Part Model: Data example

- First part is probit.

```
. * Two-part model
. * First part is probit
. probit dy age female educ blhisp totchr ins, nolog
```

Probit regression

	Number of obs	=	3328
LR chi2(6)	=	509.53	
Prob > chi2	=	0.0000	
Pseudo R2	=	0.1754	

Log Likelihood = -1197.6644

dy	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
age	.097315	.0270155	3.60	0.000	.0443656 .1502645
female	.6442089	.0601499	10.71	0.000	.5263172 .7621006
educ	.0701674	.0113435	6.19	0.000	.0479345 .0924003
blhisp	-.3744867	.0617541	-6.06	0.000	-.4955224 -.2534509
totchr	.7935208	.0711156	11.16	0.000	.6541367 .9329048
ins	.1812415	.0625916	2.90	0.004	.0585642 .3039187
_cons	-.7177087	.1924667	-3.73	0.000	-1.094937 -.3404809

- Second part is lognormal for positives

. * Second part is lognormal regression for positives
 . regress lny age female educ blhisp totchr ins if dy==1

Source	SS	df	MS	Number of obs = 2802		
Model	1069.37332	6	178.228887	F(6, 2795)	=	110.58
Residual	4505.06629	2795	1.61183051	Prob > F	=	0.0000
Total	5574.43961	2801	1.99016052	R-squared	=	0.1918
				Adj R-squared	=	0.1901
				Root MSE	=	1.2696
lny	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
age	.2172327	.0222225	9.78	0.000	.1736585	.2608069
female	.3793756	.0485772	7.81	0.000	.2841247	.4746265
educ	.0222388	.0097615	2.28	0.023	.0030983	.0413793
blhisp	-.2385321	.0551952	-4.32	0.000	-.3467597	-.1303046
totchr	.5618171	.0305078	18.42	0.000	.501997	.6216372
ins	-.020827	.0500062	-0.42	0.677	-.1188797	.0772258
_cons	4.907825	.1681512	29.19	0.000	4.578112	5.237538

- Now predict using $E[y|\mathbf{x}] = \Phi(\mathbf{x}_1' \boldsymbol{\beta}_1) \times \exp(\mathbf{x}_2' \boldsymbol{\beta}_2 + \sigma^2/2)$.

```

. * Two-part model prediction
. quietly probit dy age female educ blhisp totchr ins
. predict dyhat, pr
. quietly regress lny age female educ blhisp totchr ins if dy==1
. predict x xpos, xb
. generate yhatpos = exp(xpos+0.5*e(rmse)^2)
. generate yhat2step = dyhat*yhatpos
. summarize yhat2step y

```

Variable	Obs	Mean	Std. Dev.	Min	Max
yhat2step	3328	1680.978	2012.084	87.29432	40289.03
y	3328	1386.519	2530.406	0	49960

- Predicts conditional mean much better than Tobit or log Tobit.

9. Heckman Sample Selection Model: Definition

- Similar to two-part model except errors correlated across the two parts.
- Define two latent variables as follows:

$$\begin{aligned}\text{Participation: } y_1^* &= \mathbf{x}'_1 \boldsymbol{\beta}_1 + \varepsilon_1 \\ \text{Outcome: } y_2^* &= \mathbf{x}'_2 \boldsymbol{\beta}_2 + \varepsilon_2\end{aligned}$$

- Neither y_1^* nor y_2^* are completely observed.
 - ▶ Participation: We observe whether y_1^* is positive or negative

$$y_1 = \begin{cases} 1 & \text{if } y_1^* > 0 \\ 0 & \text{if } y_1^* \leq 0. \end{cases}$$

- ▶ Outcome: Only positive values of y_2^* are observed

$$y_2 = \begin{cases} y_2^* & \text{if } y_1^* > 0 \\ - & \text{if } y_1^* \leq 0. \end{cases}$$

- Specified the error to be joint normal (with normalization $\sigma_1^2 = 1$)

$$\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix} \sim \mathcal{N} \left[\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 = 1 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix} \right]$$

- Then can estimate by MLE
 - ▶ Stata command `heckman y x`
- The problem is that the MLE is very sensitive to misspecification
 - ▶ inconsistent if ε is nonnormal or is heteroskedastic.
 - ▶ so use estimator that relies on weaker assumptions.

Sample Selection Model: Heckman 2-step estimator

- Assume that the errors $(\varepsilon_1, \varepsilon_2)$ satisfy

$$\varepsilon_2 = \delta \times \varepsilon_1 + v,$$

where $\varepsilon_1 \sim \mathcal{N}[0, 1]$ and v is independent of ε_1 .

