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Introduction
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Impact of interventions

@ Interested in measuring the impact of an actual or hypothetical
intervention in the context of an econometric model

@ Interventions may be external (exogenous) or self-selected
(endogenous)

@ Variable of interest is called outcome.

@ Variable of intervention is called treatment

@ Both outcome and treatment can be discrete or continuous.

@ Discrete means categorical, i.e. binary or multi-valued

@ Continuous means measured on a continuous scale, like income
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Examples: external interventions

Does textbook subsidy improve learning?
Do good lecture notes improve student grades?
Do teacher incentives reduce absenteeism?

Do minimum wage laws reduce employment?

Does class size affect student performance? How much?
(Maimonides rule works?)
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Examples: endogenous interventions

@ How much does an additional year of education add to earnings?

@ How much does more comprehensive health insurance increase health
expenditure?

@ How much does a newly adopted technology affect productivity?
@ Main complication of endogenous treatment is selection

o Total effect of intervention depends upon pure treatment effect and
selection effect

@ Total TE = Pure TE + Selection effect ; goal is decomposition
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Why we need a treatment evaluation framework

@ Understanding the impact of interventions is central to policy making
and evaluation.

o Treatment effect (TE) is a measure of the impact of an intervention;
impact is defined by reference to a chosen benchmark

@ TE is calculated by comparing two outcomes, at least one of which is
hypothetical, i.e. unobserved or unobservable.

@ Econometricians treat TE as a causal parameter in a cause-effect
framework (J. Pearl disagrees)

@ We need a set of relationships and assumptions (econometric
framework) for deciding whether the causal parameter of interest is in
principle identifiable.

o Given identifiability we need an estimation procedure to estimate TE.

To address these questions econometrically we need a framework of
relationships which involve causal parameters.
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Why regression is not a causal relationship

o Consider y = Bx + u; y denotes health status, x denotes smoking
intensity

e Write u = y — Bx = y — E[y|x]; what is the interpretation of B?

o gradient of E[y|x]; (calculus)

o a parameter of the joint distribution of (y, x); (statistical - justifies
regressing x on y also)

o marginal effect of a unit change in x on E[y|x]; (calculus -says nothing
about causality)

o does § predict the effect of change in x on y? (depends upon
exogeneity of x)

e is B a causal parameter in the sense of measuring the the average
impact of an exogenously administered change in x on y? (closer to
causal)

o what is the interpretation of the OLS estimate of B? (causal?
statistical? calculus?)
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What do the textbooks say?

@ Chen and Pearl review 6 textbooks and argue ...."... textbooks
provide weak or misleading discussion of causality"

@ Chris.Auld.com blog reviews additional ten texts and with a couple of
exceptions reaches a similar evaluation

@ Standard textbook interpretations are confused

@ Issue cannot be settled until we provide more details of the framework
and available data

@ Need to know the status of x
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Standard econometric approach

Structure consists of (in matrix and vector notation)

© variables W (“data” matrix) partitioned as [Yendog Zexog]

@ a joint multivariate probability distribution of W, f(W);
f1(Y,Z]0) = fc(Y|Z,0,)x fu(Z]6,);

© a priori W ordered according to hypothetical cause and effect
relationships with specified a priori restrictions on the model;

@ specification of functional forms and the restrictions on the
parameters of the model.

e models can be expressed as structural ("behavioral" or
"autonomous") equations or reduced form ("derived") equations.

@ a treatment variable D € Y or D € Z, but often no treatment
assignment rule

@ key parameter is marginal effect of a change in a variable on another
variable.

o If the perturbation comes from another endogenous variable, ME is
computed using a structural equation; otherwise we use the reduced
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Objectives of econometric model

@ Data description and summary

@ Conditional prediction and policy analysis, prospective and
retrospective
— Simulation of counter-factual scenarios
— Analysis of interventions

@ Estimation of causal ("structural", "key") parameters

@ Empirical confirmation or refutation of hypotheses.

— very highly structured potentially large models

— reduced form studies which aim to uncover correlations
and associations

@ Impact of policy may vary across impacted population because of
differential responses

@ Interested in the distribution of impacts, not necessarily just the
average impact
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Does TE differ from traditional econometric modeling?

@ Traditionally, regression methodology was the cornerstone of modeling;
marginal effects are of special interest.

@ Distinction made between "structural" and "reduced form" parameters;
"structural™ = "causal"? or portal to "causal"?

@ TE or ME treated as a causal parameter which could be recovered in a
structural regression model .

@ Experimental framework with treatment, controls, and potential outcomes
not explicitly used.

@ Inference about causality is probabilistic and implied; example: demand and
price

@ lIdentification and estimation of causal ("structural") parameters of interest
because they are invariant

@ However, simulations and comparison of generated "scenarios" with
benchmarks widely used.

@ Methodology did not give a special status to covariate balance or the TE
parameter.
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Neyman-Fisher-Rubin Framework

@ Recognition that not all parameters are "causal", and that causal
interpretation requires a particular framework has led to development
of alternative frameworks, called Potential Outcome Model (POM),
derived from statistical experimental literature.

@ How to get a causal parameter estimate?
@ Some argue that only an experiment can settle the issue

@ POM framework, originally due to Neyman and Fisher, but expanded
by Rubin, is a response.

@ N-F-R introduce the idea of counter-factual causality

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 12 / 356



Distinctive features of modern TE analysis

@ Causal inference requires counterfactuals generated by explicitly
stated models of outcomes

@ Because inference on causality with observational data is in principle
impossible. .

© Interpretation of a causal parameter is based on a comparison of
potential outcomes associated with levels of intervention

@ Potential outcome is a function of treatment and controls but focus is
on causal parameter(s) associated with treatment (intervention)

© Interventions are defined by treatment assignment rule
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Distinctive features of modern TE analysis (contd.)

6. Identification of TE parameter is sought under weak functional form
restrictions

7. New analytical tools designed explicitly for TE (matching, RCT,
RDD)

8. Much attention is paid to the data used for identifying causal
parameters - "not all data are necessarily relevant"

9. Borrows terminology and framework from experimental statistical
literature

10. Mechanism by which causal intervention occurs is usually not spelt
out fully - "blackbox feature"
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Angrist-Pischke View

e AP claim in Mastering ‘Metrics (2015) that "five most valuable
econometric methods ["the Furious Five"] are"

random assignment (RCT)

regression (RA)

[matching methods!]
differences-in-differences (DiD)
instrumental variables (IV)

regression discontinuity design (RDD)

@ These topics - mostly regression based - constitute the core of this
course
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I Dedicated followers of fashion
Mentions in NBER working-paper abstracts, % of total papers*

= [ifference-in-differences Dynamic stochastic general equilibrium
=== Regression discontinuity Randomised controlled trial
=== |aboratory (experiments) Machine learning or big data

re
T | S e
1985 90
Sources: NBER; The Economist * Five-year moving average 1To Nov
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Course Description

» We survey number of identification and estimation strategies and their
critiques.

» These widely used methods, are related to other established
regression-based approaches.

» The goal of the course is to explain the logic, strength, and limitations
of these methods.

» All methods we cover are potentially subject to criticism when applied
incorrectly.
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Plan of lectures

Preliminaries and overview

Rubin-Fisher-Neyman potential outcome model

Randomized and quasi-randomized trials

Regression adjustment

Matching methods

Natural experiments and event analysis; differences-in-differences
Endogenous treatment effects

Instrumental variable approach

Selection models

Regression discontinuity design

TE in general settings

®POe60000000CO0CO

Stata applications

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 18 / 356



Recommended references

Books

Angrist, J. D. & Pischke, J3.-S., Mastering ‘metrics: The path from cause to
effect, Princeton University Press, 2014

Cerulli, G., Econometric Evaluation of Socio-Economic Programs, Springer, 2013.
Imbens, G. W. & Rubin, D. B., Causal inference in statistics, social, and
biomedical sciences, Cambridge University Press, 2015

Lee, M.-J. , Micro-econometrics for policy, program, and treatment effects,
Oxford University Press Oxford, 2005

Glennerster, R. & Takavarasha, K. Running randomized evaluations: A practical
guide Princeton University Press, 2013

Stata 15 Manual: STATA TREATMENT EFFECTS REFERENCE MANUAL.:
POTENTIAL OUTCOMES/COUNTERFACTUAL OUTCOMES
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Survey articles, text books, critiques, reflections

S. Athey and G W. Imbens, The State of Applied Econometrics: Causality and
Policy Evaluation, The Journal of Economic Perspectives, Vol. 31, No. 2 (Spring
2017), pp. 3-32

Deaton, A. Instruments, randomization, and learning about development J. of
Economic Literature, 2010, 48, 424-455

Imbens, G. W. & Wooldridge, J. M. Recent developments in the econometrics of
program evaluation J. of Economic Literature, 2009, 47, 5-86

Lee, David S., and Thomas Lemieux. Regression discontinuity designs in
economics. J. of Economic Literature 48.2 (2010): 281-355.

Imbens, Guido W., and Thomas Lemieux. "Regression discontinuity designs: a
guide to practice." J. of Econometrics 142.2 (2008): 615-635.

Imbens, G. W. Matching methods in practice: Three examples J. of Human
Resources, 2015, 50, 373-419

Several graduate level texts, e.g. Cameron and Trivedi's Microeconometrics:
Methods and Applications (chapter 25) and Wooldridge's Econometric Analysis of
Cross Section and Panel Data (chapter 21), provide chapter-length treatment of
treatment evaluation.
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Established approaches of TE
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Causal relationships

The central issue concerns the impact of (policy) intervention
("treatment"), endogenous or exogenous, on an outcome variable of
interest.

» What alternative frameworks are available for analyzing the
interventions?

» Was there an impact? Who was impacted?

» What impact-related parameter can we identify?

» What are the obstacles to identification of the treatment effect?
» What are the limitations of regression-based approach?
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POM framework
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Experimental approach to causation

@ Neyman (1923 (Polish), 1990 (English)) put forward the idea that
causal effects are comparisons of potential outcomes.

e Neyman's example: potential yield of i*" variety on k" plot, Uj,

@ Experimental design research of R A Fisher reinforced the concept of
treatment assignment

@ Assumes stable unit treatment value (SUTVA). and something like
random assignment; means i's outcome depend only on i's treatment

o No peer group effects exist/allowed; partial equilibrium approach

@ Initially the concept of POM used mainly in the experimental setting.
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Fisher-Rubin causal model

e Formal statement of treatment assignment (randomized vs.
nonrandomized assignment) mechanism introduced by RAFisher
(1925)

@ Extension of the causal parameter concept to nonrandomized
observational settings due to Rubin (1974, 1975, 1978)

o Very relevant to econometric model with endog treatment, e.g.
2 =fily1.x), y1 = fa(z,x)

@ A comparison between hypothetical outcomes under different
treatments can be made irrespective of the assignment mechanism.
(Rubin)

@ Connection between randomized treatment and potential outcomes
was initially present in SEM in econometrics but weakened later
(according to Imbens and Rubin, chapter 2)
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Newer TE models (1)

I" parameters, sometimes

@ Emphasis is on a small number of "causa
just one.

@ Distinction is between outcome and treatment variables. Other
variables are just controls.

@ Standard model has just two levels of treatment, D =0 or
D = 1(binary treatment).

o Multi-level treatment set is Dy, Dy, D3, ..., D, where treatment may
be ordered or not.

@ Continuous treatment variable can be accommodated.
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Newer TE models (2)

@ Parameters of special interest are

ATE = E(outcome|treatment, controls) — E (outcome|no treatment, controls)
over the entire population

ATET = E(outcome|treatment, controls) — E(outcome|no
treatment,controls) over the treated population

@ The canonical version consists of just one or two equations, one
so-called "structural" or "causal" equation which included a
treatment variable (D) and the other a reduced form equation
interpreted as treatment assignment rule.

@ Which has more policy relevance: ATE or ATET?

e Standard notation: yprefers to outcome w/o treatment (D = 0), y1
refers to outcome under treatment, D = 1

o Central question: under what assumptions is the causal parameter
identified, and then consistently estimatable?
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Restrictions on treatment assignment

Restriction on ass. | Econometric interpretation Comment
1. Individualistic i's TA prob. does not depend on Xj
2. Probabilistic Vi, 0<Pr (D =1or O‘X,yo,yl) < 1 | All can receive

V possible (x,Y0, y1) treatment
3. Unconfounded | Zero dependence of assignment Cl assmption
on potential outcome exogeneity

28 / 356
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Definition: Classical RCT

o Classical randomized control trials (RCT or CRCT) satisfies all three
restrictions.

@ In CRCT researcher knows and controls functional forms of
assignment mechanism.

@ In CRCT assignment mechanism is not confounded .
@ Treatment assignment and subsequent outcome are conditionally (on
controls) independent

= TE is identified and estimation straight-forward.
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Definition: Observational study

@ In observational studies, exact assignment probabilities unknown.

& may have information about the assignment mechanism but not its
functional form.

@ Treatment assignment may be unconfounded, but treatment receipt
may be confounded (e.g. selection)

= Cond. independence of outcome fails and TE less straightforward to
estimate.

@ Regular assignment mechanism is individualistic, probabilistic,

unconfounded, but Pr (D =1 or 0|x,yp, y1) has unknown functional
form.

o lrregular assignment mechanism may require a different approach,
e.g. differences-in-differences.
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Application with random assignment
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Potential Outcome Model framework (1)

@ Treatment evaluation concerned with measuring the impact of
(broadly defined) interventions on outcomes

@ Leading case: Continuous outcome variable, say y; treatment variable
is discrete, D, where D = 1 if treatment is chosen or applied and
D = 0 otherwise.

o If intensity of treatment can vary, use the term multiple treatments;
the choice of a benchmark for comparisons is more flexible.
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Simple RCT design

Eligible subject
invited to
participate

Drop from
study

- RCT = Treatment is randomly assigned and hence
independent of potential outcome.

- RCT precludes any selection effect which would imply
Ely,D] #0

- In observational data selection bias cannot be avoided in
general.
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Potential Outcome Model framework (2)

@ Leading case: observe (y;,x;,D;), i =1,..., N. x is in general a vector
of pretreatment variables.

@ Interested in the impact of a hypothetical change in D on y, holding
x constant. Main feature of the so-called potential outcome model
(POM).

@ A key point: causal statements require both a factual and a
counterfactual which in general is unobservable; ("missing data
problem"), controls provide the counterfactuals

o Counterfactual scenario can be generated using POM.

o Target parameters are ATE and ATET.
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Assumptions for TE

@ SUTVA = Potential outcomes of unit i does not vary with treatments
applied to other units. Same version of treatment applies to everyone.

e Individual outcome has idiosyncratic (unpredictable) i.i.d. component

@ No individual is simultaneously observed in both states. Causal
inference carried out in terms of counterfactuals.

@ Triplet (y1,y0,D) is the basis of treatment evaluation. Outcome under
treatment = yj, outcome for non-treated = yp.

@ How the outcome of an average untreated individual would change if
such a person were to receive the treatment?

@ Assume (1) randomized assignment of treatment and (2) any one that
is assigned treatment gets it, and anyone that is not does not get it.

o Estimates of treatment effects?
ATE = E[y|D = 1] — E[y|D = 0]. Each RHS term can be
estimated as a sample average
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Issues with POM

@ RCTs provide a framework for simultaneously generating treated and
counterfactuals.

RCT can potentially remove the selection bias and TE easy to
estimate.

Inference based on observational data is more common.

Observational data are commonly subject to (1) self-selection bias,
(2) problem of finding relevant control group.

But RCT is/may be possible only under exceptional conditions.

— Social experiments (expensive, ethically questionable at
times and difficult to implement)

— Natural experiments
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Toolkit for RCT
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RCT Toolkit

0) Duflo, Glennerster and Kremer have a sort of manual for implementing
RCT. See also the book

Glennerster, R. & Takavarasha, K. Running randomized evaluations: A
practical guide Princeton University Press, 2013

1) Rationale for use of randomization: (a) remove selection bias and (b)
combat publication biases.

2) How to incorporate randomization in a research design.

3) Design issues: sample size, stratification, level of randomization, and
data collection methods.

4) How to allow for departure from perfect randomization.
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Selection bias

(1) Randomization resolves the selection bias problem.
The regression version of the ATE expression is obtained from

yi = a+ BD; + [yxi] + €

The treatment effect is the OLS coefficient of f =

E[y,'|D,' =1, [X,'” — E[y|D =0, [X,'H as E[S,‘|D,’, [X,'H =0, i.e. D,' is
uncorrelated with ¢;.,the unconfoundedness assumption.

(2) Other methods to control for one variety of selection bias

a. Controlling for selection-on-observables bias by including x on which y
also depends.

yi =+ BDi+ yxi + ¢
(3) Want cov(x, D) = 0 to gain efficiency and to avoid confounding.
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Types of selection bias - selection on observables

e Given y; = o + BD; + vx; + €, and cov(g, D) # 0 means that
assignment is correlated with outcome.

@ Then B (group mean difference) is not a consistent estimate of ATE.

@ Suppose, however, that the assumption cov (g, D|z) = 0 where z is a
vector of exogenous variables so that cov(e, z) =0

i.e. conditional on z, treatment assignment and treatment outcome are no
correlated.

Implies we can assume random assignment if we can control for z.

Then a consistent estimate of ATE () is obtained from the
regression y; = a + BD; + yz; + ¢;
This is the case of selection on observables

Requires knowledge of functional form linking y and observable z
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Types of selection bias - selection on unobservables

e Given the regression y; = a + BD; + yx; + ¢;; if cov(e, D|x) # 0,
then again treatment assignment and outcome are correlated.

o Referred to as (i) selection on unobservables model, or (ii)
endogenous dummy variable model.

@ OLS estimator of 8 is inconsistent.

o Consistent estimation methods include
- (i) MLE based on a two-equation model of outcome and treatment
assignment (STATA 15's erm command),

- (i) instrumental variable method based on untestable hypothesis about
assignment mechanism (STATA's ivregress command)

@ Options require functional form assumptions
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Publication bias

(1) Definition of publication bias

Publication bias occurs when editors, reviewers, researchers, or
policymakers have a preference for results that are statistically significant
or support a certain view, = selective suppression of negative results.

(2) RCT prevents manipulation of the experiment to produce biased results
(3) RCT solves the publication bias

a. If RCT is correctly implemented, there can be no question that the
results give us the impact of the particular intervention that was tested.
b. In randomized evaluation the treatment and comparison groups are
determined before a researcher knows how these choices will affect the
results, limiting room for ex post discretion, which is called
“cherry-picking” .

c. Randomized evaluations can also partially overcome the file drawer and
journal publication bias.
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RCT design considerations
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Sample and power considerations

In RCT implementation, the goal is to ensure statistically significant
estimate of ATE, sufficiently high power against alternatives.

Table: Components of size and power analysis

Description Symbol
significance level (type 1 error probability) «

type 2 error probability B

power 1-B=m
total sample size N

treated sample size; control sample size Ni; Ny
treatment group (mean, variance) (py,09)
control group (mean, variance) (Mo, (T%)
treatment effect size 0=y — Mo
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Required sample size in RCT

@ To run RCT we have to determine Ny, Ny
@ Null hypothesis of zero treatment effect: Hp : y; = p,

@ Two-sided paired z-test or t-test can be used to test the null of zero
treatment effect.

e Cannot simultaneously determine both a,and B. But prefer a smaller
type Il error.

@ In practice, require a test of minimum desired power (1 — ) given a
specified minimum detectable average difference § between treated
and untreated groups.

o J,effect size, depends upon the scale of measurement, so we work
with a standardized value, /0

@ We use the following to solve for required sample sizes after choosing
other values.
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Tests and power equation for two-sided t-test

_ i —vo) = (i — 1) N(O,1)

Vo3 N+ 03/ o

(YI _YO) - (‘ul — :uO) ~ t(U)
NG

t =

= @(5/0'[) — Zlfa/z) +q>(—(5/0'D — Zlftx/2>
where y; = Nj° Z}’l: Yo =Ny ZYO/ 51 = Z(}’U —)71)2/N1 and

SSZZ(YO/ Y0)?/ N, op = \/0'2/N1 + 02/ Np).

@ z-test can be used when variances are known (tricky issue in practice).

e Given unknown/ unequal variances, the t-statistic test has an
approximate Student's t—distribution with (in general non-integer) d.
of f. v obtained using so-called Satterthwaite's formula.
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Power of a one-sided paired t-test

Type | error — rejecting Hy when it is true; Type Il error — failing to reject
Hy when it is false.

The probability of a Type Il error depends on unknown population
parameter so can only be computed for given values.

Consider the power of a one sided test for « = .05, in a large sample
where the test statistic has normal distribution

Then the power of the test Hy : pt = iy vs. Hy : u = py is given by

7(6) = 1— @ [1.64 _ ?mém}

, where 0p is the standard error of the mean difference (y; — ¥;)
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Example of sample size calculation

Assuming equal sample sizes, and given desired é, 7t and « the power
equation can be solved iteratively for the required sample size; or in the
case of unequal samples, can solve for required N; given Ny, and vice
versa. Standard practice sets « = .05, and 7t = 0.8 or 0.9. In Stata this
computation is done using the command power twomeans.

. * Required sample size when m_1=21; m_2=23, 24, 25, 26; equal variance
. power twomeans 21 (23(1)26), sd(6)

Performing iteration ...

