5B: Selection

© A. Colin Cameron U. of Calif. - Davis

OeNB Summer School 2010 Microeconometrics Oesterreichische Nationalbank (OeNB), Vienna, Austria

Based on A. Colin Cameron and Pravin K. Trivedi, Microeconometrics: Methods and Applications (MMA), ch.14 Microeconometrics using Stata (MUS), ch.14. Data examples are from MUS.

Aug 30 - Sep 3, 2010

1. Introduction

- Analysis of censored data had same process determining the censored and uncensored data
 - selection models relax to allow different models for participation and outcome
- Models include
 - two-part model (with independent processes)
 - sample selection model (two-part model with correlated processes)
 - inverse-probability weighted estimators
 - Roy model where y depends in part on a binary outcome
 - the Roy model is related to the treatment evaluation literature
- Some methods assumes selection on observables only (\mathbf{x})
 - others additionally allow for selection on unobservables (u).

Outline

Introduction

- Selection: Heckman sample selection model
- Selection: Roy model
- Selection: Mixed discrete / continuous structural economic models
- Selection: Simultaneous equations models
- Selection: Semiparametric estimation
- Selection: Inverse-probability weighting
- Selection: Treatment evaluation literature

2. Heckman sample selection model: summary

- Selection on observables and unobservables.
- Participation: We observe whether y_1^* is positive or negative

•
$$y_1^* = \mathbf{x}_1' \boldsymbol{\beta}_1 + \varepsilon_1$$

• $y_1 = \mathbf{1}[y_1^* > \mathbf{0}]$

- Outcome: Only positive values of y_2^* are observed
 - $y_2^* = \mathbf{x}_2' \boldsymbol{\beta}_2 + \varepsilon_2$ • $y_2 = y_2^*$ if $y_1 = 1$.
- Heckman's two-step procedure:
 - ▶ 1. Estimate β_1 by probit for $y_1^* > 0$ or $y_1^* < 0$ with regressors \mathbf{x}_{1i} .
 - $\bullet \quad \mathsf{Calculate} \ \widehat{\lambda}_i = \lambda(\mathbf{x}'_{1i}\widehat{\boldsymbol{\beta}}_1) = \phi(\mathbf{x}'_{1i}\widehat{\boldsymbol{\beta}}_1) / \Phi(\mathbf{x}'_{1i}\widehat{\boldsymbol{\beta}}_1).$
 - ▶ 2. For observed y_2 estimate β_2 and δ in the OLS regression

$$y_{2i} = \mathbf{x}_{2i}' \boldsymbol{\beta}_2 + \delta \widehat{\lambda}_i + w_i$$

• If $\delta = 0$ then reduces to two part model.

Overview

3. Roy Model: Overview

- Selection on observables and unobservables.
- Suppose y is always observed, but only in one of two states.
 - e.g. observe wages if union job or if not union job
 - e.g. observe wages if get training or if do not get training
 - e.g. observe health expenditures if have health insurance or if do not.
- Control for self-selection on unobservables (not just observables).
 - e.g. people select into health insurance if they think they are likely to have high health expenditures, and we do not have data to control for this.

∃ → (∃ →

Definition

Roy Model: Definition

• We observe state $y_1 = 1$ or $y_1 = 0$ according to

$$y_1 = \left\{ egin{array}{cc} 1 & ext{if } y_1^* > 0 \ 0 & ext{if } y_1^* \leq 0. \end{array}
ight.$$

• The consequent outcome is

$$y = \left\{ egin{array}{cc} y_2^* & ext{if } y_1^* > 0 \ y_3^* & ext{if } y_1^* \leq 0. \end{array}
ight.$$

Usual model

$$y_1^* = \mathbf{x}_1' \boldsymbol{\beta}_1 + \varepsilon_1$$

$$y_2^* = \mathbf{x}_2' \boldsymbol{\beta}_2 + \varepsilon_2$$

$$y_3^* = \mathbf{x}_3' \boldsymbol{\beta}_3 + \varepsilon_3.$$

where errors are joint normal with means 0 and normalization $\sigma_{1}^{2} = 1_{\pm}$.