- ▶ This is implied by $(\varepsilon_1, \varepsilon_2)$ joint normal.
- ▶ But it is a weaker assumption.
- ▶ Intuitively it is just a regression of ε_2 on ε_1 .

- Then $y_2 = \mathbf{x}'_2 \beta_2 + \varepsilon_2$ if $y_1^* > 0$ implies

$$\begin{aligned}
 E[y_2 | y_1^* > 0] &= \mathbf{x}'_2 \beta_2 + E[\varepsilon_2 | \mathbf{x}'_1 \beta_1 + \varepsilon_1 > 0] \\
 &= \mathbf{x}'_2 \beta_2 + E[(\delta \times \varepsilon_1 + \nu) | \varepsilon_1 > -\mathbf{x}'_1 \beta_1] \\
 &= \mathbf{x}'_2 \beta_2 + \delta \times E[\varepsilon_1 | \varepsilon_1 > -\mathbf{x}'_1 \beta_1] \\
 &= \mathbf{x}'_2 \beta_2 + \delta \times \lambda(\mathbf{x}'_1 \beta_1)
 \end{aligned}$$

where third equality uses ν independent of ε_1 and $\lambda(c) = \phi(c)/\Phi(c)$.

- For the observed outcomes:

$$E[y_2 | y_1^* > 0] = \mathbf{x}'_2 \beta_2 + \delta \lambda(\mathbf{x}'_1 \beta_1).$$

- OLS of y_2 on \mathbf{x}_2 only is inconsistent as regressor $\lambda(\mathbf{x}'_1 \beta_1)$ is omitted.
- Heckman included an estimate of $\lambda(\mathbf{x}'_1 \beta_1)$ as an additional regressor.

- Heckman's two-step procedure:

- ▶ 1. Estimate β_1 by probit for $y_1^* > 0$ or $y_1^* < 0$ with regressors \mathbf{x}_{1i} .
- ▶ Calculate $\widehat{\lambda}_i = \lambda(\mathbf{x}'_{1i} \widehat{\beta}_1) = \phi(\mathbf{x}'_{1i} \widehat{\beta}_1) / \Phi(\mathbf{x}'_{1i} \widehat{\beta}_1)$.
- ▶ 2. For observed y_2 estimate β_2 and δ in the OLS regression

$$y_{2i} = \mathbf{x}'_{2i} \beta_2 + \delta \widehat{\lambda}_i + w_i.$$

- ▶ Need standard errors that correct for w_i heteroskedastic and $\widehat{\lambda}_i$ estimated.
- ▶ Use Stata command `heckman y x, twostep`.

- Exclusion restriction:
 - ▶ desirable to include some regressors in participation equation (x_1) that can be excluded from the outcome equation (x_2)
 - ▶ otherwise identification comes solely from nonlinearity
 - ★ furthermore $\lambda(x'_{1i}\beta_1)$ is not vary nonlinear.
- Selection on observables only
 - ▶ If $\text{Cov}[\varepsilon_1, \varepsilon_2] = 0$ model then there is no longer selection on unobservables
 - ▶ Then can use a two-part model.
- Logs for the outcome
 - ▶ Often the outcome is expenditure
 - ▶ Then better to use a log model for the outcome
 - ▶ But will then need to transform to levels for prediction.

10. Sample Selection Model: Data Example

- Selection MLE: LR test does not reject $H_0 : \rho = 0$ at level .05.

```

. * Heckman MLE without exclusion restrictions
. global xlist age female educ blhisp totchr ins
. heckman lny $xlist, select(dy = $xlist) nolog

Heckman selection model
(regression model with sample selection)          Number of obs      =      3328
                                                    Censored obs      =       526
                                                    Uncensored obs  =      2802
                                                    Wald chi2(6)      =     294.42
Log likelihood = -5838.397                         Prob > chi2      =     0.0000

```

	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
lny					
age	.2122921	.022958	9.25	0.000	.1672952 .257289
female	.349728	.0596734	5.86	0.000	.2327704 .4666856
educ	.0188724	.0105254	1.79	0.073	-.0017569 .0395017
blhisp	-.2196042	.0594788	-3.69	0.000	-.3361804 -.103028
totchr	.5409537	.0390624	13.85	0.000	.4643929 .6175145
ins	-.0295368	.051042	-0.58	0.563	-.1295772 .0705037
_cons	5.037418	.2261901	22.27	0.000	4.594094 5.480743
dy					
age	.0984482	.0269881	3.65	0.000	.0455526 .1513439
female	.6436686	.0601399	10.70	0.000	.5257966 .7615407
educ	.0702483	.0113404	6.19	0.000	.0480216 .092475
blhisp	-.3726284	.0617336	-6.04	0.000	-.4936241 -.2516328
totchr	.7946708	.0710278	11.19	0.000	.6554588 .9338827
ins	.1821233	.0625485	2.91	0.004	.0595305 .3047161
_cons	-.7244413	.192427	-3.76	0.000	-1.101591 -.3472913
/athrho	-.124847	.1466391	-0.85	0.395	-.4122544 .1625604
/lnsigma	.2395983	.0143319	16.72	0.000	.2115084 .2676882
rho	-.1242024	.1443771			-.3903852 .1611435