Estimated sample sizes for a two-sample means test
t test assuming sdl = sd2 = =d

Ho: m2 = ml wversus Ha: m2 != ml
alpha  power N N1 N2 delta mi m2 sd
.05 8 286 143 143 2 21 23 6
.05 8 128 64 64 3 21 24 6
.05 8 T4 a7 a7 4 21 25 6
.05 8 48 24 24 5 21 26 6
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arks

@ Power increases with sample size (N) treatment effect size 4, and

decreases with variance of outcome 2.

@ Power equation can be solved for (equal) sample size if we fix 77, J, 0

@ Variance parameters are generally unknown and may require a pilot
to determine starting values.
@ More illustrations are given in the C-T draft chapters

September 2017
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Variants of RCT
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Required TE using a regression based test

@ Two-sample t- or z-test is equivalent to testing the significance of
regression coefficient B in the regression

yi=a+BD;+eg

@ Assume that a proportion P of the sample is treated, and
g ~ iid(0,0?), then

var(B) = 0/ N(P(1 — P))
@ The power of a test for a true effect size of B # 0 and significance

level of &, is the probability of rejecting the null hypothesis.

To achieve power 71, we need

~

B> (ta_m + t,)std.err.(B)
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The minimum detectable effect size for a given power (J), significance
level («), sample size (N), and portion of sample being treated (P) is

MDE =6 = (t(1_n) + t,x)\/tﬁ/N(P(l - P))

Remark: There is a trade-off between power and size.
Equal division between treatment and comparison group is optimal,
because the MDE is minimized at P = 0.5.
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Stratified randomization

@ Balancing samples is important because it limits the range of
alternative explanation of the data and paradoxes.

@ In a randomized experiment, controlling for other covariates won't
affect the consistency of f, but it can reduce its variance.

@ Hence including valid regressors (variables that impact outcome) in
the regression will increase power.

e And stratifying (or blocking) ex ante is more efficient than controlling
ex post, since it ensures an equal proportion of treated and untreated
units within each block and therefore minimizes variance.

@ An extreme version of blocked design is the pairwise matched design
where pairs of units are constituted (for example, twins), and in each
pair, one unit is randomly assigned to the treatment and one unit is
randomly assigned to the control.
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Level of randomization

@ Usually the researcher can choose the level of randomization: the
individual or the group level.

@ Factors need to be considered:

(1) Budget. The larger the groups that are randomized, the larger the
total sample size needed to achieve a given power. This makes
individual-level randomization attractive.

(2) Spillovers from treatment to comparison groups can bias the estimation
of treatment effects, especially for randomization at individual level.

(3) Randomization at the group level may be much easier from the
implementation point of view.

(4) Randomizing strata will generally lead to correlated or clustered
observations. Variance calculations of the treatment effect should adjust
for clustering.
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Re-randomization

o Characteristics x may be poorly balanced across treatment and
control groups

o Startification, blocking and matching methods can be used to
improve balance (see under matching)

@ Simultaneous stratification in multiple dimensions can be difficult and
may reduce sample size

@ Recommendation is that if sample is unbalanced, re-randomize until
balance achieved.

@ Re-randomization could reduce the robustness of conclusions and
increase the cost of RCT.

@ How many randomizations is enough?
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Data collection

(1) Practical application of size/power calculations must overcome the
difficulty that it requires as inputs parameter values which are typically
unknown. Use results from previous studies or conduct baseline surveys or
pilot trials.

e Baseline survey generates control variables that will reduce the variability
in final outcome and therefore reduces sample size requirements.

e Make it possible to examine the interactions between initial conditions
and the impact of the program.

(2) Using administrative data (collected by the implementing organization
as part of their normal functioning) could reduce the cost.

(3) Assumption that treatment randomization is across individuals when in
practice randomization often takes place across strata first and then across
individuals within the strata.
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Pros and cons of RCT

See Deaton, JEL 2010, for a strong critique of RCT

P.1: Improves efficiency in principle. See example below.

P.2: Smaller sample size required, hence lower cost of RCT

P.3: Improves understanding of causal mechanism (Duflo, AEA Ely Lecture 2017)
C.1: Although by randomization x L D, by chance corr(x, D) may arise.
(Hawthorne effect)

C.2: If x correlated or connected with past outcomes, and randomization is not
perfect then corr(x, u) # 0

If X is to be included then ensure that it is pre-treatment value and decision to
include made before the RCT is run.

C.3: Treated and untreated groups may not be balanced in respect of covariates
X.

C.4: Optimal experimental design for a randomized trial may depend upon
expectations of participants.

C.5: Questionable external validity.
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Two-stage randomization design dependent on behavior

(Chassang et al, 2015)

Figure 2: A Two-by-Two Blind Trial.

low prob group Is
50% i .
(e.g. 25% treated)——=>] __inform run blind tr
g participants

high prob group I ;
9 ——={ Inform run blind tr
50% (e.g. 75% treated) L participants

Notes: The figure shows the two stages of randomization, with participants first allocated to either a hi
or low-probability treatment group, then informed of this probability (thus generating the correspond
placebo effect), and then receiving either treatment or non-treatment in a standard, blinded manner. Sowr
Chassang et al. (2015).

. randomize into groups:
participants |~ _ i brob of treatment

- low prob of treatment
P )

Pravin K. Trivedi University of Queensland TE estimation September 2017



Is RCT a "gold standard" for estimation of causal

parameters?

@ Has a black box character if RCT design not based on understanding
of why the treatment works; e.g. treated mosquito nets

@ If mechanism linking treatment and outcome not very clearly
established, may not be able to say more than "it works" or "it
worked"

@ RCT may not be feasible for ethical reasons.
e Treatment effect may depend on behavior/expectations of the treated.

@ Adaptive behavior on the part of subjects means the untreated group
may find substitutes for treatment and contaminate the sample.

o External validity may be questionable if outcome heavily dependent
on special features of the RCT environment.

o External validity doubtful if mechanism of treatment effect not
understood.
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Mean difference vs. regression adjustment
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Regression adjustment approach

@ Whereas test of group mean difference is easy to implement directly
using standard software, there are advantages in doing so in
regression framework.

This is especially the case when the regression involves multiple control
variables, perhaps with nonlinearities in control variables.

@ TEs from RCT can also be calculated using the marginal effects
(ME) approach.

@ ME approach is a unified approach to calculation of treatment effects
in both RCT and observational data.

o Refer to the regression based approach as regression adjustment (RA).
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Estimation with group mean difference and OLS

Consider the "double regression" model

Yi = IBI +,32Di +,B3Xi +,B23Dixi + u;.

This potentially allows for different response to x; between groups.
Dropping the interaction term implies B, does not vary between
groups.

Assume selection on observables only, and i.i.d. errors u!

Assume random treatment assignment and hence
Cor(yjDj) =0, j=1,0
Potential outcomes (PO) y; po, can be generated as predictions of

the two regression models for treated (factual) and untreated
(counterfactual) groups.
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POM difference equals ME

o Initially ignore x;
@ Then ATE is identified with the group mean difference
E(y|D =1) — E(y|D = 0) which can be calculated

with the sample group average difference, or by OLS regression of y; on 1
and D,‘.

POM(1) = Ely;|Di=1] = ﬁ1+132+E[ui|Di: 1] = Bi+B,=1
POM(0) = Ely;|D;= 0] = B, +E[u;| D;= 0] = B,= u,
POM(1) —POM(0)= Ely;|D;=1]—Ely,;|D;= 0] = p;—p,= p,= ATE

o ATE = (B, + B,) — B, = B, - also marginal effect (ME) of D is

consistent. N u
e 1 1
o ATET = N1 Y (3i|Di = 1) =N ') (7| Di = 0) is consistent

i=1 i=1
@ Including x; and/or D;x; means that we are controlling for covariates

nd auuna fo ntc an
Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 65 / 356



Test of non-zero TE

o It follows that the null hypothesis of zero treatment effect is
equivalent to the hypothesis Hy : B, = 0 vs. Hy : B, # 0.
@ A two-sided t-test is based on the Wald test statistic

T=— P
var(pB,)

This assumes i.i.d. errors but can be robustified against heteroskedasticity.
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RA example based on simulated data
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Simulation design

Generate a noisy sample with true treatment effect of 2 units in a model
with significant covariate

. * Power and sample size calculatioms for a hypothetical RCT experiment
. clear all

. set obs 150

number of observations (_N) was 0, now 1E0Q

. * Generate a balanced treatment sample

. *set obs $nobs

. 8ot seed 10101

. #* Generate exogencus variable x

. generate x = rmormal (20,5}

.+ Randomly assign treatment D to (approximately) half the sample
. generate D = rbinomial(1,0.5)

. # Generate i.i.d. error

. generate u = rmormal (0,1}

. * Generate outcome variable with true treatment parameter = 2

. generate y = 1 +x + 2«0 + 1

. * Summarize the data

.corr x D yu
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Two-sample t-test

. *3ummarize outcome by t

x U ¥ 1
x 1.0000
D 0.0132  1.0000
¥ 0.9688 0.1834  1.0000
u 0.0450 -0.11B2 0.2022 1.0000

reatment group

. summarize y if D== 0
Variable Obs Mean Std. Dev. Min Max
¥ &4 21.394ET7 E.2T653Té  4.910219 33.18176
. scalar mud = r{mean}
. global mud
. scalar std0 = r(sd)
. global stdO
. summarize y if D== 1
Variable | Obs Mean Std. Dev. Min Max
¥ | 86 23.30881 4.984272 12.2621 36.88737
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Two-sample t-test has low power

@ The estimated treatment effect is close to the true value of 2, but has
a large standard error.

Because the outcome is noisy, there is loss of power

. * Two-sample t-statistic
. gen Tstat = (mol - mud)/sqrristdi”2/ (86-1) + std0~2/(64-1))

. gen Fstat = Tstat™Z

di Tstat, Fstat
2 2343221 4.9921981

@ Controlling for the variation due to a relevant covariate x will improve
the fit of the model and lead to a more precise estimate of the TE.

The confidence interval should be narrower.

@ Controlling for x allows us to make do with a smaller sample than
otherwise.
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Conditioning on valid x improves precision and power

. = Estimate treatment effect using (y, D, x)} data

. quietly regress y x D

. estimates store TEwithX

. asttab TEwoX TEwithX, b(¥10.4f) se scalars(N r2 F)

(13 (2}
¥ y

D 1.9142+ 1.7810% %+
(0.8436) {0.1548)

X 1.0088=x=
(0.0156)

_CODSs 21 . 3044+ 0.9282=%
(0.6388) {0.3351)
N 150 150
r2 0.0336 0.9677
F 5.1488 2202.0239

Standard errors in parentheses
* p<0.06, ** p<0.01, **+=*x p<0.001

. test D=0
(1) D=20
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The teffects ra command

@ For linear regression based inference it operates as follows.

@ For a binary treatment, we run two regressions of y on x, one for the
the subsample with D = 1, and a second for the subsample with
D =0.

@ Each regression is used to generate predictions for the full sample.
Denote these, respectively, as y; and Y. These are estimates of (in
principle unobservable) potential outcome means, POM.

@ The ATE is the average of the difference between the two POMs.

@ Example which follows shows that for this sample the difference
between the two is small.

o Explain why there is a difference at all and what it means for
randomization.
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Example of teffects ra

Pravin K

. * Estimate treatment effect

. teffects ra (y

) (D)

using (y, x, D) data and teffects command

Iteration O: EE criterion = 1.154e-28
Iteration 1: EE criterion = 4.690e-30
Treatment-effects estimation Number of obs = 100
Estimator : regression adjustment
Outcome model : linear
Treatment model: none
Robust

v Coef. Std. Err. z P>lz| [95% Conf. Intervall
ATE

D

(1 wvs 0) 1.939999  .1890464 10.26  0.000 1.569475 2.310523

POmean

D

0 21.4086 .56289239 40.48  0.000 20.37193 22.44527

ivedi University of Queensland

TE estimation



TEs in nonlinear regression
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How to measure treatment effects

@ In linear models ATET = ATE = ME (marginal effect) = constant
@ In nonlinear models, irrespective of the assignment mechanism, ME

and treatment effect are not constant but depend upon the functional
form of the conditional mean.

@ A marginal treatment effect measures the effect on the conditional
mean of y of a change in treatment variable D.

e For continuous treatment ME; = 9E[y|D = D*|/dD where D* is
the treatment level. If E[y|x] = exp(x’B) and x; is the treatment
then ME; = exp(x*'B)pB; which varies with x*

@ For discrete treatment variable D the finite difference method yields
marginal effect ME; = E[y|x = x*, D = 1]— E[y|x = x*, D =0].
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Marginal TE as building blocks for ATE

@ In nonlinear models the marginal TE varies with the point of
evaluation.

@ In nonlinear models coefficients are more difficult to interpret

@ Three common choices of evaluation are (1) at sample values and
then average; (2) at the sample mean of the regressors; and (3) at
representative values of the regressors.

AMTE=ATE Average marginal TE Average of ME at
each treatment level
AMTET=ATET ATE for the subpopulation  Average of ME for

receiving treatment treatment receipients
MEM=ATEM Marginal TE at mean ME at D =D, x =X
treatment value
MER=ATER Marginal effect at a ME at D = D*, x = x*

representative value
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Marginal TE for polynomial regressors

o If treatment variable appears as polynomials computing ATE becomes
more complicated.

@ Example: First consider a linear model that includes a cubic function
in regressor D. Then Ely|x,z] = x'B+ a1D + a;D? + a3D* and
MEp = a1 + 202D + 3a3D?. How to compute the ATEM?

o Let E[y|x,z] = exp(X'B+ a1D + a;D? + a3D3) Then
MEp = Ely|x, z] X (a1 +2a2D + 3a3D?). AMTE is the average of
such terms evaluated for each subject.
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Marginal TE for regressors in the presence of interaction

terms

@ Marginal treatment effects in models with interactions are more
difficult to interpret and calculate.

@ Stata's powerful postestimation margins command can be used for
linear and nonlinear regression. Example will be given in the practical
session.

@ Main message: marginal (treatment) effects provide the basis for
calculating TEs in nonlinear regression models.

o Implication: Having to specify a functional form to estimate TE is
potentially a major limitation.
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Predictive margins for estimating TEs
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Predictive means and predictive margins

@ Given estimated regression y = x/ﬁ, the conditional mean
Ely|x = x*] = x*/B is called the predictive mean (PM).

@ When the dimension of x is high, we may want to estimate the PM at
specific values of, say x*, and then contrast these.

@ Standard method is to create group-specific predictive means for
group-specific contrasts, including contrasts of treated and controls, if
one of the x variables is a treatment variable.

@ Lane and Nelder (1982) introduced the term predictive margins to
cover post estimation prediction of some variable of interest.

@ The usefulness and flexibility of PM comes from the fact that it can
be evaluated in a variety of ways and the result can be displayed
graphically.

@ Specifically PM can be used to generate TEs.
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TEs using margins

o Given estimated regression ¥ = x'B + w'%, the conditional mean
Ely|x = xk, w = w*| = x4/ + w7y
o Different choices of w* will generate different PM

@ In Stata PMs can be generated postestimation using either the
predict command or the margins command

e margins command is very flexible/powerful and can create a variety
of contrasts, including PMs for treated and control groups.

@ Flexibility comes from being able to use the at option to specify the
evaluation point.

@ Role of margins plot in displaying results
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Example: TEs using margins

@ We revisit the generated data set with a binary treatment variable
D .previously analyzed using the teffects ra command

@ First run the regression y = a 4+ BD - x + yD + ¢ in which the slope
parameter B, varies according to D (i.e. model allows an interaction
effect)

@ Next we apply the margins D command to generate a table of PMs
@ The difference between PMs is the estimated treatment effect.

@ The approach can be applied in nonlinear models if no packaged
command is available.
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Example

using margins.pdf
* Estimate POM using (y, D, x) data and regress and predictive margins commands
. regress y c.x#i.D, vce(robust) noheader

Robust
y Coef.  Std. Err. t P>|t] [95% Conf. Intervall
D#c.x
.9376448 .0205644 45.60  0.000 .8968302 .9784594
1 1.028379 .0215783 47.66  0.000 .985552 1.071206
_cons 2.464034 .4325384 5.70 0.000 1.605565 3.322503
. margins D
Predictive margins Number of obs = 100
Model VCE : Robust
Expression : Linear prediction, predict()
Delta-method
Margin Std. Err. t P>|t] [95% Conf. Intervall
D
21.47714 .1422259 161.01 0.000 21.19486 21.75942
1 23.317 .1295905 179.93 0.000 23.0588 23.5742
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TE estimation using matched samples
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The essential idea behind matching methods is that treatment effects can
be estimated by constructing samples of treated and untreated individuals,
closely matched according to specific criteria and then comparing their
average outcomes. Matching methods can be applied to RCTs,
experimental data, and observational data. The better the match and
more balanced the sample, the less biased will be the ATE estimate.
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Matching vs. Regression

However, TEs can also be estimated using regression methods applied
under same assumptions as matching. So why prefer matching?

@ Regression methods rely on strong functional form assumptions.

@ Matching methods are more robust as they avoid functional form
assumptions.

© Working with a balanced sample is key to getting robust estimates
and with matching methods this is feasible.

@ With regression methods appropriate conditioning is required to
mitigate the biases due to unbalanced samples. Omitted variables
make this difficult.

© Regressions typically use all the available data, but a smaller trimmed
balanced data set may provide "better" estimates.
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Assumptions required to apply matching methods

@ Conditional independence assumption: Conditional on x, outcomes
are independent of treatment:. yp,y1 L D|x. Also known as
unconfoundedness assumption or ignorability assumption. Equivalent
to regressor exogeneity and no omitted variables.

@ The overlap or matching assumption states that
0 < Pr[D = 1|x] < 1.Means that every unit in the sample has a
positive probability of receiving treatment and there are no units
which are certain to be treated or to be not treated.

© Conditional mean independence assumption states
Elyo|D =1,x] = E[yy|D =0,x] = E[yo|x] which means that
participation does not depend upon y; which should hold in a RCT.
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@ Assumption 1 is also equivalent to the
no-selection-bias-on-observables assumption. That is, conditional on
x, D and y are independent.

@ Any selection effects that might exist are fully captured by the
regressors X.

@ Sample balance is not explicitly required as an assumption but has a
role if 2 is to hold.

@ OLS requires assumptions 1 and 3, but does not explicitly require 2.
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Background

Identification of treatment effect in observational setting is difficult.

Randomized treatment design is a "gold standard" (may be!).

Comparing treated and control groups in a way that approximates or
mimics randomized treatment is a goal.

@ Matching problem: How to construct suitable control groups?

© Dehejia & Wahba (DW) study matching methods with emphasis on
propensity score (PS) approach using the NSW sample.

@ DW claim: PS methods can produce treatment estimates comparable
to those from randomization.
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General ATET formula

@ Denote the comparison group for the treated case i/ with
characteristics x; as Aj(x) = {j| x; € c(x;)} where c (x;) is the
characteristics neighborhood of x;. Let N¢ denote the number of
cases in the comparison group and let w(/,j) denote the weight given
to the jt" case in making a comparison with ;" treated case,

Y, w(i,j) = 1. Then a general formula for the matching ATET
estimator is

1

M= —
Nt

Yo i w(i)yo,]

ie{D =1} J

where 0 < w(i,j) < 1, and {D = 1} is the set of treated individuals.
Different matching estimators are generated by varying the choice of

w(i,j).
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Simple DW(2002) matching

@ Simple matching compares cells with exactly the same discrete x
o
M — _
A=Y wilyr — Yo
ke{D = 1}

where ¥y is the mean outcome of the treated and Y, is the mean
outcome of the untreated and wy is the weight of the kth cell, i.e. the
fraction of observations in cell k.

@ A specific example (Dehejia and Wahba, 2002) is

1 1
oL |\ Vi Xy
Nt 75 < Nc,ijetp = 0} J)

where N7 is the number in the treated group (D = 1) and N ; is the
number in the comparison group corresponding to the i*" observation.
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General matching problem

» Mental experiment about matching methods — treated group is
observed w/o a randomized trial

» Need to construct a matched control group — how to proceed?

» Consider the problem of constructing cells with matched occupants
within the cell

» x; (i =1,...N7) observed vector of characteristics of treated. Find
(yj‘:,xj?, Jj=1..N¢)

» For each cell with matched samples compute average cell difference in
treated and untreated outcomes

» Issues: (1) dim(x)?— discrete vs. continuous x; (2) Thin cells and
empty cell depending on dim(x); (3) One-one or one-many matching?
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Other matching methods (1)

o Nearest neighbor matching method: Choose A;(x) =
{j| min; ||x; — x;||} where ||| denotes the Euclidean distance between
vectors. If w(i,j) =1 when j € A;(x), and zero otherwise, then this
specification uses only one case to construct the comparison group for
the treated cases.

e Kernel matching is non-parametric; it uses a weighted average of all
individuals in the control group with weights given by
K(xj —xi)

v = L K(x —x;)

where K is a kernel.
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PS matching

@ Let D =1 indicate treatment applied, D = 0 the opposite.

@ Let Pr[D = 1|x] denote the conditional probability of receiving
treatment, 0 < Pr[D = 1|x] < 1

@ Propensity score is the estimated conditional probability : F[D = 1|x]
where F denotes parametrically specified c.d.f.

e Standard choices of F are normal c.d.f. ®(+) and logistic c.d.f. A(-)

@ Propensity score (inexact) matching means constructing a subgroup
with similar propensity score, usually based on some interval.
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1) avoid functional form assumptions for the outcome equations in
estimating ATET and

2) can estimate it at specific values of x.