Estimation

Roy Model: Estimation

- Can estimate by ML.
- More common to use Heckman two-step estimator using

$$\begin{split} \mathsf{E}[\boldsymbol{y}|\mathbf{x},\boldsymbol{y}_1^* > \mathbf{0}] &= \mathbf{x}_2'\boldsymbol{\beta}_2 + \sigma_{12}\lambda(\mathbf{x}_1'\boldsymbol{\beta}_1) \\ \mathsf{E}[\boldsymbol{y}|\mathbf{x},\boldsymbol{y}_1^* \leq \mathbf{0}] &= \mathbf{x}_3'\boldsymbol{\beta}_3 - \sigma_{13}\lambda(-\mathbf{x}_1'\boldsymbol{\beta}_1), \end{split}$$

where $\lambda(z) = \phi(z)/\Phi(z)$ and we have used $\sigma_1^2 = 1$.

- First-stage probit of $y_1^* > 0$ yields $\hat{\beta}_1$ and hence $\lambda(\mathbf{x}_1' \hat{\beta}_1)$.
- Two separate OLS regressions then lead to direct estimates of β_2, σ_{12} and β_3, σ_{13} .
- Estimates of σ_2^2 and σ_3^2 can then be obtained using the squared residuals from the regressions.

4. Mixed Discrete / Continuous Structural Economic Models

- Sample selection and Roy models have been obtained from utility maximization.
- Leading examples are
 - Heckman (1974) for labor supply
 - * whether to work (participation) and amount worked (outcome).
 - Dubin and McFadden (1984) for appliance choice and energy consumption
 - ★ whether has or electric appliances (discrete) and energy consumed given appliance choice
 - Hanemann (1984)
 - * brand choice (discrete) and amount consumed given brand choice.

イロト イポト イヨト イヨト 二日

5. Further Topics: Simultaneous Equations Tobit Models

• A general bivariate example with endogenous regressors is

$$\begin{aligned} y_1^* &= \mathbf{x}_1' \mathbf{\beta}_1 + \alpha_1 y_2^* + \gamma_1 y_2 + \varepsilon_1 \\ y_2^* &= \mathbf{x}_2' \mathbf{\beta}_2 + \alpha_2 y_1^* + \gamma_2 y_1 + \varepsilon_2 \end{aligned}$$

- Here both y_2^* or y_2 appear in the first equation (and similarly y_1 or y_1^* in the second equation).
 - Identification conditions require some to be dropped (coherency conditions).
- Simplest to have r.h.s. endogenous variables be the latent variables y_2^* or y_1^* .
 - ▶ Then obtain a reduced form for y_1^* and y_2^* , in exactly the same way as regular linear simultaneous equations
 - Do Tobit estimation on this reduced form.
- More difficult when r.h.s. endogenous variables are the observed variables y_2 or y_1 .

6. Semiparametric methods

- Consistency of preceding estimators requires correct specification of the error distribution.
 - Any misspecification leads to inconsistency
 - ★ e.g. failure of normality or homoskedasticity.
 - so should generally treat Tobit estimates with skepticism
 - * exception may be top-coded income if believe income is lognormal.
- Semiparametric estimators do not require specification of distribution of the error distribution.

Semiparametric methods: Tobit model

• Tobit MLE is very fragile to distributional misspecification

- inconsistent if errors are nonnormal
- inconsistent even if errors are normal but heteroskedastic
- So need methods with fewer assumptions.

• Censored least absolute deviations (CLAD) for left-censoring at zero

- $\widehat{\boldsymbol{\beta}}_{CLAD}$ minimizes $Q(\boldsymbol{\beta}) = \sum_i |y_i \max(0, \mathbf{x}'_i \boldsymbol{\beta})|.$
- Intuition is that censoring changes the mean of the data but not the median (if less than 50% of data is censored).
- Least absolute deviations is regression analog of median.
- Consistency requires that $\varepsilon | \mathbf{x}$ has median zero (e.g. errors are i.i.d.).