- Selection 2-step: Wald test does not reject $H_0 : \rho = 0$ at level .05.

```
: * Heckman 2-step without exclusion restrictions
. heckman lny $xlist, select(dy = $xlist) twostep
```

```
Heckman selection model -- two-step estimates
(regression model with sample selection)      Number of obs      =      3328
                                                Censored obs      =       526
                                                Uncensored obs  =      2802
                                                Wald chi2(6)      =     189.46
                                                Prob > chi2      =     0.0000
```

	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
lny					
age	.202124	.0242974	8.32	0.000	.1545019 .2497462
female	.2891575	.073694	3.92	0.000	.1447199 .4335951
educ	.0119928	.0116839	1.03	0.305	-.0109072 .0348928
blhisp	-.1810582	.0658522	-2.75	0.006	-.3101261 -.0519904
totchr	.4983315	.0494699	10.07	0.000	.4013724 .5952907
ins	-.0474019	.0531541	-0.89	0.373	-.151582 .0567782
_cons	5.302572	.2941363	18.03	0.000	4.726076 5.879069
dy					
age	.097315	.0270155	3.60	0.000	.0443656 .1502645
female	.6442089	.0601499	10.71	0.000	.5263172 .7621006
educ	.0701674	.0113435	6.19	0.000	.0479345 .0924003
blhisp	-.3744867	.0617541	-6.06	0.000	-.4955224 -.2534509
totchr	.7935208	.0711156	11.16	0.000	.6541367 .9329048
ins	.1812415	.0625916	2.90	0.004	.0585642 .3039187
_cons	-.7177087	.1924667	-3.73	0.000	-1.094937 -.3404809
mill					
lambda	-.4801696	.2906565	-1.65	0.099	-1.049846 .0895067
rho	-0.37130				
sigma	1.2932083				
lambda	-.4801696	.2906565			

11. Sample Selection Model: Generalizations

- Heckman two-step method relies on weaker assumptions than MLE.
 - ▶ Specifically, outcome equation error is a multiple of the participation equation error plus some noise.
 - ▶ This noise is independent of the participation decision.
- Given $\varepsilon_2 = \delta\varepsilon_1 + \nu$ with $\nu \perp \varepsilon_1$ we obtain

$$E[y_2|y_1^* > 0] = \mathbf{x}'_2 \boldsymbol{\beta}_2 + \delta E[\varepsilon_1|\varepsilon_1 > -\mathbf{x}'_1 \boldsymbol{\beta}_1].$$
- So Heckman's two-step method can be adapted to
 - ▶ distributions for ε_1 other than the normal
 - ▶ semiparametric methods that do not impose a functional form for $E[\varepsilon_1|\varepsilon_1 > -\mathbf{x}'_1 \boldsymbol{\beta}_1]$.
 - ★ e.g. add a polynomial in $\mathbf{x}'_1 \hat{\boldsymbol{\beta}}_1$.
- But more common is other treatment evaluation methods.

Truncated, censored and selected data: Stata commands

- Stata commands

Command	Model
tobit	Tobit MLE (censored)
clad	Censored least absolute deviations (Stata add-on)
truncreg	Tobit MLE (truncated)
cnreg	Tobit (varying known threshold)
intreg	Interval normal data (e.g. \$1-\$100, \$101-\$200,..)
heckman, mle	Sample selection MLE
heckman, 2step	Sample selection two step
ztp	Truncated MLE for Poisson counts
ztnb	Truncated MLE for Negative binomial counts
streg	Censored MLE for duration data
stcox	Cox proportional hazards for censored duration data

12. Some References

- The material is covered in graduate level texts including
 - ▶ CT(2005) MMA chapter 16 and CT(2009) MUS chapter 16
 - ▶ Wooldridge, J.M. (2002), *Econometric Analysis of Cross Section and Panel Data*, MIT Press.
 - ▶ Greene, W.H. (2007), *Econometric Analysis*, Prentice-Hall, Sixth edition.
- A classic book is
 - ▶ Maddala, G.S. (1986), *Limited-Dependent and Qualitative Variables in Econometrics*, Cambridge University Press.