Disadvantage: if x is high dimensional then the number of matches can
become very small.

In such cases propensity score matching is better.

o Nearest neighbor and kernel matching can be defined in terms of
propensity scores also.

@ For example, for nearest neighbor matching we can define A;(p(x)) =
{pj| min;[|pi = p;}-
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Exact matching on X

Proposition 1 (Rubin, 1977).  If for each unit we observe
a vector of covariates X; and Y| 7;|X;. Vi, then the popu-
lation treatment effect for the treated, T|7— . is identified: it
is equal to the treatment effect conditional on covariates and
on assignment to treatment, JI-|T=]1 x, averaged over the
distribution X|T,- = 1°.

@ Key assumption of Proposition 1 is randomized treatment conditional
on observables
@ Assumes we have an exhaustive list of matching characteristics
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Dimensionality reduction in matching

Proposition 2 (Rosenbaum and Rubin, 1953).  Let p(X;) be
the probability of a unit 7 having been assigned to treatment,
defined as p(X;) = Pr(T; = 1|X,) = E(T;|X)). Then,

(};H ¥ Yﬂ})ﬂrf |Xa f (},i ls }fi[ll-)lrfh}(xf) .

Proposition 3. T|T=| = meﬁ[[T|T=l,pr}}|Ts = 1].
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Propensity score matching - properties

Proposition allows us to reduce the dimension of characteristics,
permits coexistence of continuous and discrete characteristics

Introduces a propensity score as unidimensional matching variable

Standard functional forms used for estimating propensity scores based
on (y;,x;)T and (y;, x;)€

@ Matching according to a propensity score involves bracketing:
(vixi) "% and (y;,x;) P

@ The overlap condition for identification
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TE Methods under matching
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Matching methods

@ We assume that the assignment mechanism is individualistic,
probabilistic and satisfies uncounfoundedness.

@ Functional form of the assignment mechanism is not known.
Functional form of the outcome is assumed.

@ The set-up assumes an active (D = 1) and passive (D = 0)
treatment states.

@ The standard regression methodology for estimating TEs is valid
conditional on functional form assumptions.
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PS Methods

@ As the probability of receiving treatment may vary across individuals,
reweighting the data is an attempt to balance the sample prior to
regression.

@ This is a variation on RCT but can be expected to yield consistent
estimate.

@ OLS less attractive because it may not be robust when the treated
and untreated samples are unbalanced and do not overlap.

@ Two suitable methods of matching are inverse probability weighting
and propensity score matching.

@ Both methods require initially a model of the conditional probability
of receiving treatment.
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Inverse Probability Weighting (1)

IPW addresses the problem that sampled individuals do not have the same
probability of being treated.

The solution is two-fold.

First estimate the probability of receiving treatment using a logit
regression,

Next weight the data before estimating the potential outcome
regression(s).

Finally generate POM estimates and TEs given the regression estimates as
in the RA case. .
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Inverse Probability Weighting (2)

1. Estimate the conditional probability p(D = 1|x;) = p(x;) of receiving
and (1 —p(x;)) of not receiving treatment, respectively.
Essentially the estimation of propensity score, typically from a logit or
probit regression of D; on x;.
2. Assume that outcome equation has interactions. Then instead of
estimating the equation y; = a + x;f+yD; + 8(D; - x;)d + u; by OLS, we
estimate

wiyi = &+ w;(X;B+vyD; + 8(D; - x;)) + u;)

where w; = 1/p;(x;) if Di—y =1and w; =1/(1—p;(x;)) if D; = 0.
3. Using the resulting estimates of («, B,7, d), generate POM estimates
for the treated and untreated groups.
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Inverse Probability Weighting (3)

4. For successful implementation want a well-fitting conditional probability
model.

5. Method could be computationally unstable if have many observations
with p;(x;) close to 0 or 1.

6. A desirable diagnostic is to check the covariate balance between the
treated and untreated groups (before and after weighting)
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Propensity score matching

PSM is by far the most popular method of matching.

The essential idea: construct a cell whose occupants constitute a
matched control group.

@ Given a matched set, average cell difference in treated and untreated
outcomes can be computed.

@ But the following issues have to be addressed:

regressors include both discrete and continuous variables;

some cells may be sparse or even empty;

whether matching should be one-to-one or one-to-many.

larger the number of regressors in the model, the more compelling the
issues.
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Propensity score matching (2)

A successful match means that there is at least one untreated subject
who matches a treated subject, i.e. a counterfactual exists.

Apply a matching criterion - a measure of the distance between the
treated and untreated subjects.

A dimensionality problem due to large number of regressors.

@ Solution: Replace the regressors by a one-dimensional function of the
regressors and use the value of the function to define a match.

PS is a natural matching criterion.
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PSM details

@ Use intelligently saturated logit regression to generate PS

@ Blocking and weighting: Generate matches to obtain a balanced
sample with satisfactory overlap.

e Requires some form of bracketing (or smoothing) to create matched
pairs or matched sets.

e Stratification or interval matching divides the range of variation of the
propensity score in intervals.

o Within each interval, the treated and control units have, on the
average, the same propensity score.

o ATE is the weighted average of these average outcome differences
within cells/strata/blocks.
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Blocking and weighting (1)

e Stratification or interval matching is based on idea of dividing the
range of variation of the propensity score in intervals such that within
each interval, the treated and control units have, on the average, the
same propensity score. ATET is the weighted average of these
differences.

@ Denote by b the blocks defined over intervals of propensity score.
Then the treatment effect within b" block is defined as

ATET; = (N])™? Z Yii — Z Yo

iel(b Jjel(b
where /(b) is the set of units in block b, Nb is the number of treated
units in the bt block, and NOC is the number of control units in the bt/
block. Then the treatment effect based on stratification is defined as
ATET® = ZATETS [ Y. D /Z D;]

iel(b) Vi

where the welght for each block is given by the corresponding fraction of
treated units and where B is the total number of blocks.
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Blocking and weighting (2)

e Radius matching in which A;(p(x)) = {p;| ||pi — pjl| < r}is
based on propensity scores. This means that all control cases with
estimated propensity scores falling within radius r are matched to the
ith treated case.

@ We can express ATET in terms of p(x), assuming the overlap
condition 0 < p(x) < 1.

(D - p(x))

ATET = E[Pr[ozlﬁl—ﬁx))]'
_ (D —p(x))y
ATE = E{p<x><1—p<x>>]

the last result being due to Dehejia (1997).
@ For proof see Cameron and Trivedi (2005, ch. 25.4)
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Nearest neighbor matching

@ NNM is related to PSM. Previous example was radius matching.

o Create a matched set based on closeness of (k x 1) vector of
regressors x; to vector x;.

o Euclidean distance metric: ||(x; — x;)’Q~1(x; — x;)|| where Q is the
k x k matrix of variances and covariances of elements of x.

@ Can specify the required minimum number of matches.

@ To generate counterfactual take a weighted average of the outcomes
in the reference group.

@ If the group size is small may need to make a bias adjustment.

@ In Stata the relevant commands are teffects ipw, teffects
psmatch, teffects nnmatch

@ Examples and analysis of data from a well-known RCT - Oregon
Health Insurance Experiment - will be covered in the practical session
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Stata's teffects commands

Table 26.2. Stata’s teffects commands

Regression adjustment teffects
Inverse probability weighting teffects
Augmented inverse probability weighting teffects
Inverse-probability-weighted regression adjustment teffects
Nearest neighbor matching teffects
Propensity score matching teffects

ra
ipw
aipw
ipwra
nnmatch
psmatch
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Differences-in-differences approach
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@ This approach commonly used when evaluating the impact of a shock
(change) due to a "natural experiment" (NE)

@ NE creates a dichotomy between "before-shock" and "after-shock"
data which can be used to make inferences about the impact

@ Assume that the variable of interest was moving along some time
path and would have continued to do so even in absence of a shock.

@ The shock acts as a shifter - the new time path shifts either up or
down but otherwise remains parallel to the "before-shock" path.

@ Object of interest is the estimated size of the shift.

@ Observations in the pre-shock period act as control outcomes, and
those after shock are treated outcomes
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D-i-D transformation (1)

o For it treated case the change in the outcome is [y;; — yip|Dia = 1]
e for the untreated group the change is [y, — yi»|Dia = 0] .
@ Then the difference is [yis — yip| Dia = 1| — [Via — yin| Dia = 0] where
subscripts a and b denote "after" and "before"
o (1) yitb = ¢, +0¢ +€ir; (2)
Yita = Yitb T &+ € = ¢, + 0 +aDjs + &
e Then Ely;; — yip|Dia = 1]— E[yi» — yin|Dia = 0] = a : the ATE.

September 2017 115 / 356
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D-i-D transformation (2)

@ The underlying assumption is that there is a separable trend path
{9} that is common to both treated and control groups.

@ Any time-invariant factors would be eliminated by the differencing
transformation.

o If there are other time-varying factors, then D-i-D will end up with a
regression, not a constant. Example which follows shows this.

@ The data framework may be complicated, e.g. a panel consisting of
clusters with multiple treatments. Then group effects and time-effects
will need to be added, as in panel data models.
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D-i-D transformation (3)

@ Regression adjustment is an alternative to taking differences. Replace
¢; by x;B + vy to obtain

Yiao = XiB+YYib+0a+ €0
Yial = XiB+vYip+ 0.+ aDj;+ e
@ Estimate a by regressing y;,1 on a constant, yj,0 , X; and Dj,.
@ No assumption like support or overlap condition is required
@ Transformation is also applied to the error term which induces serial
correlation (MA-1) - a problem if time series is long
@ Using default estimator of variance matrix will overstate the precision

of the estimator.
@ Instead should use a robust sandwich variance estimator.

Bertrand, M., E Duflo, and S. Mullainathan. "How much should we trust
differences-in-differences estimates?." QJE 119.1 (2004): 249-275.

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 117 / 356



DID assumptions

@ « is a causal parameter because after controlling for x, and y, TE
completely accounts for the posttreatment difference between the
treated and control groups. Further, the fixed effect is given a linear
functional form.

Assumes addition of pre-treatment data is feasible
But a matching strategy can be based on weaker assumptions.

By assumption the same drift term both before and after.

No heterogeneity in response
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Consequences of differencing
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DID in a nonlinear model

@ Consider the probit model of outcome, which is nonlinear. T denotes
time period, say 0 or 1; G denotes group, say 0 or 1.

@ T x G =1 for the treated group
o untreated group E[y°|T, G, x] = ®[f+ T +B.G+x'B,]
o treated group E[y}|T,G,x] = @[+ T+ B;G +a(T x G) +x'B,]

T= q)[ﬁT +ﬁG +‘X+X/ﬁx] _CD[IL%T+IBG +x/ﬁx]
which measures the change in the probability due to the treatment.

@ In principle this result applies to any case with a nonlinear strictly
monotonic transformation, e..g., quantile.

@ DID now better labelled as change-in-change, CIC.
Ref: Athey and Imbens, Econometrica, 2006, 431-497
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Example 1: Impact of training on wages (Dehejia and

Wahba)
Application of D-i-D
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Example 1: Effect of Training on Earnings

@ The National Supported Work (NSW) demonstration project,
conducted in the 1970’s, measured the impact of training on earnings
by a randomized experiment with a treatment group and a control
group.

@ The effect of training could then be measured by direct comparison of
sample means.

@ Comparison of the treated with the nontreated must then control for
differences in observed characteristics, and possibly in unobserved
characteristics.

o Lalonde (1986) contrasted outcomes for the NSW treated group with
those for control groups drawn from two national surveys. He
concluded that the observational methods were unreliable.

@ Dehejia and Wahba (1999; 2002) reanalyzed a subset of the Lalonde
data using alternative matching methods that they argued led to
conclusions closer to those from experimental data.
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Dehejia and Wahba Data

@ Treated sample is one of 185 males who received training during
1976-77.

o Control group: 2,490 male household heads under the age of 55 who
are not retired, drawn from the Panel Survey of Income Dynamics
(PSID).

@ Another comparison group is from the CPS.

@ Dehejia and Wahba (1999) call these two samples the RE74

subsample (of the NSW treated) and the PSID-1 sample (of
nontreated).
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Summary statistics

Variable Definition Treated PSID Control
AGE age in years 25.82 34.85
EDUC education in years 10.35 12.12
NODEGREE 1if EDUC < 12 0.71 0.31
BLACK 1 if race is black 0.84 0.25
HISP 1 if Hispanic 0.06 0.03
MARR 1 if married 0.19 0.87
u74 1 if unemployed in 1974 0.60 0.10
u7s 1 if unemployed in 1975 0.71 0.09
RE74 real earnings in 1974 (in 1982 $) 2,096 19,429
RE75 real earnings in 1975 (in 1982 §$) 1,532 19,063
RE78 real earnings in 1978 (in 1982 §) 6,349 21,554
D 1 if received training (treatment) 1.00 0.00
Sample size 185 2,490
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Comparison of treated and control groups

TABLE 1| —SAMPLE MEANS AND STANDARD ERRORS OF COVARIATES
For MaLE NSW PARTICIPANTS

National Supported Work Sample (Treatment and Control)
Dehejia-Wahba Sample

Variable Treatment Control
Age 25.81(0.52) 25.05(0.45)
Years of schooling 10.35(0.15) 10,09 (0.1)
Proportion of school dropouts 0.71 (0.03) 0.83 (0.02)
Proportion of blacks 0.84 (0.03) 0.83 (0.02)
Proportion of Hispanic 0.06 (0.017) 0.10 (0.019)
Proportion married 0.19 (0.03) 0.15(0.02)
Number of children 0.41 (0.07) 0.37 (0.06)
No-show variable 0 n/a
Month of assignment (Jan. 1978 = () 18.49 (0.36) 17.86 (0.35)
Real earnings 12 months before training 1,689 (235) 1.425 (182)
Real earnings 24 months before training 2,096 (359) 2,107 (353)
Hours worked 1 vear before training 204 (36) 243 (27)
Hours worked 2 vears before training 306 (46) 267 (37)

Sample size | 85 260

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017

125 / 356



Comparisons

@ Treated group differs considerably from the control group.

e Disproportionately black (84 percent) with less than high school
degree (71 percent) and unemployed in the pre-treatment year 1975
(71 percent). Estimates of the effect of training should control for
these differences.

@ The outcome of interest is post-treatment earnings, RE78.

@ One possible measure = mean difference in RE78 between treated
and control individuals, leading to estimate
$6,349 — $21, 554 = —$15,205. This is called a treatment-control
comparison estimator.

@ It can equivalently be computed as the coefficient of the treatment
indicator D in OLS regression of RE78 on an intercept and D using a
combined treatment-control sample.
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Comparisons (2)

@ Treatment estimate is misleading; mostly reflects the difference in the
types of individuals in the two samples

@ To control for this difference include pre-treatment characteristics as
regressors, and estimate by OLS

RE78; = X;ﬁ—i— aD;+u;, i=1,..,2675.

@ Leads to much smaller estimated treatment effect ¥ = $218 when,
following Dehejia and Wahba, the regressors x are specified to be an
intercept, AGE, AGESQ, EDUC, NODEGREE, BLACK, HISP, RE74
and RE75.

@ This approach is called the control function or regression adjusted
estimator.
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Estimated effects

Method Definition Estimate  St. Error
Treatment-control comparison RE78p—1 — RE78p—g —15,205 656
Control function estimator A from OLS regression 1 218 768
Before-after comparison RE78p—1 — RE75p—1 4,817 625
Differences-in-differences ® from OLS regression 2 2,326 749
Propensity score See text 994 —

Note: Standard errors for first four estimates are computed using

heteroskedastic-consistent standard errors from the appropriate OLS regression.
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Differences-in-Differences

o Before-after (BA) comparison looks at the difference between
post-treatment earnings RE78 and pre-treatment earnings RE75.
Using mean earnings for the treated group this yields estimate
$6,349 — $1,532 = $4, 817.

@ This estimate may be misleading as it reflects all changes over this
time period, such as an improved economy, and not just training.

o Difference-in-differences (DID) estimator additionally calculates a
similar quantity for the control group, $21, 554 — $19, 063 = $2, 491,
and uses this as a measure of non-treatment related changes over
time in earnings, so that the change over time solely due to treatment
is $4,817— $2,491 = $2, 326.
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Differences-in-Differences (2)

@ DID estimator equivalent to the estimate of « in the regression
RE; = ¢+5D78;t+’)’IXDit +aD78;; %Dy +u;, [=1,..,2675 t =75,

Here RE; 75 denotes earnings in the pre-treatment period and RE; 75
denotes earnings in the post-treatment period, so the regression is
one with 5, 350 earnings observations.

@ Indicator variable D78;; equals one in the post-treatment period, the
indicator variable D;; equals one if the individual is in the treated
sample, and the interaction term D78;; * D;; equals one for treated
individuals in the post-treatment period.

o Intercept ¢ can be replaced by x/,B. This makes no difference in this
example where regressors are time-invariant so that x;; = x;.
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Simple Propensity Score Estimate

@ A third approach compares the outcome RE78 uses a better
counterfactual.

o Generated by specifying a regression model. For example, the
regression specifies E[RE78|x] to equal x'B + a, if treated, with
counterfactual x'B, if not treated. This places restrictions on both the
effect of regressors x and on the effect of treatment which,
conditional on x, is assumed to be constant across individuals.

@ Match on the propensity score, defined as the conditional
probability of treatment Pr[D = 1|x]. For this example we estimate
using only 1975 data the logit model

Pr[D; = 1x;] = A(X}B), i=1,...,2675, (1)

where A(z) = e?/(1+ €7), and following Dehejia and Wahba (1999)
the regressors chosen are AGE, AGESQ, EDUC, EDUCSQ),
NODEGREE, BLACK, HISP, MARR, RE74, RE75, RE74SQ,
RE755Q, UT4*BLACK.
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PS Graph-NSW Data

Post-treatment Earnings against Propensity Score

Comparison_sample | Treated_sample |

Real Earnings 1978
10000 15000 20000
1 1 1

5000
1

0

6 .5 1 0 .5 1
Propensity Score Propensity Score

Graphs by Treatment Status
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PS Graph

@ Treatment effect is estimated as the difference between a given
treated individual (D = 1) and control sample individual (D = 0)
with the same (predicted) propensity score.

@ Each panel includes a fitted nonparametric regression of RE78 on the
propensity score.

@ Treatment effect is generally less than one thousand dollars, though is
large and positive for propensity score around 0.80.
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e Many ways to compare individuals with similar propensity score and
then averaging over all treated individuals.