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Semiparametric methods: Selection models

• For sample selection less has been done. Recall:

$$\begin{split} \mathsf{E}[y_2|y_1^* > 0] &= \mathsf{x}_2' \boldsymbol{\beta}_2 + \delta \times \mathsf{E}[\varepsilon_1|\varepsilon_1 > -\mathsf{x}_1' \boldsymbol{\beta}_1] \\ &= \mathsf{x}_2' \boldsymbol{\beta}_2 + g(\mathsf{x}_1' \boldsymbol{\beta}_1) \end{split}$$

 \bullet So we need $g(\mathbf{x}_1' \boldsymbol{\beta}_1)$ without specifying functional form of $g(\cdot)$

- Heckman 2-step where at second step include a polynomial in $\mathbf{x}'_{1i}\hat{\boldsymbol{\beta}}_1$ or $\hat{\lambda}_i$.
- e.g. regress noncensored y_{2i} on \mathbf{x}_{2i} , $\widehat{\lambda}_i$, $\widehat{\lambda}_i^2$ and $\widehat{\lambda}_i^3$
- But need good discriminating model between x₁ and x₂ and still based on strong assumptions.

7. Inverse probability weighting overview

- Alternative way to handle selection
 - selection is we lose some data due to sample selection, attrition, ...
 - and do analysis only on the selected sample.
- Inverse probability weighting
 - assume selection is on observables only
 - then do weighted estimation
 - the weights are the inverse of the probability of selection
 - this downweights "oversampled" observations (like a weighted mean)
 - the weights may be known (e.g. from stratified sampling)
 - or the weights may be estimated from the data.
- Can be applied to wide range of methods
 - But assumes selection is on observables only.

글 > - + 글 >

Selected sample

- We want $\widetilde{\boldsymbol{\theta}} \xrightarrow{p} \boldsymbol{\theta}_0$
 - where $\tilde{\theta}$ is the estimator based on selected sample and
 - θ_0 is the limit of the estimator $\hat{\theta}$ if we had the complete nonselected sample.
- First, define θ_0 .
 - $\hat{\theta}$ maximizes $\sum_{i=1}^{N} q(\mathbf{w}_i, \theta)$ based on complete nonselected sample

***** where e.g. $q(\mathbf{w}_i, \theta) = -(y_i - \mathbf{x}'_i \theta)^2$ or $q(\mathbf{w}_i, \theta) = \ln f(y_i | \mathbf{x}_i, \theta)$.

- θ_0 maximizes $E[q(\mathbf{w}, \theta)]$.
- Then define the selection process
 - $s_i = 1$ if data \mathbf{w}_i are observed and $s_i = 0$ otherwise.

Weighted m-estimator

• Naive estimation with selection sample: $\widetilde{\pmb{ heta}}$ maximizes

$$Q(\boldsymbol{\theta}) = \sum_{i=1}^{N} s_i q(\mathbf{w}_i, \boldsymbol{\theta}).$$

- Inconsistent if selection is on endogenous y!
- Though may be consistent for selection on exogenous regressors x if we add an assumption about correct model specification.
- ► Formally, need θ_0 that maximizes $E[q(\mathbf{w}, \theta)]$ also maximizes $E[s \times q(\mathbf{w}, \theta)]$.
- Instead weighted m-estimator with known selection probabilities: $\hat{\theta}_w$ maximizes

$$\sum_{i=1}^{N} \frac{s_i}{p(\mathbf{v}_i)} q(\mathbf{w}_i, \boldsymbol{\theta}),$$

- where we know $p(\mathbf{v}_i) = \Pr[s_i = 1 | \mathbf{v}_i]$ and \mathbf{v}_i contains \mathbf{w}_i
- ▶ p(v_i) is known e.g. from stratified sampling or variable probability sampling
- ► note that if w_i = (y_i, x_i) then v_i includes y_i so p(v_i) controls for selection on y as well as on x.