@ A simple strategy is to stratify data by propensity score, denoted
p(x), and let the counterfactual be the within-strata average of RE78
for the control group. For example, if a treated observation has
propensity score p(x) =0.35 then the counterfactual may be the
average of p(x) for control group observations with
0.30 < p(x) < 0.40.

e Total effect is then Y, ws(RE78;,p—1 — RE785 p—¢), where
RE78; p—1 and RE78, p—o denote, respectively, the strata s averages
of RE78 for the treated and control observations, and the weights w;
equal the fraction of treated observations in each strata.
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Stratification matching

@ Stratification matching : use ten equally-spaced strata with
0.0 < p(x) <0.1, 0.1 < p(x) < 0.2 and so on. Restrict this
procedure to cases where the propensity scores for the treated and
control samples overlap. Here the propensity score ranges from
0.0005 to 0.9420 for the treated sample and from 0.0000 to 0.9371,
leading to dropping of 1,423 control group individuals and 8 treated
individuals. The resulting estimated total effect is $995.
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Comparison with the CPS control group

PROPENSITY SCORE-MATCHING METHODS FOR NONEXPERIMENTAL CAUSAL STUDIES 155

TABLE 2—SAMPLE CHARACTERISTICS AND ESTIMATED IMPACTS FROM THE NSW anp CPS SampLES

Treatment
Mean Effect  Regression
No. of Propensity No (Diff. in  Treatment
Control Sample Observations ~ Score* Age School Black Hispanic Degree Married RE74 RE75 U74  U75 Means) Effect
NSW 185 0.37 2582 1035 0.84 0.06 071 0.19 2095 1532 029 040 17948 1672¢
(633) (638)
Full CPS 15992 0.01 3323 1203 007 0.07 0.30 071 14017 13651 088 0.89 —8498 1066

OO0 (053 (015 ©.03) (0.02) ©03) (0.03) (367 (248) (0.03) (0.04) (383)F  (554)
Without replacement:

Random 185 0.32 2526 1030 0.84 0.06 0.65 022 2305 1687 037 051 1559 1651
(0.03) (079 (0.23) (0.04) (0.03) (0.05) .04) (495) (341) (0.05) (0.05) (733) (709

Low to high 185 0.32 2523 1028 0.84 0.06 0.66 022 228 1687 037 051 1605 1681
(0.03) 079) (0.23) (0.04) (0.03) (0.05) (0.04) (495 (341) (0.05) (0.05) (730) (704)

High to low 185 0.32 2526 1030 0.84 0.06 0.65 022 2305 1687 037 051 1559 1651

(0.03) (0.79)  (0.23) (0.04) (0.03) (0.05) (0.04) (495) (341) (O.bSJ (0.05) (733) (709)
With replacement:

Nearest neighbor 119 0.37 2536 1031 084 0.06 0.69 0.17 2407 1516 035 049 1360 1375
(0.03) (L04) (031) (0.06) (0.04) (0.07) (0.06) (727) (506) (0.07) (0.07) (913) (907)
Caliper, & = 0.00001 325 0.37 2526 1031  0.84 0.07 0.69 0.17 2424 1509 036 050 1119 1142
(0.03) (L03) (0.30) (0.06) (0.04) (0.07) (0.06) (845) (647) (0.06) (0.06) (875) (874)
Caliper. & = 0.00005 1043 0.37 2520 1028 0.84 0.07 0.69 0.7 2305 1523 035 049 1158 1139
(0.02) (L03) (032) (0.05) (0.04) (0.06) (0.06) (877) (675) (0.06) (0.60) (852) (851)
Caliper, 3 = 0.0001 1731 0.37 2519 1036  0.84 0.07 0.69 0.17 2213 1545 034 050 1122 1119
(0.02) (103) (031) (0.05 (0.04) (0.06) (0.06) (890) (701) (0.06) (0.06) (850) (843)

. age of participant; School. number of school years: Black. 1 if black  Hisp. | if Hispanic, 0 otherwise: No degree, | if participant had no school degrees, 0 otherwise; Married. 1 if
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Comparison with the PSID control group

TABLE 3—SAMPLE CHARACTERISTICS AND ESTIMATED IMPACTS FROM THE NSW anD PSID SampLES

Treatment
Mean Effect  Regression
No. of Propensity No RE74 RET5 (Diff. in  Treatment
Control Sample Observations ~ Score* Age School Black Hispanic Degree Married USS USS U74 U755  Means) Effect
NSW 185 0.37 25.82 1035 0.84 0.06 0.71 0.19 2095 1532 029 040 1794% 1672¢
(633) (638)
Full PSID 2490 0.02 34.85 1212 025 0.03 0.31 0.87 19429 19063 0.10 0.09 =15205 4

0.02)°  (0.57) (0.16) (0.03) (0.02) (0.03) (0.03) (449) (361) (0.04) (0.03) (65T)F  (1014)
Without replacement :

Random 185 0.25 29.17 1030 0.68 0.07 0.60 052 4659 3263 040 040 =916 77
(0.03)  (0.90) (0.25) (0.04) (0.03) (0.05) (0.05) (554) (361) (0.05) (0.05)  (1035) (983)

Low to high 185 0.25 29.17 1030 0.68 0.07 0.60 052 4659 3263 040 040 —916 77
(0.03)  (0.90) (0.25) (0.04) (0.03) (0.05) (0.05) (554) (361) (0.05) (0.05) (1135 (983)

High to low 185 0.25 29.17 1030 0.68 0.07 0.60 052 4659 3263 040 040 =916 77

0.03)  (0.90) (025 (0.04) (0.03) (0.05) (0.05) (554) (361) (0.05) (0.05) (1135 (983)
With replacement

Nearest Neighbor 56 0.70 24.81 1072 0.78 0.09 0.53 0.14 2206 1801 054 0.69 1890 2315
0.07) (178 (0.54) (0.11) (0.05 (0.12) (0.11) (1248) (963) (0.11) (0.11)  (1202) (1131)
Caliper, 3 = 0.00001 85 0.70 2485 1072 078 0.09 0.53 013 2216 1819 054 0.69 1893 2327
(0.08)  (1.80) (0.56) (0.12) (0.05) (0.12) (0.12) (1859) (1896) (0.10) (0.11)  (1198) (1129)
Caliper, 3 = 0.00005 193 0.70 24.83 1072 078 0.09 0.53 014 2247 1778 034 0.69 1928 2349
0.06)  (2.17) (0.60) (0.11) (0.04) (0.11) (0.10) (1983) (1869) (0.09) (0.09)  (1196) (21
Caliper, B = 0.0001 337 0.70 2492 1073 078 0.09 0.53 014 2228 1763 0354 070 1973 2411
0.05) (2300 (0.67) (0.11) (0.04) (0.11) (0.09)0 (1965) (1777) (0.07) (0.08)  (1191) (122)
Caliper, 3 = 0.001 2021 0.70 2498 1074 0.79 0.09 0.53 0.13 2398 1882 0.53 0.69 1824 2333

(0.03)  (237) (070) (0.09) (0.04) (0.10) (0.07) (2950) (2943) (0.06) (0.06)  (1187) (11o1)

(A) The propensity score is estimated using a logit of treatment status on: Age, Age?, School, School’, Married, No degree, Black, Hisp, RE74, RE74%, RETS, RETS?, U7, UTS, UT4 = Hisp.

(B) The treatment cffect for the NSW sample is estimated using the experimental control group

(C) The regression treatment effect controls for all covariates linearly. For matching with replacement, weighted least squares is used, where treatment units are weighted at 1 and the weight for a control is the
number of times it is matched to a treatment unit

(D) The standard error applies to the difference in means between the matched and the NSW sample, except in the last two columns, where the standard error applies to the treatment effect.

() Standard crrors for the treatment cffect and regression treatment effect are computed using a bootsirap with 500 replications.
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Matching Using Propensity Scores

o Fitted Propensity Score: Obtained using two different logit
specifications, from DW (1999) and DW (2002) respectively.

Matching Algorithms and Balancing: DW algorithm for matching
propensity scores.

@ Start with a parsimonious logit model to estimate p(x).

@ Sort data according to p(x). Initially a rough grid with equal ranges
may be used. The sample observations are stratified such that within
a stratum the p(x) for treated and control units are close.

@ Within each stratum test for the equality of means between treated
and control units for each covariate. Regressors are balanced if there
is no statistically significant difference.

@ If, for some stratum, there is no balance, then for the unbalanced
stratum use a finer grid to achieve balance.

@ If there are many unbalanced strata, then the original logit model is
reestimated with an improved specification that includes interaction
and higher order terms among the regressors.
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Matched PS

Minimum p(X) Treated Untreated Total

0.000364 9 960 969
0.10 10 56 66

0.20 14 33 47

0.40 24 22 46

0.60 33 7 40

0.80 95 8 103

Total 185 1086 1271

Note: From the second row, for example, the propensity score lies between 0.10 and
0.20 for 10 treated and 56 untreated individuals.
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NSW - CPS comparison

Ficure |—HistoGram oF ESTIMATED PROPENSITY SCORE, Ficure 3—PropensITY Score FOR TREATED AND MATCHED
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NSW - PSID Comparison

FiGure 2.—HistoGraM OF ESTIMATED PROPENSITY SCORE,

FIGURE 4—PROPENSITY SCORE FOR TREATED AND MATCHED
NSW anp PSID

ComparISON UniTs, LOwEST To HIGHEST

1 T T T T T v T T 09
90 08 Bl
80 g
3O 1
£
_ T i ?
5 Bos 1
H | H
i 60 : a
E Zos
350 H
i — =
H i
; R E
\ z
Goz2 J
H H |_| i
i .ﬁr H e
] 01 0z 03 04 05 06 07 08 08 1 (] 20 0 80 B0 100 120 140 180 180 200
Estimated p{X}, 1254 comparison units discarded, frst bin contains 1007 units Treated unis from lowest o highest estmated propensily score

Pravin K. Trivedi University of Queensland TE estimation September 2017



Figure 6 —ProPENSITY SCORE FOR TREATED AND MATCHED

Figure 5—PRropENSITY SCORE FOR TREATED aND MATCHED
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Matched PS (I1)

@ Above PS computation has been restricted to the common support
region by testing the balancing property using those observations
whose propensity scores lie in the intersection of the supports of the
propensity score of the treated and the control units.

This restriction reduces the original sample significantly. The size of
the control group drops down from 2490 units to 1086 for the DW
(2002) specification.

Results differ from DW (2002) because the latter exclude control
units from NSW-PSID composite samples not on the basis of
common support region but on the basis of whether the estimated
propensity score of a sample unit is less than the minimum of the
estimated propensity score for the treated units.
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ATET Results (1)

Matching # # ATET  Std.Err % of
procedure treated control $1794
DW (2002) specification?
Nearest neighbor 185 53 2385 1209¢ 133
Radius, r = 0.001 54 517 —7815 11189  -436
Radius, r = 0.0001 24 92 —9333 22829 520
Radius, r = 0.00001 15 19 —2200 20869  -123
Stratification 185 1086 1452  1041€ 81
Kernel 185 1058 1309 975¢ 73
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Sensitivity analysis

160 THE REVIEW OF ECONOMICS AND STATISTICS

TABLE 4.—SENSITIVITY OF MATCHING WITH REPLACEMENT TO THE SPECIFICATION OF THE ESTIMATED PROPENSITY SCORE

Difference-in-Means

Number of Treatment Effect Regression Treatment Effect*
Specification Observations (Standard Error)® (Standard Error)®

CPs

Full specification 19 1360 (633) 1375 (638)
Droppin eractions and cubes 124 1037 (1005) 1109 (966)
Dropping indicators: 142 1874 (911) 1529 (928)
Dropping squares 134 1637 (944) 1705 (965)
PSID

Full specification 56 1890 (1202) 2315 (1131)
Droppin actions and cubes 61 1004 (2412) 1729 (3621)
Dropping indicators: 65 1845 (17200 1592 (1624)
Dropping squares 69 1428 (1126) 1400 (1157)

For all ather than the full specifi some covariates are not balanced across the treatment and comparison groups

(A) The regression treatment effect controls for all covariates linearly. Weighted least squares is used where treatment units are weighted at 1 and the weight for a control is the number of times it is matched
o a treatment unit.

(B) Standard errors for the treatment effect and regression treatment cffect are computed using a boatstrap with 500 replications.
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ATET Results (2)

A selection of results for various matching methods are summarized above.
The nearest neighbor estimate of ATET for the DW (2002) specification is
$2385 and for the DW (1999) specification, it is approximately at $560.
The performance of stratification and kernel matching is also mixed,
ranging from $1452 to $2156.

The benchmark estimate of the treatment effect is $1794; obtained by
regressing RE78 on D for the DW (2002) version of the NSW sample of
both participants and non-participants.

For the DW (2002) specification, the nearest neighbor estimator is very
close to the benchmark estimate and is even better than DW (2002) in
terms of reduced bias.

For stratification and kernel estimates, the bias is larger. For the radius
matching estimator, this bias is worse which gives negative estimates of
the treatment effect as opposed to the positive estimates that DW (2002)
found using caliper matching.
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Conclusions

1. PS methods approximate Lalonde’s benchmark estimates well.

2. the choice of the matching algorithm becomes important after
"irrelevant comparison units" have been discarded.

3. "Selection-only-on-observables" is an important and strong assumption.
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Comment from Smith and Todd (JoE, 2005)

@ DW found low bias in applying PSM , but some have expressed
skepticism of this finding.
@ Several studies of Heckman and coauthors conclude that the following
conditions should hold for low bias to be achieved.
@ Should include a rich set of variables related to program participation

and labor market outcomes
@ Comparison group should be drawn from the same local labor market

as the participants
© Outcome variable should be measured in the same way for treated and

comparison groups.
@ These conditions are not met in the DW studies.

@ Smith and Todd show that DW results are sensitive to their choice of
subsample of Lalonde data.
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OHIE background

@ OHIE an important modern example of RCT or a social experiment in
the tradition of the famous RHIE.

@ Background: See Finkelstein et al. (2012) and Baicker et al. (2013).

@ Here we provide only the essential details for interpreting the
application that follows.

@ At the time of the experiment the Oregon Health Program (OHP)
was separated into two components

@ OHP Plus, which served the categorically eligible Medicaid
population, and

o (OHP) Standard, an expansion program targeting low-income
uninsured adults, ineligible for OHP Plus.
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OHIE background (2)

@ Due to budgetary constraints OHP Standard was wound back and
closed to new applicants in 2004, leading to significant attrition over

the following four years.
o After 80 per cent decline in enrollments, in January of 2008 the state
determined to expand the program by an additional 10,000 positions.

@ Anticipating excess demand the OHP sought and received permission
to assign selection by lottery.

@ The RCT provides an opportunity to assess the impact of expanded
health insurance coverage on a variety of health and financial
outcomes within

RCT design framework.
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OHIE background (3)

o Lottery enrollment (February to March 2008) some 90,000 individuals

@ Over the next 6 months the government conducted eight waves of
lottery draws resulting in some 35,000 individuals being offered the
opportunity to apply for OHP coverage.

@ Opportunity to apply was extended to all members of the selected
individual's household, thus selection was random conditional on the
number of household members in the lottery list.

@ Approximately 35,000 individuals from 30,000 unique households were
selected, and of those approximately 30 per

cent were eligible and enrolled by the given deadlines.
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OHIE background (4)

@ Following the treatment, researchers tracked lottery participant
outcomes over the next 12 months with three mail surveys.

@ Examples consider the third of these mail surveys, which was
undertaken in seven mail out waves approximately 12 months after
treatment (July and August 2009).

o Nearly all individuals selected in the lottery as well as an
approximately equal number of non-selected individuals were mailed
questionnaires regarding health care needs, experiences and costs over
the previous 6 months.

@ Following an intensive follow-up protocol undertaken on a subset of
non-responders, the researchers achieved an estimated response rate
of approximately 50 per cent.
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OHIE background (5)

@ Examples measure the impact of expanded health coverage on out of
pocket medical expensitures over a 12 month period.

@ Include indicator variables capturing household size and survey wave
to control for potential correlation with the probability of treatment.

@ Include a set of relevant covariates to improve efficiency — smoking
status, income as a percentage of the federal poverty line, education
level and employment
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Example 2: Oregon Health Insurance Experiment
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OHIE RCT Data

@ The OHIE can be viewed as an important modern example of RCT or
a social experiment.

@ The background to this experiment has been covered in detail
elsewhere.

@ The size and complexity of the OHIE data set is reflected in the
public use data files that we were able to access.

@ In this section we will focus on the continuous variable
cost_tot oop 12m which measures out of pocket medical
expenses last 12 months
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. * Two-sample tT-test
. ttest 8y, by(treatment)

Two-sample t© test with equal variances

Group Obs Mean Std. Err. Std. Dev.  [956% Conf. Intervall
Hot sele 11,403 291.2126 6.997433 T4T.2196 277.4963 304.9287
Selected 11,276 246.5498 6.760028 Ti7.8373 233.299 269.8007
combined 22,679 269.0062 4.867889 T33.0821 269.4648 278.6478

diff 44, 66267 9.731627 26. 68601 63.73732

diff = mean(Not zele) - mean(Selected) t = 4.53%4

Ho: diff = 0 degrees of freedom = 22677
Ha: diff < 0 Ha: diff !=0 Ha: diff > 0

Pr(T < t) = 1.0000 PrilTl > Itl) = 0.0000 Pr(T > t) = 0.0000
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OHIE RA t-test

. *Ragression adjusted t-test with robust standard errors
. regress §y $zlist treatment, vce(cluster household_id)

Linear regression Kumber of obs = 19,393

F(9, 17347) = 27.68

Frob > F = 0.0000

R-squared = 0.0147

Root MSE = T26.91
(5td. Err. adjusted for 17,348 clusters in household_id)

Robust

cost_tot_oop-12m Coef.  Std. Err. t P>t [958} Conf. Interwvall
smk_curr_1Zm 11.96668 5.971198 2.00 0.045 2624328 23.67073
bhinc_pctfpl 12m 1.089545 099305 10.97  0.000 .B94897 1.284193
edu_12m_2 -8.614341  15.29018 -0.66 0.573 -38.58464 21.356696
edu_12m_3 50.16091  18.26766 3.24  0.001 23.3b465 94. 96717
edu_12m 4 30.44761  22.073E6 1.79 0.074 -3.848792 82.684
employ_hrs_1i2m_2 -37.98864 16.81801 -2.26 0.024 -70.96364  -5.023636
employ_hrs_12m 3 -b0.68008 16.37GEB -3.09 0.002 -62.7784  -1B.5817b
employ_hrs_12m_4 —-2Z2.48794 1444684 -1.66 0.120 -B0.80461 5.828738
treatment —-46.74203  10.64844 -4.30 0.000 —-66.61404  -24_87001
_cons 186.6666  18.82997 9.91  0.000 149.6568 223.474
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RA ATE estimate

. *Regression adjusted ate, atet, and pomeans using $xlist
. teffects ra ($y %$xlist $zlist ) (treatment)

Iteration O: EE criterion = 4.199e-24
Iteration 1: EE criterion = 1.702e-27

Treatment-effects estimation Kunber of obs = 19,393
Estimator : regression adjustment
Outcome model : limear
Treatment moedel: none
Robust
COSt_tot_oop_mod_12m Coaf. Std. Err. z P>|z]| [95Y, Conf. Interval]
ATE
treatment
(Selected vs Not selected) -40.44588 10.72638 -3.77 0.000 -61.46726 -19.4245
Flmean
treatment
Not selected 29%.1394  7.B22BTSH 38.83 0.000 277.3948 306.8839
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RA ATET estimate

. teffects ra (8y $xlist $zlist) (treatment), atet

Iteration 0O: EE criterion = 4.19%e-24

Iteration 1: EE criterion = 2.361e-28

Treatment-effects estimation Kumber of obs = 19,393
Estimator : regression adjustment

Outcome medel : limear
Treatment model: none

Robust
cost_tot_oop_mod_12m Coef. Sud. Err. z Pxlzl [98% Conf. Imtervall
ATET
treatment
(Selected vs Not selected) -356.98451 10.86248 -3.3 0.001 -B7.2T457 -14.69444
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IPW ATE estimate

. = Inverse probability weighted estimates
. teffects ipw (§y) (treatment $xlist)

Iteration 0: EE criterion = 6.756e-19

Iteration 1: EE criterion &.66Te-28
Treatment-effects estimation Number of obs = 22,679
Estimator 1 inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Robust
cost_tot_oop_mod_12m Coef.  3td. Err. z Pxlzl [95% Conf. Intervall
ATE
treatment
(Szlacted ve Not selected) -39.66961 9.931287 -3.98  0.000 -£9.03448  -20.10454
Plmean
treatment
Hot selected 286.0328 7.117486 40.1%  0.000 272.0828 299.9828
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PSM ATE estimate

. * Treatment effects based on PSM
. teffects psmatch ($y) (treatment $xlist, probit)

Treatment-effects estimation Number of obs = 22,679
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = |
Treatment model: probit max = 1018
AT Robust
cost_tot_oop_mod_12m Coef. Std. Err. z P>zl [98% Conf. Intervall
ATE
treatment
(3elacted ws Not selected) -48.87435  14.08333 -3.47  0.001 -76.47818  -21.27059
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Diagnostic checks for treatment balance

@ For matching methods to work satisfactorily the treated and
untreated groups should be "similar".

@ This should be tested. One way - graph and compare the distribution
of propensity scores.

o Stata has teffects overlap (post-estimation) command to check
this. This should be run after teffects nnmatch or teffects
psmatch command

o If the match is not good, consider trimming the sample or changing
the matching criterion.

o If sample sizes are similar a comparison is easier.
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Stata's teffects overlap command

. =quietly teffects psmatch (§y) (treatment $xlist, probit), caliper(0.03)
. =quietly teffects psmatch ($y) (treatment $xlist, probit), caliper(0.0B)
. =quietly teffects psmatch (§y) (treatment $xlist, probit), caliper(0.1BE)

. = teffects overlap plots of the estimated probability of getting each treatment
. teffects overlap

note: refitting the model using the generate() option

. graph export mus226_tel_psoverlap.eps, replace

(note: file mus226_tel_psoverlap.eps not found)
(file mus226_tel_psoverlap.eps written in EPS format)
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Figure 26.2. Probability overlap range
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TE estimation with observational data
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Linking counterfactual to linear models

@ Treatment effect models are 'black box’ in the sense that they don't
explain how the causal chain goes from treatment to the response.

o Effectiveness of a treatment is closely connected to the mechanism by
which the treatment is delivered. Absent a specification of that
mechanism, more tenuous is the causal inference derived from it.
Examples: Hours watching TV —> weight gain (or academic
performance)

@ Regression models are 'structural’ in the sense that they specify how
a 'third’ variable comes in and links treatment and response.

@ Treatment variable may be heterogeneous if a broad label is used to
describe a variety of diverse treatments (distinct from heterogeneous
response itself)

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 166 / 356



Structural form equations and treatment effect

e Key assumption (invariance): Given outcome equation ('y-eqn’) and
treatment equation ('D-eqn’), the y; equation does not change when
the D-equation does, otherwise the parameters in the y; equation are
useless for policy intervention on D. Consider a structural form for y;
(related to Marschak-Lucas policy evaluation critique)

¥i = By + ByDi + Baxi + uj.
@ With self selection into treatment we have the structure:
D; = a,x; +acci + g
o After substituting the second into the first we get the reduced form:
Vi = By + BaBcci + (Bs + Boax)xi + ui + g,

where x;, ¢; are observed and u;, €; are error terms.
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Structural form equations and treatment effect (2)

e If D; is exogenously assigned then equation (2) disappears from the
system. Structure (1) is unaffected by changes in (2) (by the
invariance assumption) and hence the parameters in (1) are useful for
policy analysis.