Estimated weights

- If we don't know the weights then estimate them and control for estimation error.
- Assumptions
 - there are extra variables z_i that are always observed
 - ▶ once we condition on z_i the selection probability no longer depends on w_i (the outcome of interest observed only if s_i = 1)

*
$$\Pr[s_i = 1 | \mathbf{z}_i, \mathbf{w}_i] = \Pr[s_i = 1 | \mathbf{z}_i] = p(\mathbf{z}_i)$$

- We have a valid parametric model $p(\mathbf{z}_i, \gamma)$ for $p(\mathbf{z}_i)$.
- Then the weighted m-estimator with estimated selection probabilities: $\widehat{\theta}_w$ maximizes

$$\sum_{i=1}^{N}rac{s_{i}}{p(\mathsf{z}_{i},\widehat{\gamma})}q(\mathsf{w}_{i},oldsymbol{ heta})$$

• where $\hat{\gamma}$ first maximizes $\sum_{i=1}^{N} \{ s_i \ln p(\mathbf{z}_i, \gamma) + (1 + s_i) \ln(1 - p(\mathbf{z}_i, \gamma)) \}.$

- 3

글 > - + 글 >

Implementation

- Do the following
 - ▶ 1. Do a flexible logit or probit of s_i on z_i for the full selected sample.
 - ▶ 2. Then do weighted estimation of y_i on \mathbf{x}_i with selected sample only $(s_i = 1)$
 - 3. Conservative inference uses the robust standard errors from this regression
- Stata example:
 - logit s z
 - > poisson y x if s==1 [pweight 1/p]
- Improvement
 - Inference ignored first-step estimation of the selection probabilities
 - Intuitively this should lead to larger standard errors for $\widehat{\theta}_w$
 - But in fact it leads to smaller standard errors for $\widehat{m{ heta}}_{W}$
 - So conservative inference (report smaller t-statistics than truth)
 - Wooldridge (2002) shows how to get the correct smaller standard errors which is desirable but not necessary.

8. Treatment Effects Estimation

- Example is treatment effect of training (d = 1) on earnings (y).
- We observe
 - continuous outcome y_i
 - binary treatment d_i (= 1 if treated and = 0 if not treated).
- For each person there are two potential outcomes

•
$$y_{0i} = y_i$$
 if $d_i = 0$

- $y_{1i} = y_i$ if $d_i = 1$.
- The evaluation problem is: we only observe

$$y_i = d_i y_{1i} + (1 - d_i) y_{0i}$$

= $y_{0i} + d_i (y_{1i} - y_{0i})$

but we want to compute the treatment effect

$$\Delta_i = y_{1i} - y_{0i}.$$

• We are concerned that the treated are self-selected, so selection problem.

C A. Colin Cameron U. of Calif. - Davis

Selection on observables methods

- control function
- matching
- propensity score matching
- regression discontinuity design (sharp)
- Selection additionally on unobservables methods
 - parametric (Roy model)
 - instrumental variables and LATE
 - panel data
 - differences in differences

3

Random experiment

- Classic example is experiment where randomly assign d_i.
- Then average treatment effect (ATE)

$$ATE = \overline{y}_1 - \overline{y}_0$$

• This is OLS estimate of α in regression

$$y_i = \alpha d_i + u_i$$
.

• It can be more efficient to use OLS estimate of α in regression

$$y_i = \mathbf{x}_i' \boldsymbol{\beta} + \alpha d_i + u_i.$$

• Reason: Regressors may reduce σ_u^2 so smaller standard errors.

Selection on observables only: Control function approach

• OLS estimate of α in regression

$$y_i = \mathbf{x}'_i \boldsymbol{\beta} + \alpha d_i + u_i.$$

- Consistency requires $\mathsf{E}[u_i|d_i] = \mathsf{E}[y_{ii} \mathbf{x}'_i \boldsymbol{\beta} \alpha d_i | d_i] = 0$
 - this assumes no selection on unobservables.
- Equivalently need $y_{0i}, y_{1i} \perp d_i | \mathbf{x}_i$
 - versus y_{0i} , $y_{1i} \perp d_i$ under random assignment.
- Best to have many regressors and flexible model.
- Restricts the treatment effect α to be equal for all individuals
 - matching relaxes this.