@ Estimating the reduced form (3) is problematic if the parameters in
(2) change ("Lucas critique") as then the parameter in (3) change
also.
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[V Estimation of LATE
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Local ATE (LATE)

@ Outcome is a function of observable x and a participation decision
indicator D :

Vi :X§ﬁ+DCD,'—|—U,'. (2)

@ Participation depends on IV z (which may be binary); interpret as
treatment assignment mechanism

Di =70 +mzi+vi, (3)
@ D! is a latent variable; has observable counterpart D; generated by

0if DF <0
Di_{lifo‘>0' “)
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Assumptions. (1) IV z appears in the D-equation and does not
appear in y-equation. May be continuous or discrete, and in a special
case is binary: exclusion restriction. Exclusion of regressors x from the
y-equation is a simplification.

(2) Conditional on (x, z) Cov|z, v] = Cov|[u, z] = Cov|x,u] =0,

Cov[D, z] # 0.

D depends upon z in a nontrivial fashion — use the notation D (z)
to emphasize dependence of D on z.

(3) No randomness of coefficients in (3)

(4) Many studies assume a just-identified model with untestable
exclusion restriction, but this is not essential.

Under the above assumptions |V estimation of (B,«) is consistent.
OLS is biased because Cov[D, u] # 0
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Estimation method

@ What is different from standard just-identified model with only
continuous endogenous variables?

e This model has an endogenous dummy variable which could represent
choice behavior — endogenous selection

o Outcome equation could also be discrete/binary.

o Joint conditional distribution of (y;, D;) is harder to specify in an
unrestricted fashion ; joint normality often assumed

@ In the standard case, 2sls, IV/GMM, MLE are widely-used estimators.

e Standard problems are: weak instruments; sensitivity to different valid
instruments which vary in their strength

@ Ignoring discreteness of D,linear methods (as well as diagnostic tests
of linear models) are often applied
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LATE estimator (1)

o Let 2/ =z+40, 6 #0. Then noting E[D|x, D (z)] = Pr[D(z) =1],
taking expectations gives

Elylx,D(z)] = x'B+aPr[D(z)
Elylx,D(Z)] = XB+aPr[D(Z) =

where, after subtraction, we have

1],
1],

Ely|x,Z'] — Ely|x,z] = a [Pr[D (Z') = 1] = Pr[D (z) = 1]] .
@ Solving for the local average treatment effect (LATE):

Xy =

]
]
_ E[ylzq — Ely|Z]

where the second line averages over x.
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LATE estimator (2)

@ This expression is well-defined if
Pr[D(z') =1]— Pr[D(z) =1] #0.

@ The sample analog of this expression is the ratio of the mean
difference between the treated and the nontreated divided by the
change in the proportion treated due to the change in z.

o If the y-equation has no x, then

Ely|z'] — Ely|Z]
Pr[D(z') = 1] — Pr[D(z) = 1]
@ o), = ratio of the average causal effect of z on y and the average
causal effect of z on D.

plim @), =
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Remarks and critique of the IV model

@ As it stands, the IV estimator has a blackbox character. The role of z
needs some elaboration.

@ Why and how does z impact D? Which of the participants in the
treatment get impacted and why?

@ Is there a theory of the mechanism by which z impacts D? Is there
more than one operating mechanism?

@ Suppose there is more than one IV; could different 1Vs differ in their
total impact because different subpopulations are susceptible to
different IVs? What does &;y measure? ATE?

@ Angrist, Imbens, Rubin (AIR, JASA 1996) divide the population into
("compliers, defiers, never takers, always takers") depending upon
assignment and choice of treatment.

@ AIR argue that @, is a measure of treatment effect on the compliers.
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Assumptions of AIR (JASA 1996)

@ Stable Unit Treatment Value Assumption (SUTVA) — (No 'general
equilibrium’ effects or no interdependence in treatment effects.)

Definition: Causal effect of z on D for i is D;(1) — D;(0)
Definition: Causal effect of z on Y : for i is Y;(1, D;(1)) — Y;(0, D;(0))
e Potential outcomes: Y|z, D;(z)] — [Y;(0,0), Y;(1,0), Yi(0,1),
Yi(1,1)]
e Potential treatments: [D;(z)
— D;(0) =0; D;(0) =1; D;i(1) =0; D;(1) =1, Potential
assignments: z — z;,=0; z =1
@ Assume treatment assigned randomly so all units have same
probability of assignment.
@ Assume treatment effect is not zero or that z — D is a nontrivial
effect.
@ Assume a valid exclusion restriction so zero causal effect for
never-takers and always-takers.
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Classification of units

Tabie 1- Classification of units according to assignment and treatment status

D;(0)=0| D;(0) =1

D;(1) = 0| Never-taker|  Defier

D;(1) = 1| Complier |Always-taker
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Are above assumptions enough for identification?

@ No, b/c causal parameter E[Y;(1, D;(1)) — Y;i(0, D;(0))] is a
weighted average of the effects on compliers and defiers

@ Need monotonicity assumption to rule out defiers.

Tabie 2 Causal effect of Z on Y according to assignment and treatment status

Yi(1,1) = ¥(0,0) = Yi(1) — ¥;(0)

Zi=10
D;(0)y=0 D;(0)=1
Di1)=0 Never-taker Defier
¥;(1,0) - Y;(0,0) =0 ¥i(1,0) — ¥;(0,1) = —(¥;(1) — Y;(0))
Zi=1
Di(l)=1 Complier Always-taker

Yi(1,1) — Y;(0,1)

=0
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Monotonicity assumption

Above analysis applies when the treatment effect does not vary with
individuals.

If, however, the treatment effect is heterogeneous, then there is a
potential for confounding the variation induced by z - - is the
observed variation due to z—differences or a —differences?

Under heterogeneity the idiosyncratic component of the treatment
effect,
i1 = uio + Dia; (%) —a (x;)),

is a function of a; (x;) — a(x;). Then the previous assumptions are
not enough to determine ATE or ATET.

Solution: add monotonicity assumption as an additional identifying
condition. This says that the instrument affects participation in a
monotone fashion. This means that if on average participation is
more likely given Z = w than given Z = z, then anyone who would
participate given Z = z must also participate given Z = w.
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Interpretation of “local”

@ Because it measures the treatment effect on the “compliers” that are
induced to participate in the treatment as a result of the change in z.

@ LATE depends upon the particular values of z used to evaluate the
treatment and on the particular instrument chosen.

@ "“Movers” may not be representative of the whole treated, let alone
the whole population. = LATE parameter may not be informative
about the consequences of large policy changes.

o If the instrument is binary, the LATE parameter and the IV estimate
are equivalent.

@ Under overidentification the LATE parameter estimated for each
instrument will in general differ. However, a weighted average may be
constructed.
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Critique of LATE

e Heckman (JEL, 2010) cites and summarizes many previous
discussions of LATE. Imbens (JEL, 2010) responds.

o (1) Unclear who the "compliers" are and whether LATE extends to the
population.

o (2) In general LATE # ATE or ATET; if no heterogeneity then
LATE = ATE

e (3) LATE is mechanical, does not make explicit the implicit economic
assumptions .

o Different instruments identify different parameters and may refer to
different TEs.

e Marginal treatment effect is more insightful and more fundamental
than LATE

@ LATE framework is too limited. Treatments may be multinomial or
continuous or ordered. Greater generality is required.
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IV when treatment effect is heterogeneous (1)

@ Consider a linear model with an endogenous treatment variable whose
coefficient is random, i.e. treatment effect is not constant across the
treated.

@ Suppose treatment variable y; is continuous. Outcome y; is the
outcome depends on y» and exogenous x;. The model is

ni = (lX—{-V,')D,'—}—Xi-ﬁl—F &
= aD; + X:-‘Bl'f‘ & + Vviyo;
= viD;i +ays + X+ wi;
D = yzi+xiB,+n;
wi = & +V; (D,' — 5)
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IV when treatment effect is heterogeneous (2)

e Marginal (TE) response = (a+ v;)

@ Assume E[e,-|x,-, DQ,’] = E[V,'|X,', D,] = 0. Then
Ele; + viDi|x;, y2i] = 0, and V[¢e; + v; Dj|x;, y»i] depends upon x; and
hence is heteroskedastic.

@ OLS estimator of («, B;) is consistent but not efficient. Follows from
the assumed exogeneity of y».

@ Now y» is endogenous. Assume:

Eleilxj,z] = E[n;|xi,zi] = Elvi[xi,z] =0,
Elel|xj,z] = 0% EVP|xiz] =0 Elfflxi, z] = oy,

o Endogeneity is introduced by permitting correlation between v and 7.
Specifically assume that E[v;|17] = p#;, which would hold if (v 7 )
were bivariate normal distributed. Under these assumptions, z is a
valid instrument, and x; is exogenous. The exclusion of z from the y;
equation is an identifying restriction.

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 183 / 356



IV is consistent!

@ For estimation of (??) use instruments (z x)
o However for consistent estimation need E|[w;|x;, zj] = 0.
— first component of w;, g;, is uncorrelated with z; by assumption;

— second component of w; is v; (Dj — D) can be shown (using iterated
expectations) to not affect the result that the IV estimator is consistent.

@ |V estimator is consistent but not efficient because of the
heteroskedastic error.
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More on heterogeneity and LATE estimation

o Consider 3 cases

o Case 1: Multiple group specific instruments (z; ..., zy) impact a single
endogenous treatment variable, each has different impact on the
treatment variable D, but treatment effect of D on y is homogeneous
across groups.

o Case 2: Treatment effect varies across groups but is constant within
each group. A single IV is available for the endogenous treatment.

e Care 3: There is dual heterogeneity, with multiple instruments
impacting treatment, and variation in treatment effect across groups.

@ We apply standard LATE methodology of IV regression of y on
(D, x). What parametr is identified?

o Case 1: LATE is identified;

o Case 2: Weighted sum of group-specific LATE parameter is identified;
Case 3:

o Case 3: Under additional assumption of independence between
(0D/0dz) and (dy/dD) , a weighted average of group-speciifc TEs.

o Interpretation of LATE is harder if the details of mechanism are

[ d
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[V-LATE Estimation in nonlinear models
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IV and LATE estimation in nonlinear models

@ Suppose conditional expectation function E[y|x] is not linear as we
have assumed so far.

e Specifically suppose that y; = Ely;|x;] + uj = exp(x!8)+ u; and
some components of x; are correlated with u;

@ The (L)ATE effect of the treatment variable x; in this model is the
AME = N7t 11 B; exp(x]B)

@ Also suppose that we have available a sufficient number of 1Vs which
satisfy the moment restriction E[z.(y; — exp(x.B)]= 0

This is a nonlinear IV problem which solves :

N N
mﬁinQ [Z yi — exp(x ] [Z Hyi — exp(x “3)]]

i=1

where W is a weighting matrix. Details omitted here.
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Implementing nonlinear IV or nonlinear GMM

@ In Stata we can implement nonlinear GMM is several ways.

o (1) Using evaluator moment function version of GMM- see example
below

e (2) Using a 2-step procedure based on residual augmentation

o (3) Using a control function for endogenous regressors

@ Methods (2) and (3) are two step methods in which we estimate first
the treatment assignment function, use the estimates to generate a
new variable(s), and then add this variable(s) to the outcome
equation and estimate it on the assumption that conditional on the
inclusion of generated regressors, there is no endogeneity problem.

@ How to get the ATE or AME for a binary treatment variable?

o Use bootstrap to estimate the standard errors if any 2-step procedure
was used to handle endogeneity

e Use margins command if it works, otherwise use Stata's
postestimation predict command to get sample estimates of
Ely|x, D = 1] and E[y|x,D = 0]
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NLIV estimation of over-identified model

. * Command gmm for one-step GMM (nonlinear IV) of overidentified Poisson model

. gom (docvis - exp({xb:private medicaid age age2? educyr actlim totchr}+{b0})), ///
> instruments(income ssiratio medicaid age age2 educyr actlim totchr) onestep nolog
Final GMM criteriom Q(b) = .0495772

GMM estimation

Number of parameters = &
Number of moments = 9
Initial weight matrix: Unadjusted Number of obs = 3,677
Robust
Coef. Std. Err. z P>zl [05% Conf. Interval]
private .5920142  .3397345 1.74 0.081 -.0738633 1.257882
medicaid .3186685  .1909951 1.67 0.095 -.0556751 .693012
age .3323179  .0705348 4.71  0.000 .1940723 .4705634
age2 -.002176  .0004643 -4.69 0.000 -.003086 -.001266
educyr .0190887  .0092216 2.07 0.038 .0010147 .0371626
actlim .2084078  .0433758 4.81  0.000 .1234828 2935128
totchr .241843  .0129869 18.62  0.000 .2163892 . 2672968
/b0 -11.86323 2.732711 -4.34 0.000 -17.21924  -6.507211

Instruments for equation 1: income ssiratio medicaid age age2 educyr actlim totchr _cons
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Varieties of 1V-based TE analysis

SERGIO LEONE

AND THE

UGLY _
GOOD BAD

1. The assignment (selection) equation based on well-argued theory or evidence
of how the mechanism works. Causal parameter is then plausible and may be
generalizable.

2. Argument supporting the assignment mechanism is essentially a blackbox in
which case we may be restricted to a conclusion like "it worked" or "it works" but
external validity is questionable. 3. A statistically valid instrument arrives by a
drone from somewhere, role in the assignment mechanism unknown, then accept
or reject?
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Regression Discontinuity Design
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Two influential case studies

David S. Lee. (2008) Randomized experiments from non-random selection
in U.S. House elections, Journal of Econometrics, 142(2), 675-697.

W. van der Klaauw, (2002) Estimating the Effect of Financial Aid Offers
on College Enrollment: A Regression-Discontinuity Approach ,
International Economic Review, 43(4), 2002, 1249-87
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RDD Design

o Consider a framework for evaluating causal effects of interventions in
which assignment to a treatment is determined at least partly
by the value of an observed covariate lying on either side of a
fixed threshold.

@ Crossing the threshold = treatment will be assigned. Not crossing
the threshold = treatment not assigned.

@ Example: Offer of financial support in college depends upon
satisfactory academic performance measured by a threshold value.

@ RDD designs were first introduced in the evaluation literature by
Thistlewaite and Campbell [1960. Regression-discontinuity analysis:
an alternative to the ex-post Facto experiment. Journal of
Educational Psychology 51, 309-317]

@ RD may be sharp (single-valued threshold— SRD) or fuzzy (a band—
FRD)
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@ Researchers interested in the causal effect of a binary intervention (as
in the RCM)

@ Distinguish between two designs, the Sharp and the Fuzzy (SRD and
FRD) designs. D; is a deterministic function of one of the
covariates, the forcing (or treatment-determining) variable
X D,‘ = 1{X,' Z C}.

@ No idiosyncratic element in selection for treatment.

outvome y
1257

757

X
5 x X
XX X
X XX
257 x X
1.25 2.5 3.75 5 6.25

selection variable S
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Fuzzy RDD

Propensity score
Pr(D=1|S)

*arp RD Design

I
Selection variable S S

e {X; > c} = i € treatment group (where participation is mandatory),
and all units with {X; < ¢} = i € the control group (whose
members are not eligible for the treatment).
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Using a control function

@ Suppose the outcome equation is

yi = x;B+aD; + uj, (6)
In the sharp RD design

Elu|c, D] = EJulc], (7)
where u denotes the error on the outcome equation, because c is the only

systematic determinant of D, ¢ will capture any correlation between D
and wu.

e If D =1|X; > c],dependence between D; and u; would make OLS
inconsistent

@ Treatment can be estimated by specifying and including the
conditional mean function E [u|D, c] as a “control function” in the
outcome equation. Thus

:ﬁ—l-aD,'—i—k(X,')—l-ﬁ,', (8)
where & =Y~ E [y,|D,,x,] If k(x) is correctly specified, the
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Identification Assumptions

o ATE estimated by comparing average y value of those just above and
those just below the cutoff.

@ In this RD design,
lim E[y|x] —lim E[y|x] =a+lim E[u|x] — lim E[ulx]. (9)
xlc xTc x|lc xTSc

@ Formally assume that without treatment, individuals in a small
interval around ¢ would have similar average outcomes

Assumption Al. The conditional mean function E|[u|x] is continuous at
c.

im Ely|x] ~lim Ely} (10)

xlc

Assumption A2. The mean treatment effect function E[a;|x] is right
continuous at c.
yi =B +aW +k(x)+e, (11)

where E =Yi— E [y,-|D,-, X,']
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SRD (1)

Under randomization (Y(1), Y(0)) L D

To identify the average causal effect of the treatment, the SRD
design looks at the discontinuity in the conditional expectation of the
outcome, i.e.

Tsrp = E[Y;(1) = Yi(0)|X; = c]
Justification? Appeal to smoothness and continuity of distribution
function assumption.

Conditional regression of Y (1) and Y(0) on X = x are continuous in
x. Then the estimand is the difference of two regression functions at a
point.

TSRD —||mE[ i(1 )|X—X]—I|m[ (0)|Xi = x]

Compare mean outcomes for treated and untreated at the margin.
Identify the intervention effect locally at the threshold for selection.
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SRD (2)

@ Because of stochastic independence assumption (Y (1), Y(0)) L
D|X = ¢, SRD is interpreted as a quasi-experimental design. Similar
to an exclusion restriction.

@ The local dispersion in outcomes at c is purely random and equivalent
to variation under random assignment.

e For a sufficiently large sample
T = limy|c E[Y;(1)|X = x] — lim[Yi(0)|X; = x can be estimated
using only data in the neighborhood of c.

o If sample not large enough, assume parametric form for the regression
function (usually two polynomial) away from discontinuity.
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SRD (3)

@ Example: Party affiliation and voting behavior of congressman. Here
x = 50% of the votes. Districts in which the Democratic vote is just
less than 50% are very similar to the districts in which the vote
exceeds 50%. Yet party affiliation (here the causal variable) leads to a
sharp difference in voting behavior at 50%, i.e. a case of SRD.

@ In the FRD design the probability of receiving the treatment need not
change from zero to one at the threshold. Design allows for a smaller
jump in the probability of assignment (propensity score) to the
treatment at the threshold:
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FRD

@ FRD allows for random unobserved component in the treatment
assignment; for identification require additional assumption.

@ Treatment assignment may depend upon both observables and
unobservables (to the econometrician)

e Assume: Y(1), Y(0), D(c) stochastically independent of X in the
neighborhood of c.

@ In FRD design the probability of receiving the treatment need not
change from zero to one at the threshold. May have a smaller jump
in the probability of treatment assignment at the threshold:

. limy ) E[Yi|X = x] — limy [ Vi Xi = x]
PO limy c EDI|X = x] — limy  [Di| X; = X]
A in outcome

A in assignment probability

where limy . E[Dj|X = x] — lim,1.[D;j|X; = x] # 0 because of the
known discontinuity at c.
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FRD with heterogeneous response

@ In the case of heterogeneous treatment responses we need
additional assumptions.

Assumption A2*. The average treatment effect function E|a;|x] is
continuous at c.

Assumption A3. D; is independent of &; conditional on x near x = c.

yi = B+ aE[Dilx] + k (x) + e, (12)
where ¢; = y; — E [yi|Dj, x;] and k(x;) is a specification of E[u;|x;].
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Monotonicity assumption

» Assumption A4: D;(x) is non-increasing in x at x = c.

» Assumptions of an FRD analysis = comparing treated and control units
with X; = ¢, is likely to be the wrong approach.

» Categorize heterogeneous responses into: (1) compliers; (ii) defiers; (iii)
never-takers, and (iv) always-takers

» Why? Because the treated units with X; = c is heterogeneous with both
compliers and always-takers, and control units at X; = ¢ consist only of
never-takers. More on this when we cover the Local ATE in the IV case.
» Comparing these different types of units has no causal interpretation
under the FRD assumptions.
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Other assumptions

» Fuzzy nonparametric regression discontinuity: D determined by x and
€.

» SRD rare in practice because treatment assignment usually involves
multiple (not just one) decisions.
» To deal with fuzzy RDD, need to assume

i) Selection is on observable at x ~ T

ii) The propensity score for receiving treatment has a break
at T
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Key theoretical and conceptual contributions

@ the interpretation of estimates for fuzzy regression discontinuity
(FRD) designs allowing for general heterogeneity of treatment effects
(Hahn et al., 2001, HTV from hereon),

@ adaptive estimation methods (Sun, 2005),

@ specific methods for choosing bandwidths (Ludwig and Miller, 2005),
and

@ various tests for discontinuities in means and distributions of
non-affected variables (Lee, 2007; McCrary, 2007)
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Interpretation and connections with TET estimation

External validity

o D =1if x > c, otherwise 0, where T is a known threshold. Although
the T and C groups are not comparable in most x values, they are
comparable on a small neighborhood of x = T. The treatment D is
imposed on the individuals by a law or rule depending on x or e.

@ In time series RDD is equivalent to the before-after (BA) design.

@ Comparison between DD design vs. RDD and BA.

@ DD has the advantage that there the control group is subject to a
time effect but not the treatment effect; but in BA and RDD,
everybody potentially gets the treatment.

@ SRD/FRD designs at best provide estimates of the average effect for
a subpopulation

@ FRD design restricts the relevant subpopulation even further to that
of compliers at this value of X.
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Graphical Analysis

Graphical analyses: RD designs suggests that the effect of the treatment
of interest can be measured by the extent of the discontinuity in the
expected value of the outcome at a particular point.

Figure ITa: Candidate's Probability of Winning Election t+1, by
Margin of Victory in Election t: local averages and parametric fit

T
-025 020 -015 -010 -005 000 005 010 0.15 020 025
Democratic Vote Share Margin of Vietory. Election t
Figure IIb: Candidate's Accumulated Number of Past Election

Victories, by Margin of Victory in Election t: local averages and
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Graphical Analysis 2

Democratic Vote Share Margin of Victory. Election t

Figure ITh: Candidate's Accumulated Number of Past Election
Victories, by Margin of Victory in Election t: local averages and
parametric fit
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Parametric estimation of RD model

@ RDD can be implemented by parametric methods.

@ Using parametric regression model to extrapolate counterfactual is an
option

Vi =Byt ByDi Bt u,  E(u)=0; E(ulx) =0
where B, # 0 implies a break or discontinuity in the regression function as

X increases.

@ Parametric RDD is heavily model-dependent, so the possibility of
misspecification is a serious problem. This motivates nonparametric
RDD.
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Parametric estimation under endogenous selection

o If Cov[D, u] # 0, OLS regression will produce a biased estimate of a.
o Consider
Vi :ﬁ—I-DéE[D,'|X,'] —|—k(X,')—|—£,', (13)
where ¢; = y; — E [yi|xi] and k(x;) is a specification of E[u;|S;].
@ Stage 1: Propensity score function for a fuzzy RD design as

E[Di|xi] = f(x) + v1[x > c] (14)

where continuous function of x, f(x;), is continuous at c. By
specifying the functional form of f (or by estimating f semi- or
nonparametrically) we can estimate <y, the discontinuity at c.

Stage 2: The control function-augmented outcome equation is then
estimated with D; replaced by the first stage estimate of E[D;|x;| =
Pr[D; = 1|x;]; this estimate will be discontinuous in x whereas the
included control function for k (x) would be continuous in x at c. Correct
specification of (S;) and k(S;) = consistency of two-stage procedure.
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Nonparametric estimation

@ Nonparametric regression can estimate the treatment effect in both
the SRD and FRD designs.

Yii = BaJ + &(xi) + uji
where g(+) is an unknown function continuous at the point of

discontinuity;

@ Leads to the interpretation of borderline randomization. 3, is the
treatment effect for the subpopulation x ~ T.

@ Two unusual features in estimation:

(1) we need the value of the regression function at a single point, and
(2) that single point is a boundary point.
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Nonparametric estimation 2

@ Then the usual nonparametric kernel regression does not work very
well.

@ Local linear regression (Fan and Gijbels, 1996) is more relevant.

@ Instead of locally fitting a constant function, we can fit linear
regression functions to the observations within a distance h on either
side of the discontinuity point.

@ In the FRD design, the treatment effect is a ratio of two differences.
So local linear regression should be used for both differences.
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LATE - RDD - Matching

o Identification assumptions of FRD and LATE are very similar

e SRD/FRD cannot identify the treatment effects on individuals far
from the discontinuity threshold. Hence similar to LATE

@ Matching excludes selection on unobservables. Inference based on
balanced samples using observables

@ Combining RE and matching can help deal with endogenous or
self-selected treatrment (GMM, control functions, V)
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Examples of RDD

» See Lee & Lemeiux (JEL, 2010) for coverage of applications in
education, labor, political economy, crime, environment, health etc

TABLE 5 (continued)
REGRESSION DISCONTINUITY APPLICATIONS IN ECONOMICS

Study Context Outcome(s) Treatment(s) Assignment variable(s)
Health
Card and Shore-Sheppard ~ Medicaid, Overall insurance Medicaid eligibility Birthdate
(2004) United States coverage
Card, Dobkin, Medicare, Health care utilization ~ Coverage under Age
and Maestas (2008) United States Medicare
Card, Dobkin, Medicare, California Insurance coverage, Medicare coverage Age
and Maestas (2000) Health services, Mortality
Carpenter and Dobkin Alcohol and mortality,  Mortality Attaining minimum Age
(2009) United States legal drinking age
Head Start, Child mortality, Head Start funding County poverty rates
United States educational attainment
Maternal education, Infant health, fertility  Age of school entry Birthdate
United States, timing
California and Texas
Snyder and Evans (2006)  Social Security Mortality Social security Birthdate
recipients, United payments ($)

States
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Implementing RD estimation in Stata
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Implementing RD

@ Two main user-provided packages are rdrobust (Calanico et al:
Stata Journal, 2014, 16(2)) and rd (Nichols, Stata Journal 2007,
7(4))

@ rdrobust is more up to date and complete; includes commands for
point and interval estimation, bandwidth and window selection and
data plots.

@ Standard data plot commands in Stata include twoway scatters;
another useful one i user-provided cmogram

o Graphical plots can be very suggestive and have a significant role in
implementing rd analysis.

@ rd analysis can also be implemented in a parametric setting so
standard estimation commands have a role also
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Simulating RD data using a parametric model

. Set obs ZbU
number of observations (_N) was 0, now 250

. set seed 10101
. generate t=_mn - 125
. generate D =0

. replace D = 1 if ¢t > 0
(125 real changes made)

. generate x = 0.5*t + runiform(-5,5)
. generate xsqg = x°2

. *Generate deviations from sample mean
. egen xbar = mean(x)

. egen xsgbar = mean(isq)

. *Generate y using a quadratic regression
. generate y = -10 + 80#D + 2% (x-xbar) - 0.025%(xsq - xsgbar) + rnormal(0,1)
. *Treatment effect here is 80
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Code for a scatter plot

scatter y x, msize(small) xline(0) yline(-10) yline(70) ///
xtitle("x") ytitle("Score") ///

jitter(s) ///

Il 1fitei y = if D==1 ///

Il 1fitci y x if D==

WY WY
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RD plot with linear fitted lines
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Figure 27.1. Regression discontinuity
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Binned smoothed data

. *#*Conditional mean of y displayed using cmogram command
. cmogram y x, cut(0) scatter line(.5) gfit

Plotting mean of y, conditional on x.
n = 250

Bin #1: [-63.95776748657227,-58.15963444384662] (n = 10) (mean = -196.4062973022461)
Bin #2: (-58.15963444384662,-52.36150140112097] (n = 13) (mean = -161.1975907545823)
Bin #3: (-52.36150140112097,-46.563368358395632] (n = 11) (mean = -137.0733358209783)
Bin #4: (-46.56336835839532,-40.765623531566967] (n = 9) (mean = -113.7636896769206)
Bin #b: (-40.76523531666967,-34.96710227294402] (n = 13) (mean = -87.80213517409105)
Bin #6: (-34.96710227294402,-29.16896923021837] (n = 8) (mean = -64.56368446350098)
Bin #7: (-29.16896923021837,-23.37083618749272] (n = 1B6) (mean = -48.6164426167806)
Bin #8: (-23.37083618749272,-17.57270314476707] (n = 11) (mean = -28.90448969060725)
Bin #9: (-17.57270314476707,-11.77457010204142] (n = 11) (mean = -9.29847235029394)
Bin #10: (-11.77457010204142,-5.976437056931677] (n = 13) (mean = 4.722255926865798)
Bin #11: (-5.97643705931577,-.1783040165901184] (n = 11) (mean = 33.95388473163951)
Bin #1: [0,6.037168619273793] (n = 14) (mean = 98.97268758501325)

Bin #2: (6.037168619273793,12.07431723854759] (n = 10) (mean = 119.1972259521484)
Bin #3: (12.07431723854759,18.11147585782138] (n = 12) (mean = 127.4393927256266)
Bin #4: (18.11147585782138,24.14863447709517] (n = 10) (mean = 134.006379699707)
Bin #5: (24.14863447709517,30.18579309636897] (n = 15) (mean = 138.5507456461588)
Bin #6: (30.18579309636897,36.22295171664277] (n = 12) (mean = 141.9060356547038)
Bin #7: (36.22295171564277,42.26011033491656] (n = 11) (mean = 143.3880573619496)
Bin #8: (42.26011033491656,48.29726895419036] (n = 13) (mean = 142.6057258019081)
Bin #9: (48.29726895419036,54.33442757346416] (n = 12) (mean = 139.3912696838379)
Bin #10: (54.33442757346415,60.37168619273794] (n = 8) (mean = 136.0707206726074)
Bin #11: (60.37158619273794,66.40874481201172] (n = 8) (mean = 128.9728736877441)
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cmogram plot with np regression
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Figure 27.2. Conditional mean of y given x using bins
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rd plot with Ipolyci superimposed

scatter . . . .
. scatter y x, msize(small) xline(0) yline(-10) yline(70) ///

> xtitle("x") ytitle("Score") ///
> || lpolyci y x if D==1, bw(0.05) deg(2) n(260) fcolor(none) /,
49 pdf> || 1polyci y = if D==0, bw(0.05) deg(2) n(250) fcolor(none)
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Eyeball test of y/x discontinuity

Histogram comparison
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Figure 27.4. Histogram comparison
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Stata's command

Table 27.1. Selected options of rdrobust command

Option Deseription

e cutoff) specifies the RD eutoff

p(pvalue) order of local polynomial used for estimation

ql qualue) order of local polynomial used for bias correction

fuzzy (fuzzyvar) specifies treatment variable used in fuzzy RD estimation
kernel(kernelfn) specifies kernel function used in lpoly estimation
bwselect(bwmethod)  specifies bandwidth selection procedure

all specifies that rdrobust uses all three different estimators
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Empirical Application of RD
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Incumbent advantage example

@ In this well-known application to data from the US senate elections
the interest is in discontinuity in relation between percentage of vote
(y) at t + 1 given the margin achieved at t. Does the incumbent
advantage in polling jump at the point of discontinuity?
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Parametric test of srd using quadratic regression

. use rdrobust_RDsenate.dta

summarize
Variable Obs Mean Std. Dev. Min Max
margin 1,390 7.171158 34.32488 -100 100
vote 1,297 52.66627 18.12219 0 100

* [uadratic
. Tegress vote margin dwin dwin_by_margin dwin_by_marginsq, vce(robust)

Linear regression Number of obs = 1,297

F(4, 1282) = 324.42

Prob > F = 0.0000

R-squared = 0.5878

Root MSE = 11.652

Robust

vote Coef. Std. Err. t P>t [95% Conf. Intervall
margin .2163043  .035573b 6.08 0.000 .1465161 . 2860926
dwin 6.770134  1.024209 6.61 0.000 4.760838 8.77943
dwin_by_margin .109616  .0671882 1.63  0.103 -.0221939 .241426
dwin_by_marginsq .0006271  .0005976 1.05 0.294 -.0005453 .0017995
_cons 44.90423 6962277 64.50 0.000 43.53837 46.2701

. test dwin dwin_by_margin dwin_by_marginsq
(1) dwin =0

( 2) dwin_by_margin = 0
( 3) dwin_by_marginsq = 0
F( 3, 1202) = 15.15
Prob > F = 0.0000
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obust output 1 under srd

. * Use Catteneo command

. *rdbinselect vote margin

. rdrobust vote margin, all
Preparing data.

Computing bandwidth selectors.
Computing variance-covariance matrix.
Computing RD estimates.

Estimation completed.

Sharp RD estimates using lecal pelynemial regression.

Cutoff ¢ = 0 | Left of ¢ Right of ¢ Number of cobs = 1297

NN matches = 3

Number of cbs 343 310 BW type = CCT

Order lec. poly. (p) 1 1 Kernel type = Triangular
Order bias (q) 2 2
BW loc. poly. (h) 16.794 16.794
BW bias (b) 27.437 27.437
tho (h/b) 0.812 0.612
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obust output under srd 2

Outcome: vote. Running variable: margin.

Method Coef. Std. Err. z P>zl [95% Cenf. Intervall

Conventional T7.4253 1.4954 4.9656 0.000 4.49446 10.3561

Robust - - 4,2675 0.000 4.06875 10.9833

All estimates.

Method Coef. Std. Err. z P>zl [95% Cenf. Intervall

Conventional T7.4253 1.4954 4.9656 0.000 4.49446 10.35661
Bias-corrected 7.5265 1.4054 5.0333 0.000 459568 10.4574

Robust 7.5265 1.7637 4,.2675 0.000 4.06975 10.9833
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rdrobust under frd set-up

@ How to generate frd sample? How in practice does frd data get
generated?

@ One way is that treatment assignment depends on both the running
variable x and another unobserved missing variable z.

@ Reconsider the dgp used under srd.

@ With the cut-off now obscured we expect RD estimate under srd
assumptions to be possibly biased

@ A numerical example based on generated data illustrates that the
estimated treatment effect depends upon choice of local polynomial
and bandwidth selected.
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Example of frd data generation

. set obs 260
number of observations (_N) was 0, now 250

. set seed 10101

. generate t=_m - 125.5

. generate z = runiform(-3,2)

. generate X = 0.5%t + runiform(-5,5)
. generate D = 0

. % Add an extra condition for treatment assignment

. * Treatment assignment also depends upon =z
replace D = 1 if z»0 & = >0

(46 real changes made)

. generate xsq = x"2

. *Generate deviations from sample mean
. egen xbar = mean(x)

. egen xsqbar = mean(xsq)
. egen Dbar = mean(D)
. generate u = runiform(-50,50)

. *Generate y using a guadratic conditicnal regressiocn
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Estimation under srd assumptions applied to frd data
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Figure 27.10. RD plots with correctly and incorrectly specified cutoff
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srd estimate based on frd data

Sharp RD estimates using local polynomial regression.

Cutoff ¢ = 0 | Left of ¢ Right of c Number of obs = 250

NN matches = 3

Number of obs 89 B84 BW type = IK

Order loc. poly. (p) 2 2 Kernel type = Triangular
Order bias (q) 3 3
BW loc. poly. (h) 44,123 44,123
BW bias (b) 24.325 24.325
rho (h/b) 1.814 1.814

Outcome: y. Running variable: x.

Method Coef. Std. Err. z P>zl [95% Conf. Intervall

Conventional 31.407 24,375 1.2885 0.198 -16.3668 79.1803

Robust - - 0.5750 0.565 -168.537 308.486

All estimates.

Method Coef. Std. Err. z P>zl [95% Conf. Intervall

Conventional 31.407 24375 1.2885 0.198 -16.3668 79.1803
Bias-corrected 69.974 24.375 2.8708 0.004 22,2008 117.748

Robust 69.974 121.69 0.5750 0.565 -168.537 308.486
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Power and sample size determination in RDD (1)

o Parametric RDD model: y; = ¢+ B, D+ vg(xi) + &
e Parameter of interest is B,.Suppose we apply OLS.
. o2(1— R?)
y
Varrpp =
Bo) = Mot - )1 - D)

where R? =regression R?, p =proportion of treated; r% . = squared

correlation between D and x, (75 = variance of outcome.

Then (Lee, Hyunshik, and Tom Munk. "Using regression discontinuity design for
program evaluation."

Proceedings of the 2008 Joint Statistical Meeting. American Statistical
Association, 2008))
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Power and sample size determination in RDD (2)

@ In designing RDD we are dealing with a design question which is
essentially the same as in an RCT

@ Hence sample size can be determined using the same tools as in RCT.

@ We require a (significance level), 1 — B (desired power), and desired
minimum detectable standardised treatment effect size, § = ,BD/(T

@ Then the required sample size is determined by

x _ (1 — R2)(21_D¢ — 25)2
52p(1 - P)(]- - r[2),x)
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Power and sample size determination in RDD (3)

@ In a large sample the power is given by

Np(1—p)(1—=rp )
1-p=1-Pr|z< zl,x—a‘\/ P (1p_R2) D.

@ RDD is less efficient than RCT; Variance of B, under RCT is given by

. o2 (1 - R?)
varret (Bp) = m

so the relative efficiency of RCT is RE =1/(1 — rélx)
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Multi-level treatment with many counterfactuals
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Multilevel treatment effects

@ Most of preceding discussion has focussed on a binary set-up with just
one level of treatment which is received or not.

@ In practice treatments are often multi-valued

@ Each subject receives one of several mutual exclusive treatments.

@ Multilevel treatments may be exogenous or self-selected and
endogenous.

@ For example in the context of health insurance a purchaser of an
insurance policy may choose between policies with different levels of
generosity and coverage which then would affect the use of medical
services.

@ We consider extending the analytical methods considered so far to
such settings.
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ML treatments - features

o Multilevel treatment models may have ordered or unordered
treatments.

@ In either case there will be pairwise comparisons between either
adjacent or far apart levels of treatment

@ Implication - multilevel treatments involve many more parameters,
more counterfactuals, and require additional computations to support
pairwise comparisons

@ However, even in a multivalued treatment case, binary methodology
can be used for specific pairwise comparisons,

@ In general a multivalued treatment effects framework will deliver
greater efficiency; Cattaneo( 2010} establishes

consistency and normality of a class of ATE estimators
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Assumptions in ML TE estimation

@ As before assume conditional independence (selection on observables)
and exclude endogenous treatment.

@ Then results on regression adjustment and propensity scores extend to
multivalued treatments.

o Stata's teffects commands {teffects ra}, {teffects ipw},
{teffects ipwra}, teffects aipw

extend to multivalued treatments and will be illustrated in the next section.

o Commands {teffects psmatch}, {teffects nnm} do not.
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@ We use data on prescription drug expenditures of the elderly Medicare
population in the USA in 2003 and 2004 derived from Medicare
Current Beneficiary Survey. See (Li & Trivedi, HEC, 2014) for details.

@ This is subset of the data used pertaining to the elderly seeking
prescription drug coverage through privately obtained access to
various sources

@ Includes employer-sponsored plans {ESI}, {Medigap} plans and
Medicare managed care plans {MMC}.

@ Sample includes individuals with prescription drug insurance from
these three sources and we add a fourth comparison group of
{Medicare} elderly without such coverage.

@ The objective is to estimate treatment effects of the three levels of
insurance {inslevel} which is treated as exogenous (!)
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Frequency distribution across 3 plans with drug coverage

and one without (RA)

* Levels of prescription drug insurance coverage
. tabulate coverage, generate(inslevel)

Medicare/ES
I/Medigap/M
MC Freq. Percent Cum.
ESI 2,962 41.39 41.39
MMC 1,105 15.44 56.83
Medicare 881 12.31 69.14
Medigap 2,208 30.886 100.00
Total 7,156 100.00
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Ordered frequency distribution across 3 plans with drug

coverage and one without

. tabulate clevel

clevel Freq. Percent Cum.
0 881 12.31 12.21
1 1,105 15.44 27.75
2 2,208 30.88 BE8.61
3 2,962 41.39 100.00
Total 7,156 100.00

. mean drugexp, over{clevel)
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Annual expenditure on prescription drugs by level of

coverage

. mean drugexp, over(clevel)

Mean estimation Number of obs = 7,156
0: clevel = 0
1: clevel = 1
2: clevel = 2
3: clevel = 3
Over Mean Std. Err. [95% Conf. Intervall
drugexp
0 1207.278  42.15509 1124 .642 1289.914
1 1265.134  42.73006 1181.371 1348.808
2 1546.222  20.64614 1488.106 1604 .337
3 2389.012  42.92868 2304.859 2473.1865
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ATE of insurance levels 1-3 relative to no insurance (level

0)

. * Treatment effects ATE using regression adjustment
. teffects ra (drugexp h_age h_male h_white income_c genhelth, poisson) (clevel), nolog

Treatment-effects estimation Number of obs = 7,166
Estimator : regression adjustment
Outcome model : Poisson
Treatment medel: ncne
Robust
drugexp Coef. Std. Err. z P>zl [95% Conf. Intervall
ATE
clevel
(1 vs 0) 50.59879  59.86604 1.00 0.319 -b7.71689 176.91456
(2 vs 0) 202.3648  51.40428 5.68 0.000 191.4377 393.2015
(3 vs 0) 1132.768 57.4654 19.71  0.000 1020.138 1245.398
POmean
clevel
V] 1238.018 43.1246 28.71  0.000 1163.4956 1322.564

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 245 /



ATET of insurance levels 1-3 relative to no insurance (level

0)

. * ATET estimates using regression adjustment
. teffects ra (drugexp h_age h_male h white income_c genhelth, poisson) (clevel), atet nolog

Treatment-effects estimation Number of obs = 7,156
Estimator . regression adjustment
Outcome model : Poisson
Treatment model: none
Robust
drugexp Coef.  Std. Err. z P>zl [95% Conf. Intervall
ATET
clevel

(1 vs 0) 77.60105  58.22061 1.33 0.183 -36.50924 191.7113

(2 vs 0) 300.9626 50.77591 5.93  0.000 201.4436 400.4816

(3 vs 0) 1110.253  56.35429 19.70  0.000 999.8009 1220.706
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Continuation of previous table

. % Contrasts of treatment effects atfter regression adjustment
. contrast r.clevel, nowald
Warning: cannot perform check for estimable functioms.

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. [95% Conf. Intervall
POmeans
clevel
(1 vs 0) 59.50870 59.84142 -57.68824 176.8858
(2 vs 0) 292, 3646 51.48691 191.4521 393.2771
(3 vs 0) 1132.768  57.457190 1020.154 1245 .382

. contrast ar.clevel, nowald
Warning: cannot perform check for estimable functions.

Contrasts of marginal linear predictions
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ATE of insurance levels 1-3 relative to adjacent level

POmeans
clevel
(1 vs 0) 50.50879 50.84142 -57.68824 176.8858
(2 vs 1) 232.7658 50.77262 133.2533 332.2783
(3 vs 2) 840.4036 48.3194 T45.6903 035.1079

September 2017 248

Pravin K. Trivedi University of Queensland ¢ TE estimation



Other estimators

This exercise could also be implemented using teffects aipw command; for
details see chapters.
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Maximum likelihood estimation of TEs for models with
endogenous treatments
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Estimation of a canonical 2-equation model with

endogenous treatment

@ Begin with the canonical two-equation model presented during the
coverage of LATE.