イロト (過) (ヨ) (ヨ) (ヨ) ヨー ののの

Selection on observables only: Matching

Matching approach

- More flexible as treatment effect can vary over individuals.
- For each distinct value of x_i the average treatment effect is the difference in average value of y for the treated and untreated

$$\mathsf{ATE}|\mathbf{x}_i = (\overline{y}_1|\mathbf{x}_i) - (\overline{y}_0|\mathbf{x}_i)$$

- Then average the ATE over the distinct values of x_i.
- Problem is may have too many distinct values of x_i.
 - Instead do propensity score matching.

Selection on observables only: Propensity score matching

• For each individual calculate the probability of treatment, called the propensity score

 $p_i = \Pr[d_i = 1 | \mathbf{x}_i]$

- Use a flexible logit model or kernel regression.
- Compare y_1 and y_0 for those with similar \hat{p} .
 - Several ways to do this.
- For example, interval or stratification matching
 - ▶ For observations with similar \hat{p}_i , say $\hat{p}_i \in A_j$, the average treatment effect is

$$\mathsf{ATE}|\widehat{p}_i \in A_j = (\overline{y}_1|\widehat{p}_i \in A_j) - (\overline{y}_0|\widehat{p}_i \in A_j)$$

- Then average the ATE over A_i.
- Again consistency requires $y_{0i}, y_{1i} \perp d_i | \mathbf{x}_i$
 - Called ignorability assumption or unconfoundedness or conditional independence.
 - Also need overlap assumption that for each p_i there are both treated and untreated.

Selection on observables only: Regression discontinuity design

• Assume treatment occurs if variable s_i crosses a threshold

$$d_i = \mathbb{1}[s_i > s^*]$$

• e.g. admitted to college if SAT score > 1200.

• Then if s_i also determines the outcome y_i the treatment effect is

- (y for s just above s^*) minus (y for s just below s^*)
- The treatment effect is $\hat{\alpha}$ from OLS estimation of

$$y_i = \mathbf{x}'_i \boldsymbol{\beta} + k(s_i) + \alpha d_i + u_i$$

• where $k(s_i)$ is for example a cubic in s_i .

Regression discontinuity design

Selection on unobservables

Selection on unobservables: IV, 2SLS and LATE

• With selection on unobservables (as well as observables) *d_i* is endogenous in

$$y_i = \mathbf{x}'_i \boldsymbol{\beta} + \alpha d_i + u_i.$$

• One solution is instrumental variables.

- Assume there exists \mathbf{z}_i such that $E[u_i | \mathbf{z}_i] = 0$.
- Estimate by IV (just-identified) or 2SLS (over-identified).
- The instrument may effect only a subset of population
 - e.g. earnings (y) and high school graduation (d)
 - instrument (z) is minimum school leaving age
 - effects only those likely to have d = 0.
- Local average treatment effect (LATE) covers this case
 - interpret 2SLS estimate as applying only to "compliers"
 - these are people subject to the treatment and
 - can explain why different instruments give different 2SLS estimates.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Selection on unobservables: panel data

- Binary treatment regressor is now d_{it} (= 1 if individual i receives treatment in period t)
- Assume a fixed effects model for outcome y_{it}

$$y_{it} = \phi d_{it} + \delta_t + \alpha_i + \varepsilon_{it},$$

- where δ_t is a time-specific fixed effect
- α_i is an individual-specific fixed effect possibly correlated with d_{it} (selection on unobservables).
- The individual effects α_i can be eliminated by first-differencing. Then

$$\Delta y_{it} = \phi \Delta d_{it} + (\delta_t - \delta_{t-1}) + \Delta \varepsilon_{it}.$$

- The treatment effect ϕ can be consistently estimated by pooled OLS regression of Δy_{it} on Δd_{it} and a full set of time dummies.
- Essential assumption is d_{it} correlated only with time-invariant component α_i of the error.