@ This model has one "structural" equation for a continuous outcome
variable y and one reduced form equation for a binary treatment
variable, D.

@ Estimation of this model was done using 2SLS or IV estimation, under
the assumption that a valid IV is available and that there is an
exclusion restriction for identification.

@ Under certain additional assumptions this model can be extended and
estimated by maximum likelihood.
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@ Key assumption is that of joint multivariate normal distribution of
errors

@ Second key assumption is that the endogeneity structure is recursive,
not simultaneous. No feedback from outcome to the treatment is
allowed.

© Many empirically interesting extensions are now estimable and
described in the table below.

@ Binary or continuous treatment variable, including multivalued
treatment, is allowed.

© Additional endogenous variables may enter the outcome equation.

@ A specific form of selection is allowed also.
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Scope of Stata's new eregress command

@ Expanded scope of the eregress command is described in the table
below.

@ Linear and nonlinear joint normal models supported include LIML,
probit, ordered probit, tobit.

© Sub-command endogenous is an option for specifying reduced form
for additional endogenous regressors.

@ Equation for endogenous treatment is specified using entreat
subcommand

@ Ignoring endogeneity of treatment variable often amounts to neglect
of selection bias; i.e. then the estimated treatment effect includes the
selection component. i.e. ATE = Pure TE + Selection effect
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Stata's extended TE commands for endogenous treatments

Examples of Stata extended commands and optional subcommands

Linear regression with endogenous treatment
eregress y X, entreat(tl= z x, nointeract)

Linear regression with a continuous endogenous regressor and an endogenous treatment
eregress yl x, endogenous(y2 = x z1) entreat(t1=z3 x)

Linear regression with a continuous endogenous regressor and a binary endogenous treatment
eregress yl %, endogenous(y2 = x z1) entreat(ti=z3 x, probit)

Linear regression with a continuous endogenous regressor and multivalued treatment
eregress y1 x, endogenous(y2 = x zl) entreat(t2=z3 x, oprobit)

Linear regression with a continuous endogenous regressor, multivalued treatment and selection
eregress y1 x, endogenous(y2 = x z1) entreat(t2=z3 x, oprobit) select(sl = w x)
Probit regression with endogenous regressor and endogenous treatment

eprobit y1 x, endogenous(y2 = x z1) entreat(ti=z3 x)

Ordered probit regression with endogenous regressor and endogenous treatment

eoprobit y1 x, endogenous(y2 = x zl) entreat(tl=z3 x)
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Computational detail

@ Joint normality and recursive structure assumptions allow
factorization of the likelihood function into a conditional part and a
marginal part.

o Conditional part is the structural outcome equation, the marginal part
is the one or more of reduced form equations for endogenous
regressors.

o Computation is now feasible using the algorithm proposed by
Roodman, D.. "Estimating fully observed recursive mixed-process
models with cmp." (2009).

o Post-estimation Stata's margins command or the estat teffects
command can be used to estimate ATE.
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Interpreting ATE with endogenous treatment

@ When the regressor is endogenous, it includes the effect of individual
specific random error term,

@ Hence treatment effect measures the total effect of the regressor and
the effect of the idiosyncratic error. ATE = E[y|x,1]

@ Averaging over all impacted observations then implies averaging over
the random component also.

@ The resulting ATE is then called either the average structural mean
(ASM) or, in a binary outcome model, the average structural
probability (ASP).

@ In a linear model the implication is not consequential, but in a
nonlinear model, computation involves numerical integeration to
average over the error term.
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Application of eregress to endogenous ordered probit

treatment variable

An empirical application of eregress to an ordered probit model with
endogenous multinomial treatment is given in the course packet.

The variable of interest is log prescription drug expenditure; endogenous
treatment variable is an ordered variable for category of private insurance
There are four categories, the base category provides no coverage.
Multinomial probit model is used as reduced form for insurance choice.
The treatment effect is measured as percentage increase over the base
category.

Estimated ATE for the three insurance levels are shown in the table below.
They are estimated to be 39.8, 81.0, and 155.5 per cent higher,
respectively.
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ATE for the three insurance

. * Estimates of ATE and ATET
. estat teffects

Predictive margins Number of obs = 7,156
Model VCE : 0IM
Delta-method
Margin  Std. Err. z P>zl [95% Conf. Intervall
ATE
clevel
(1 vs 0) .397106  .1897812 2.09 0.036 .0251416 . 7690704
(2 vs 0) .8102799 . 254762 3.18  0.001 .3109556 1.309604
(3 vs 0) 1.565385 445699 3.49  0.000 .681841 2.428949
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Preview of selected topics not covered in the course (1)

Extensions to linear and nonlinear panel data models

Heterogeneity in responses characterized in a flexible manner

e Random effect models allowing for heterogenous response parameters
(Li & Trivedi, HEC, 2014)

o Finite mixture models (Munkin & Trivedi, HEC, 2012)

o Dirichlet mixture models (Hu, Munkin, Trivedi, JAE, 2015)

Studying impact on a the distribution of outcomes, not just the means

o Medicare Plan D choices and impact on prescription drug expenditure
(Li & Trivedi, HEC, 2014)
o Bayesian approaches

Interdependence between hierarchical treatments
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Li-Trivedi example of multi-level counterfactuals

Table [I. Summary statistics of expenditure and premium for each plan type

Plan type Variable N Median Mean Standard deviation Min Max
Medicare anyexp 1054 1 .84 037 L] 1
FF3 only totalexp 1054 6ll.36 100412 122822 L] LB52.71
prempaid 1054 0 1] 0 i i}
ESI anyexp 2848 1 (96 0le L] 1
wif BX totalexp 1848 1822.45 237565 230032 L] 5493382
prempaid 2848 35 656 66l L] g9
ESI anyexp 238 1 .04 024 L] 1
wio RX totalexp 238 0975 130427 111782 L] 4885.19
prempaid 238 104 G487 T4 60 L] 354
Medigap anyexp 57 1 093 025 1] 1
wil RX totalexp 57 127678 1655.74 152072 L] 13.206.75
prempaid 57 150 169.91 0584 L] #3333
Medigap anyexp 1778 1 0oy 024 1] 1
win RX totalexp 17 103360 128347 1351.81 L] 16.028.83
prempaid TTa 133.33 13293 572 L] $33.33
MMC anyexp 1043 1 095 022 L] 1
wil RX totalexp 1043 £65.2 124434 1448 6 L] 3501832
prempaid 1043 20 4471 6l 8 0 604
MMC anyexp 127 1 [T 03 L] 1
win RX totalexp 127 402.72 THEA 05761 L] k6. 98
prempaid 127 & 5838 5118 L] 266

FFS, tee-for-service; ESL, employer-sponsored insurance; RX, prescription drug coverage; MMC, Medicare- managed care.
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Average vs. median ATET

Table V. Bayesian result of average treatment effects and median treatment effects

Treated group Counterfactual choice  ATET [%change]| (Se.) MTET (Se.)
FH Medicare FES IOI4|'5]77|* " ©17)  T3354w (741)
L;'\f‘ﬁgs"‘;’gw’ RX Medicare FES Ssiﬂr " (7.80) 40373+ (6.22)
M X Medicare FES ]f’jl'f;r * (632) 63.28 (5.06)
£ Plans W/RX Medicare FES 756|'5627 I* - (722) 47305+ (4.89)
o X Medicare FES + l{Zzl . ©.18) 32043+ (122)
h;{f‘ﬂﬁ‘l}%""’ RX Medicare FFS ]0’3"%'] (7.93) 0.97 (6.06)
NME o RX Medicare FFS -t 3[27'518” (1125 —86.89 (6.49)
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Treatment effects of drug plans with different

counterfactuals (1)

13201211
4 996 1009

ESIw/RX Medigap w/ RX MMC w/RX All plans w/ RX

OATET from ETPM BATET from TPM O Observed mean difference

(@) Treated group: plan with drug coverage: Counterfactual choice: Medicare FFS
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Treatment effects of drug plans with different

counterfactuals (2)

$600 452 406 386 351 422 326 331

$400 . .
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ESI w/o RX Medigap w/o RX MMC wio RX All plans wio RX
OATET from ETPM BATET from TPM 0O Observed mean difference

(b) Treated group: plan without drug coverage; Counterfactual choice: Medicare FFS
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Brief remarks about some under-researched topics
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Idiosyncratic list of under-researched topics

@ Estimating the distribution of TEs

Motivation: Policy interventions often impact the full
distribution of outcomes, distribution is nonsymmetric,
so focus on ATE insufficient

@ TEs in panel data framework

Motivation: Interventions have short-term and
long-term impacts.

@ Joint treatment of multi-valued treatments and multi-valued
outcomes

Motivation: Interventions may target several outcomes
and use several interventions simultaneosuly.
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Modeling the distribution of outcomes

Three methods are available and well-established

@ Quantile regression for continuous outcomes

@ continuous/discrete exogenous intervention (qreg)
@ binary endogenous treatment (ivqte)

@ Bayesian modeling

@ Posterior distribution of any function of parameters and variables for
exogenous or endogenous interventions

© Regression adjustment

@ Postestimation predictive margins generating conditional distributions
for specified configurations of exogenous variables
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CQR approach explained

quantiles of In(totexp) if totexp > 0

0 2 A4 .6 .8 1
fraction of the data

0 1
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CQR approach explained (2)

o Treatment shifts the distribution of outcomes (vertical axis) as do
other covariates.

@ The shift can be vertical upwards or downwards, or different at
different quantiles (horizontal axis)

@ At each quantile of interest we can estimate a conditional quantile
function with treatment variable and conditioning covariates.

This can be done with a single- or multivalued intervention

@ Potential outcomes can be generated at each quantile of interest
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Bayesian posterior distribution of ATET, ATE

"We estimate the posterior distributions of the ATE and LATE, parameters
for a synthetic “representative” individual who is a white 40-year-old male with 13
years of education, with very good health, and without any injuries, physical
limitation, or chronic conditions, who is married and has three family members,
including himself, annual income of $32,000, living in a metropolitan area in the
South, observed in year 2001, and whose employment is with a firm of 146
employees."

From Munkin & Trivedi (JBES, 2006)
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Posterior distribution of ATET, ATE : Example

Typical Person in Excellent Health Typical Person in Poor Health
i [, = 4 f
. | A
frals I l o - Il II
/! B
© | |
I ~ A |
- - ] II .F 'l
- \
™ / 'l A
o - — \ o - - -
0 5 1 15 0 5 1 15 2 25
ATET on Number of Visits ATET on Mumber of Visits

From:From Munkin & Trivedi (JBES, 2006)
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Post. distribution ATET and ATE

HMO Effect
PPO Effect

—————
——
——

-200 0 200 400
Expenditures in $

Figure 2. Density of treatment effects for ambulatory expenditures
From: Deb, Munkin, Trivedi: JAE-2006
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TE in panel fra

o Panel data allows us to study treatment effects in a dynamic
framework allowing for unobserved heterogeneity as well.

@ For continuous outcomes and linear models, RA is the obvious
approach as it can simultaneously deal with several complications

@ For nonlinear models (binary or count outcomes, interval regression,
survival models) random effects framework is easier to handle

@ Main limitation is that regressor balance is hard to maintain.
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MV-outcomes and interventions

This topic is at an embyonic stage.

Usual practice is to study a single outcome at any time, ignoring
possible dependence between outcomes.

The standard assumption rules out dependence between outcomes of
different subjects.

For identification may need to rule out also dependence between
different outcomes also
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Appendix A: Binary Outcome Models and
Propensity Scores
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Introduction

@ Discrete choice or qualitative response models are for y that takes
only a finite number of discrete values.

@ Here we consider binary outcome models where only two values are
taken, 0 and 1.

@ Particularly logit and probit models, which are nonlinear models.

@ Regression models for binary outcomes are constructed to model the
conditional probability of a binary discrete outcome

@ Examples: Whether to buy a new car; whether to vote for a particular
party; whether to choose a particular course

@ Topic well covered in most texts.
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utline

@ General properties of binary outcome models
@ Probit, logit, LPM and OLS models.

@ Latent variable formulations, especially random utility model.
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Simple binary outcome model

@ The coin toss example of introductory statistics.

o Let p denote the probability of a head (y = 1) on one coin toss.

@ Then Prly =1] =pand Prly =0/ =1—p.

@ For N tosses y; is the it of N independent realizations of head or tail.
°

The MLE for p is the sample mean ¥,
i.e. the proportion of tosses that are heads.
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Bernoulli distribution

Prly=1=pand Prly =0] =1—p.
Compact expression for density

fly)=p"(1-p)'.

@ This is Bernoulli density which is the binomial with one trial per
observation.

Moments

o Ely]=1xp+0x(1—p)=p
o Vly]=(1-p)xp+(0—p)x(1=-p)=p(l-p)

Note that p can be interpreted as E[y] or as Pr[y = 1].
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@ Economic applications are

e labor supply: y =1 if work and y = 0 otherwise
e insurance status: y = 1 if have private health insurance, y =0
otherwise

@ Assumption of independent trials may be reasonable.

@ Assuming a constant probability p for each trial is not and expected
to depend of an individual's characteristics.

@ Extend the Bernoulli model so p; may be a function of regressors x;.
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Binary outcome models

@ Regression model formed by parameterizing p; to depend on
regressors x; and parameters f.
@ Usually specify single-index model
Elyilxi] = pi = F(xiB).
@ Usually chose F(-) to be a cumulative distribution function (cdf).
@ Then0< F(-)<1=0<p<LlL

o logistic cdf gives logit model.
e standard normal cdf gives probit model.
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Show 2P

1+exp(X),—oo<X<+oo

Plot of the logistic function
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Propensity score

Given functional form F, and fitted model F(x'B), for each

°
i=1,..., N, we can generate postestimation fitted values
Pi(yi = 1lx;) = F(xiB).
@ These fitted values are conditional (fitted) probabilities E[y; = 1|x;].

They are referred to as propensity scores.

@ In the matching literature, the propensity score is a scalar measure of
similarity and is an alternative to matching based on the vector x.

@ Low values of PS indicate that y = 1 is unlikely to be on=bserved.
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Maximum likelihood (MLE)

@ Density

fly)=p'(1—p)'~, p=F(XB)
= Inf(y) =yInF(xXB)+(1—y)In(1— F(XB))

@ Log-likelihood function is

L(B) = L1, {ynF(p) + (1= i) In(1 = F(xB))}
o Let F/(z) = dF(z)/dz. MLE solves

N / 1_}/1 ' L
L i P B+ g P B
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Asy. Distribution OF MLE

@ The MLE f.o.c. simplify to

N Yi— F(X:ﬁ) " B)x: —
Lo P Foop) T P = 0

<’B) ] F/(xiB)xi -
NGl VFGB) (1~ F(xip))

@ General ML result if density correctly specified

N
le

@ For binary outcome MLE

Bu % N[ (—ER2L/0B08, )

N B (L 1 F(xp >2x-x<)_1
o \Li=t FBy) (1 Flxip,)) | P
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Misspecification

@ For binary data the dgp density is always Bernoulli as

Prly=1]=p
=Prly=0=1-Prly=1] =1- F(X'B).

@ Therefore only possible misspecification of dgp is if p # F(x'B).
o Clearly inconsistent estimator if p # F(x'B) as then

Ely; — F(xiB)] # 0

leading to left-hand side of f.o.c. not having expected value 0.
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Weighted NLS interpretation

@ Since

Elylx]| = F(xXB)
Viylxl = F(X'B)(1—F(xXB))
OE[y|x]/9p = F'(x'B)x

the MLE first-order conditions imply

y Vi Elyilxi] oElyilxi] _
= Vi) 9B
@ Residuals are orthogonal to regressors upon weighting to adjust for
heteroskedasticity. i.e. nonlinear WLS .
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Logit model

o Logit is a widely used functional form, especially in biometrics
o Computationally convenient.
@ The logit model specifies
x'B
_ / e
p=AXB) =15

AN(z)=e*/(1+¢e*) =1/(1+ e ?) is the logistic cdf.
The derivative A'(z) = A(z)(1 — A(z)) is the logistic density.

For this reason also called logistic regression model .
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Logit MLE

@ The logit ML conditions simplify to

YV (i~ AXKB))x = 0.

e F.O.C. are nonlinear in parameters
@ Notice that there is no "error term" in the binary model.
@ The logit MLE has distribution

BLogit ~N [ﬁo' <Z:N:1 A(xiBo) (1~ A(xf-,Bo))x,'Xf-) 1] '
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Probit model

@ The probit model specifies

= ®(x'B).
= [*.¢(s)ds = [_(1/v/2m) exp(—s?/2)ds is the c.d.f. of

the standard normal.

o The derivative ®'(z) = ¢(z) = (1/+/27) exp(—2%/2) is the
standard normal p.d.f.

@ The f.o.c.do not simplify, unlike logit case.
@ The probit MLE has distribution

00BN
ﬁProblt [ﬁo <Z’ 1 q)( )( ( /ﬁO)) ) ] |
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0.5 7

4xb

Standard normal c.d.f. Standard normal p.d.f.
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Linear probability model (LPM)

The LPM specifies
p=xpB.
@ The LPM MLE f.o.c. conditions are
N Yi—xiB
Lo =°

The LPM model has the obvious weakness of permitting probabilities
outside the (0, 1) interval.

@ Furthermore, the MLE estimator can be numerically unstable if xf,B
close to 0 or 1.

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 291 / 356



@ The LPM is more simply estimated by OLS , which also specifies
Elyi[xi] = xiB.
@ The LPM OLS f.o.c. conditions are
N
Ei:]_ (yi - x;ﬁ)xi =0,

@ Allow for the intrinsic heteroskedasticity of binary data

Bos ¥ N [.30' (X/X)_IX/QX(X/X)_I]

where for () use ~ R
Q = Diag[(y; — xiB)?]
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How to interpret coefficients (1)

o Coefficients in different models are not directly comparable due to
different scaling.

@ Instead compare across models effect of a one unit change in
regressors on Ply = 1|x] =E[y = 1|x].
o Now
Ely|x] = F(x'B)
doE[y[x]/ox = F'(X'B) x B
where F/'(z) = oF(z)/0z.
@ Thus the effect depends on the functional form of F and the
evaluation point x, in addition to parameter B.

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 293 / 356



How to interpret coefficients (2)

@ This suggests for slope parameters the rule of thumb

.BLogit ~ 4Bos
ﬁProbit = 2'SﬁOLS
ﬁLogit = 1'6ﬁProbit'

@ This works quite well, for 0.1 < F(x'B) <0.9.

@ Better to compare marginal effects, not coefficients.
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Odds ratio calculations for logit (1)

@ For the logit model

p =exp(xX'B)/(1+exp(x'B)
= 125 =exp(x'B)
=InZ =xB.

e p/(1— p) is the odds ratio which measures the probability that
y = 1 relative to the probability that y = 0.

o E.g. Pharmaceutical drug study where y = 1 denotes survival and
y = 0 denotes death. An odds ratio of 2 means that the odds of
survival are twice those of death.

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 295 / 356



Odds ratio calculations for logit (2)

@ Statistical analyses and packages offer the option of printing the odds
ration p/ (1 — p) = exp(x'B).

@ Suppose the jt regressor increases by one unit.
Then x'B increases to x'B+p;.
And exp(x'p) increases to exp(x'B+pB;) = exp(x'B) x exp (B;).

@ Thus the odds ratio has increased by a multiple exp (,BJ) .

o E.g. alogit slope parameter of 0.1 means that a one unit change in

the regressor increases the odds ratio by a multiple exp(0.1) ~ 0.105.
The relative probability of y = 1 has increased by 10.5 percent.

@ This interpretation widely used in applied biostatistics.
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Semi-elasticity interpretation

@ For economists it is more natural to interpret ﬁj as a semi-elasticity
for the odds ratio, since Inp/(1 — p) = x'B.

@ Then a logit slope parameter of 0.1 means that a one unit change in
the regressor increases the odds ratio by a multiple 0.1.

@ This coincides exactly with the interpretation used in statistics for
very small of B, since then exp(B;) = B;.
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Which functional form?

@ Which F — logit, probit or linear probability?
@ Theoretically it depends on the data generating process (dgp).

@ Unlike other applications of ML there is no problem in specifying the
distribution — the only possible distribution for a (0, 1) variable is the
Bernoulli.

@ The problem lies in specifying a functional form for the parameter of
this distribution.

o If the dgp has pj = A(x}B,) then a logit model should be used, and
estimators based on other models such as probit are potentially
inconsistent.

e Similar conclusions hold if instead for the dgp has p; = ®(x!B) or

pi = xf'/;o-
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Why logit?

@ Logit model is the binary model used by statisticians :

e F.o.c. and asymptotic distribution are relatively simple.

o Logit model corresponds ises the canonical link function for the
binomial, a generalized linear model.

o Coefficients can be interpreted in terms of the log-odds ratio.

o Easy generalization to multinomial logit.

e A discriminant analysis interpretation can be given.
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@ The probit model is often used by economists .

e It is motivated by a latent normal random variable.
e So ties in with tobit models and multinomial probit.

o Empirically, either logit and probit can be used

o little difference between results from probit and logit analysis, once
rescale parameter estimates.
o Greatest difference is in prediction of probabilities close to 0 or 1.
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Why LPM?

@ The LPM should not be used as probabilities outside the (0, 1)
interval and be numerically unstable.