Selection on unobservables: differences in differences

- Specialize preceding as follows
 - two time periods (1 and 2)
 - treatment occurs only in period 2 so
 - ★ $d_{i1} = 0$ for all individuals
 - ★ $d_{i2} = 1$ for treated and $d_{i2} = 0$ for the nontreated.
- The subscript t can be dropped and

$$\Delta y_i = \phi d_i + \delta + v_i$$
,

- where d_i is a binary treatment variable indicating whether or not the individual received treatment.
- The treatment effect can be estimated by OLS of Δy_i on an intercept and d_i.

- 3

- 4 同 6 4 日 6 4 日 6

• So do OLS of Δy_i on an intercept and d_i .

- OLS reduces to $\widehat{\phi} = \Delta ar{y}^{tr} \Delta ar{y}^{nt}$ where
 - * $\Delta \bar{y}^{tr}$ is sample average of Δy_i for the treated $(d_i = 1)$
 - * $\Delta \bar{y}^{nt}$ is sample average of Δy_i for nontreated $(D_i = 0)$.
 - \star This estimator is called the differences-in-differences (DID) estimator.
- The DID estimator does not require panel data!
 - suppose two separate cross-sections are available for the two periods.
 - in the second period compute the averages \bar{y}_2^{tr} and \bar{y}_2^{nt} for the treated and untreated groups.
 - in the first pre-treatment period compute similar averages \bar{y}_1^{tr} and \bar{y}_1^{nt} .
 - then compute $\widehat{\phi} = (\overline{y}_2^{tr} \overline{y}_1^{tr}) (\overline{y}_2^{nt} \overline{y}_1^{nt}).$
- Example average annual earnings
 - ► for group eligible for treatment are 10,000 before treatment and 13,000 after treatment so $\bar{y}_2^{tr} \bar{y}_1^{tr} = 3,000$
 - ▶ for group not eligible for treatment are 15,000 before treatment and 17,000 after treatment so $\bar{y}_2^{nt} \bar{y}_1^{nt} = 2,000$.
 - The DID estimate $\widehat{\phi}$ is then 3,000 2,000 = 1,000.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Selection on unobservables: parametric models (Roy model)

- The Roy model specifies a particular model
 - $y_1 = d$ is the treatment indicator and
 - we observe either $y = y_2$ if d = 1 or $y = y_3$ when d = 0.
- This allows for both
 - selection on observables (via regressors x)
 - selection on unobservables (ε) .

- 3

글 > - + 글 >

9. Some References

- These references are mainly ones that refer to the recent literature.
- Semiparametric estimation
 - Chen, S. (2010), "An integrated maximum score estimator for a generalized censored quantile regression model," *Journal of Econometrics*, 155, 90-98.
 - Blundell, R. and J.L. Powell (2007), "Censored regression quantiles with endogenous regressors," *Journal of Econometrics*, 141, 65–83.
 - ▶ Hong, H., and E. Tamer (2003), "Inference in censored models with endogenous regressors," *Econometrica*, 71, 905-932.
- Inverse probability weighting
 - Wooldridge, J.M. (2002), "Inverse probability weighted m-estimators for sample selection, attrition and stratification," *Portuguese Economic Journal*, 1, 117-139.

Panel data

- Semykina, A. and J.M. Wooldridge (2010), "Estimating panel data models in the presence of endogeneity and selection," *Journal of Econometrics*, forthcoming.
- Instrumental variables
 - Chernozhukov, V., and C. Hansen (2005), "An IV model for quantile treatment effects," *Econometrica*, 73, 245-261.
 - d'Haultfoeuille, X. (2010), "A New Instrumental method for dealing with endogenous selection," *Journal of Econometrics*, 154, 1-15.
- Treatment Evaluation
 - CT(2005) MMA chapter 25.
 - Angrist, J. D., and J.-S. Pischke (2009), Mostly Harmless Econometrics: An Empiricist's Companion, Princeton: Princeton University Press.
 - Heckman, J.J., J.I. Tobias, and E. Vytlacil (2003), "Simple Estimators for Treatment Parameters in a Latent-Variable Framework," *Review of Economics and Statistics*, 85, 748-755.
 - Imbens, G. W., and T. Lemieux (2008), "Regression Discontinuity Designs: A Guide to Practice," *Journal of Econometrics* 142 (2), 615–35