@ Nonetheless OLS can be useful for preliminary data analysis.
@ Very widely used in the context of endogenous binary variable

@ In practice standard errors of slope coefficients are often quite similar
across logit, probit and OLS (even using the incorrect s%(X'X)~! in
the case of OLS).

@ Final results should, however, use probit or logit.
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Measuring the fit of the model

Several measures of model adequacy have been proposed.

Many are very specific to binary outcome models.

There is no single best measure . See Amemiya (1981) and Maddala
(1983).
Approaches:

e R-squared measures.
o Compare y with y.
o Compare predicted Pr[y = 1] with actual Pr[y = 1].
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Pseudo-R-squared

@ There are many R-squareds for binary models as R? in linear model
has many interpretations.

@ McFadden proposed two. We favor McFadden (1974)

L it

R?=1-="
Lo

where

o L = log-likelihood in the fitted model
e L is the log-likelihood in the intercept-only model.

@ This R? should be only used for discrete choice models.
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@ In other nonlinear models instead use

RP=1-

(ﬁmax - £ﬁt)/(£max - ﬁO)v

where Lax is the maximum possible value of the log-likelihood.
@ For binary outcome models L2 = 0.

@ For some other models L,2x can be unbounded restricting use of this

Pravin K. Trivedi University of Queensland ¢

TE estimation
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Predicting y=1

@ Many measures compare predicted y with y.

o The problem is in defining a rule for when y = 1.

o Obvious isy =1 when p = F(x'B) > 0.5.

o But this can e.g. yield y = 0 all the time if most of the sample has
y=0.
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Predicting Pr[y=1]

e Can compare predicted Pr[y = 1] with Prly = 1].

@ But testing whether on on average the predicted probabilities equal
the sample frequencies is not helpful over the entire sample, since for
the logit model with an intercept the f.o.c. imply
YN yi— A(xfﬁ) =0, sothat YV, 5 = 7.

@ Useful for subsamples.
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Random utility models (1)

@ In the random utility formulation a consumer selects the choice with
highest utility .
@ The discrete variable y
o takes value 1 if choice 1 has higher utility
o takes value 0 if choice 0 has higher utility.
@ The random utility model specifies the utilities of alternatives 0 and 1

to be
Uo = yy+ e = XI,BO + &

U=y, +a=xB +&

where
@ Jiy and pi; are deterministic components of utility, whose dependence

on regressors is detailed below.
e &9 and g1 are random components of utility.
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Random utility models (2)

@ The alternative with highest utility is chosen. So the observed choice
is

Prly =1] = Pr[U1 > U]
= Prlp; +e1 > pg + &)
= Prleo — &1 < py — g

= F(uy — 1),

where F is the cdf of (&g — &1

~—

@ Different distributions of gy and €; give different discrete choice
models.
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Random utility models (3)

@ Binary probit arises if ¢y and €1 are normal, as is readily seen by
noting that then (ey — €1) is normally distributed, upon normalization
of the variance of (g9 — 1) to unity.

@ Binary logit model arises if ¢y and €1 are type | extreme value
distributed, defined soon, as then the difference (g9 — €1) can be
shown to be logistic distributed.

@ The random component ¢ in utility model is needed. Otherwise,
choice would be deterministic, with alternative 1 always chosen if

My > Ho-
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Appendix B: Nonparametric density and regression
estimation
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Outline

@ Motivating NP methods

@ The histogram estimator

© Nonparametric kernel density estimator
@ Nonparametric regression estimators
© Stata Commands
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Parametric or non-P?

» We are often interested in looking at the key features of a distribution
of some variable

» If the focus is on wage distribution, we may want to see more than just
the mean

» In comparing distribution differences and changes over time, a visual
tool is helpful and suggestive.

See example from DiNardo and Tobias (JEP, 2001)

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 312 / 356



1989 Min Wage 1979 Min Wage

1.5 -
g
1979 Density

& 14
=
= ¥
5]
=
3
£
g .5
L%
=]

p

/)

,/
0d ===

T T T T T T T T
log(2.70)  log(4.50) 1log(7.40) log(12.20) log(20.10) log(33.10) log(54.60) log(90.00)
Women'’s Wages 1979 and 1989: A Parametric View
(2000 Constant Dollars)

Pravin K. Trivedi University of Queensland TE estimation September 2017 313



Why nonparametrics?
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Parametric and nonparametric regression

» Up to now, all regression models relied on functions (or densities)
which depend on an unknown finite-dimensional parameter.

o A finite-dimensional parameter is an element of R9 with g < N.

o For example, linear regression models use an additive combination
of the covariates (xp).

o Nonlinear regression models specify a known function of (a linear
index of ) the covariates.
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Parametric vs. nonparametric methods

» ML theory is based on a assumption about the density of the data,
which depends on a finite dimensional parameter.

» If the functional form or the distributional assumption is wrong, the
parameter estimators of these models are inconsistent, however.

» To circumvent this kind of misspecification problem due to assumptions
about functional form, nonparametric methods can be used .

» Nonparametric density and nonparametric regression estimators are the
base for most nonparametric econometric models.
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Density estimation

1. Parametric density estimation:
» Assume a density and use estimated parameters of this density
e.g. normal density estimate: assume y; ~ N[, 0?] and use N[y, s?].
» Nonparametric density estimate: a histogram
o break data into bins and use relative frequency within each bin
o Problem: a histogram is a step function, even if data are continuous
2.Smooth nonparametric density estimate: kernel density estimate.
o Kernel density estimate smooths a histogram in two ways:
O use overlapping bins so evaluate at many more points
O use bins of greater width with most weight at the middle of the bin.
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Empirical density (1)

» Let the data z, ..., z, be a sample from the distribution of a random
vector Z
» Interested in the general problem of estimating the distribution of Z
nonparametrically, i.e. without restricting it to belong to a known
parametric family.
» First consider how to estimate nonparametrically the density function of
Z.
» Distribution function (cdf) and the density function are equivalent ways
of representing the distribution of Z, but there may be advantages in
analyzing a density:

o The graph of a density may be easier to interpret if one is interested in
aspects such as symmetry or multimodality.

o Estimates of certain population parameters, such as the mode, are more
easily obtained from an estimate of the density.
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Uses of NP density (2)

Use of nonparametric density estimates
Nonparametric density estimates may be used for:

o Exploratory data analysis.

o Estimating qualitative features of a distribution (e.g. unimodality,
skewness, etc.).

o Specification and testing of parametric models.
e If Z = (X, Y), they may be used to construct a nonparametric estimate
of the conditional mean function (CMF) of Y given X
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Histogram (1)

@ A histogram is a "naive" estimate of the density

@ Method: Split the range of y into equally spaced intervals and
calculate the fraction of the sample in each interval.

@ More formally: consider estimation of the density (X = xp) of a
scalar continuous random variable X evaluated at xg.

Since the density is the derivative of the cdf F(X = xp), i.e.
f(X = xp) = dF(xp)/dx, we have

F(xo+h)— F(xo — h)

f(xo) :hlim o
— lim Prixo —h < x < xp+ h]
_hﬂoo 2h '
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Histogram (2)

e For a sample {x;, i =1, ..., N} of size N, use the estimator

1 il(Xo—h<X,'<X0+h)

N 2h ' (15)

?HIST (XO) =
i=1

where the indicator function

l(A) _ { 1 if condition A is satisfied

0 otherwise.

@ The estimator ?H|5-|- (x0) is a histogram estimate centered at xo with
bin width 2h,

@ Since it equals the fraction of the sample that lies between xg — h and
Xo + h divided by the bin width 2h.

o If ?H|5T is evaluated over the range of x at equally spaced values of x
each 2h units apart, it yields a histogram.
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Histogram (3)

o The estimator fyisT (x0) gives all observations in xp £ h equal weight

as
N
fisT (x0) Z (

1

— X0

h

< 1) . (16)

@ This "naive" density estimate is a step function, even if the
underlying density is continuous.

@ Smoother estimates can be obtained by using weighting functions
other than the indicator function above.

@ Choosing intervals of different widths can produce rather different
looking figures

@ See the example below.
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Limitations of the histogram estimator

@ Although widely used, the histogram estimator has several drawbacks

e The results depend on the choice of the range (ag, byl
e Given (ag, bo], the results also depend on the number of bins J or,
equivalently, on the bin width h.

° o For example, given the data, increasing J (reducing h) tends to give a
histogram that is only informative about the location of the distinct
sample points.

o Reducing J (increasing h) eventually leads to a completely
uninformative rectangle.
e However, J may safely be increased if the sample size N also increases.
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Limitations of the histogram estimator (2)

@ Keeping the bin width h fixed over the range of the data can lead to
loss of detail at points where the data are clustered

o If his reduced to deal with this problem, then estimates may appear
noisy where data are sparse.

@ Histogram is a step function with jumps at the end of each bin, so
cannot incorporate prior information on the degree of density
smoothness.

@ Method is problematic if we want derivatives of the density
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Limitations of the histogram estimator

» "The shape of the histogram can potentially be influenced by where you
place the bin centers. Moreover, with a histogram, choosing the width of

the bins and the location of the first bin also determines the choice of bin
centers. "

"The histogram assigns equal weight to all points falling in the bin"
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Figure 1: Histogram estimates of density.

200 obs from the Gaussian mixture 6 * N(0,1) + 4 * N(4,4)
Trie dénsiy )
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Histogram examples (2)

data
=) o ]
o Zw |
@ @
z z
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it fao
o o
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IDg(wage) logiwage:
= @
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] T
c e
& &
O =
o o
=) =)
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Pog(wage) Fog(wage)
g2.pdf

The graphs show histograms of the logarithm of wage (from the data set Mroz.dta). The histogram of the top left panel divides

the data in 20 classes (the default value of the histogram command of Stata), that of the top right panel uses 30 classes, and
those of the bottom left and right panels use 50 and 100 classes, respectively. For the histogram of the bottom right panel, a

normal density fitted to the data is added (blue line).
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The histogram method

@ The histogram method is a useful tool for exploratory data analysis,
but has some undesirable features,

e the need to choose a partition of the range of Z into cells,
e the density estimates of f are not smooth.
Now consider a method that tries to overcome these two problems.
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Kernel density estimator

o What is a kernel? It is merely a smoothing or weight-assigning

function.
o Consider the empirical density (2). Puttinga=2z—hand b=z + h,

where h is a small positive number, gives

?(z):zi/hilzvll(z—h<2<z+h). (17)

which is the fraction of sample points falling in the interval (z — h, z + h]
divided by the length 2h of the interval.

@ An advantage of this method over the histogram method is that there is no

need to partition the range of Z into cells.

Howsver, ?(z) still has two drawbacks: (1) estimates depends on the constant h
(2) f(z) is a step function with jump points z = Z; + h

@ Can get smooth kernel density estimates if we modify ?(Z) such that

estimates of f are smooth.
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Pravin K. Trivedi University of Queensland ¢

Smooth kernel density estimator (1)

o Now 7(z) may also be written as

o= v (552)

i=1

where
{ 1/2if —1l<u<l1
w(u) =

0 otherwise.

is a symmetric bounded non-negative function that integrates to one and
corresponds to the density of a uniform distribution on the interval [—1, 1].

e (z) is not smooth because it is a sum of step functions.

o If we replace w by a smooth function K, we get a smooth estimate of
f because it is a sum of smooth functions.
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Smooth kernel density estimator (2)

@ The kernel density estimator generalizes the histogram estimate
(16) by using an alternative weighting function, so

fx) = — ZK(X’ XO) (18)

@ The weighting function K() is called a kernel function and satisfies certain

restrictions.

@ The kernel function K() is a piecewise continuous function, symmetric
around zero, which integrates to unity, and satisfies additional boundedness
conditions.

@ The parameter h is a smoothing parameter called the bandwidth, and two
times h is the window width.

@ The density is estimated by evaluating /f\(xo) at a wider range of values of
Xo than used in forming a histogram — usually evaluation is at the sample
values X1, ..., Xy.

@ A typical kernel density estimator proceeds by usmg the formula for the

o
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Kernel density estimator

Some commonly-used kernel functions are:

Kernel Kernel Function K(z) o
Uniform (or box or rectangular) 3 x 1(|z| < 1) 1.3510
Triangular (or triangle) (1—1z]) x1(|z] < 1) -
Epanechnikov (or quadratic) 31-2%)x1(]z] <1) 17188

Gaussian (or normal)

—

21m) "/ 2 exp(—2%/2)  0.7764

@ Uniform kernel uses same weights as a histogram of bin width 2h, except
that it produces a running histogram which is evaluated at a series of points
Xo rather than using fixed bins.

@ Different kernels merely change the relative weights.

@ Given K(-) and h the estimator is very simple to implement. If the kernel
estimator is evaluated at r distinct values of Xy then computation of the
kernel estimator requires at most Nr operations, when the kernel has
unbounded support.
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Kernel weights

Uniform
Epanechnikov

—— —— Gaussian
&7
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Gaussian kernel example

o= & () o0 (5[5

o If we were estimating the probability density function at xp, the most
weight would go to observations at xp.

@ Why? Because the value of this kernel is maximized at x; = xp.

@ Because the "support" of this kernel is the entire real line, we use all
the data to estimate the probability density function at xg.

@ However, the weight we assign observations far away from xy with a
Gaussian kernel is quite small.
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Kernel Density Example

A random sample of size 100 drawn from the N[0, 252] distribution.

o For the particular sample drawn the sample mean is 2.81 and the
sample standard deviation is 25.27.

o Figure shows the effect of different kernels for given choice of
bandwidth, here h = 12.5, ignoring possible adjustment of bandwidth
for different kernels

@ The Gaussian kernel gives quite similar results to the Epanechnikov.

@ The other two kernels, the biweight and the rectangular are not nearly
as smooth. As already noted the rectangular uses the same weight
function as the histogram, and produces a running histogram.

@ The variation in density estimate with kernel choice is not as great as
the variation with bandwidth choice..
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Kernel density example

- Epanechnikov - Gaussian
> Biweight + Rectangular

.02
.015
.01
.005
0

-100 -50 : 50 100

0
N(0, 2572) variate
Kernel Density: Different Kernels
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Nonparametric Density Example

e Data: hourly wage and education for 175 women aged 36 years who
worked in 1993.

e Data from the Michigan Panel Survey of Income Dynamics (PSID).
@ A histogram of the natural logarithm of wage.

@ The bin width is chosen so that there are 30 bins, each of width
about 0.20.
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Nonparametric density example (2)

@ This is an unusually narrow bin width for only 175 observations, but
many details are lost with a larger bin width.

log-wage data possibly slightly left-skewed.

Histogram for Log Wage

q: -
2
2]
c
[
[a)]
('\! -
ol _n:ll I-_
T T T T T
0 1 2 3

4 5

Log HourlyWage
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Nonparametric density example (2)

@ The kernel density estimate based on the Stata kdensity command,
which uses the Epanechnikov kernel (Stata default kernel).

@ Choice of bandwidth.

o Stata selects a default bandwidth of h = 0.21.

o The kernel estimate is a weighted average of observations that have log
wage within 0.21 of the log wage at the current point of evaluation,
with more weight placed on data closest to the current point of
evaluation.

e Figure shows three kernel density estimates, with bandwidths of 0.07,
0.21 and 0.63, corresponding to one-third the default, the default, and
three times the default bandwidth.

e Smallest bandwidth is too small as it leads to too jagged a density
estimate.

o Largest bandwidth oversmooths the data.

e The goldilocks choice is the default value of 0.21, which gives a
smooth estimate.
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Choice of bandwidth

"Choice of bandwidth essentially involves a trade-off between bias
(misreporting the shape) and variance (lack of precision) of the estimates.
Intuitively, the larger the bandwidth, the "smoother" the resulting
estimates (lower variance), but we may have oversmoothed the true
density and thus obtained a biased estimate of that density. Note that this
is a problem for histograms as well...."

— —~ . ~ — N N2

o MSE[f] =E[0 — 0] =E[0 — E[0] + E[0] — 0] =var[0]+ (bias[@])

@ Optimality criterion balances bias and variance using a mean squared
error type criterion. At a specific point y the MSE criterion is

MSE(h) = E([?(y)—f(y)r)
= (E[f5) —Er)]) +var [F(y)]
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Choice of bandwidth (2)

@ A practitioner is interested in the global or total MSE at all values

of y. The relevant measure then is mean integrated squared error
(MISE) defined as

wse(n) = € ([ [Fo) -] o)

= (/E [?(y) - Ef(y)rder/var [?(y)} dy)

where the first term corresponds to the squared bias and the second
to the sampling variance.

@ The optimal value of h, hypt, is that which minimizes MISE, i.e. the
one that provides the best trade-off between bias and variance

@ But to calculate h,p: we need to calculate the expectations, which
requires knowledge of the true distribution of y!!

@ It can be shown that hgp; depends upon (i) the true density function
and how it fluctuates, (ii) the choice of the kernel, and (iii) the
sample size.
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Automatic choice of bandwidth

@ Silverman rule-of-thumb bandwidth:

hopt = 1.0590N "1/ if the reference distribution is N[u, o]

o If the reference distribution is not Normal, and/or there are outliers in
the data, a preferred alternative is

T ~1/5 . )~ 93— Qq1
hopt = 0.9N (mm {0’, 1349 })

where g3 — g is the interquartile range (the difference between the 75th
and 25th percentile) and 1.349 is the igr of the standard normal.

@ As is preferred, this bandwidth gets smaller as N - the number of
observations- increases, but does not go to zero "too fast."
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Choice of bandwidth (2)

@ The optimal bandwidth varies with the kernel. The optimal kernel is
the Epanechnikov, though this advantage is slight.

@ While there is little loss in using the simplest kernels such as uniform
and triangular, smoother kernels such as Epanechnikov and Gaussian
are preferred as they lead to smoother kernel density estimates.

@ Bandwidth choice is much more important and the optimal value
varies with the kernel.
@ In practice one uses Silverman's plug-in estimate or its variants

@ These plug-in estimates for h work well in practice, especially for
symmetric unimodal densities, and even if f(x) is not the normal
density. Usual to check for sensitivity by using variations such as
twice and half the plug-in estimate.

For a discussion of cross-validation (CV) and Adaptive Methods see
Ahamada and Flachaire (2010,chapter 1)
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Nonparametric density example (3)

Possible uses of kernel density estimate?

@ Comparison to the normal, by superimposing a normal density with
mean equal to the sample mean and variance equal to the sample
variance.

@ A second possibility is to compare log wage kernel density estimates
for different subgroups.

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 344 / 356



Kernel density examples

Figure 2: Uniform kernel density estimates.

200 observations from 6*N(0, 1)+ 4*N(4,4)
Esl\malﬁdﬁ= +, frue = —
o . . o o . . o
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canonical example

Figure 3: Gaussian kernel density estimates.
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Nonparametric regression

» Consider regression of scalar dependent variable y on a scalar regressor
variable x. The regression model is

yi=m(x)+e, i=1..,N, 19
g ~ iid [0, 0?]. (19)
» There are no functional form assumptions and no distributional
assumptions

» Our task is to consider methods for estimating the function m in the
regression equation

» A nonparametric method widely used is the lowess local regression
method, a local weighted average estimator similar to kernel regression
that instead uses a variable bandwidth.
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Lowess regression (1)

» Formally, the local linear regression estimator of m(xp) is given as the
a*, which minimizes the weighted least squares function:

N
Mify, 0 Y [(vi — a0 — a1 (xi —x0)) 2K ((xi —x0)/ hn)].

1

with K denoting the kernel and h, the bandwidth.

» A local weighted regression line at each point x is fitted using centered
subsets that include the closest 0.8/ observations, the Stata default,
where N is the sample size, and the weights decline as we move away from
the center point.

» Near the end-point lowest and highest values of x smaller uncentered
subsets are used.
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Lowess regression (2)

@ The local weighted average estimator takes the form
N
m(xo) = Y _ wio,nyi, (20)
i=1

where the weights wj , = w(x;, xo, h),sum to one, so }_; wjo, = 1.

@ The weights are specified to be relatively large (small) for values of x;
close to (far from) xg.

@ As h becomes smaller m(xp) becomes less biased, as only observations
close to xp are being used, but more variable, as fewer observations
are being used. The parameter h is generic notation for a window
width parameter, with smaller values of h leading to a smaller
window with most weight placed on observations with x; close to xg.
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@ The OLS predictor for the linear regression model is a weighted
average of y;, since some algebra yields

P vl e=X)=%)
oLs(xo) ,.Z%{NjL R }y,_

The OLS weights, however, can actually increase as the distance
between xg and x; increases if, for example, x; > xp > X.

o Local regression instead uses weights that are decreasing in |x; — xp|.
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Lowess regression example

@ As an illustration, consider data generated from the model

y; = 150+6.5x —0.15x? +0.001x? +¢;, i=1,..,100,(21)
xi = 1
g ~ NJ0,25%].

@ The Lowess estimator provides a smooth estimate of m(x) as it uses
kernel weights rather than an indicator function
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Lowess regression example

s Moving Average Width 25 « Actual data
- Actual conditional mean

400
300

200

100

0 50 100

X
Kemel Density Estimates with Bandwidth 25

Figure plots the Lowess estimate with k = 25. This local regression estimate is
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Kernel Regression (1)

o Kernel regression is a weighted average estimator using kernel
weights. Issues such as bias and choice of bandwidth presented for
kernel density estimation are also relevant here.

@ The goal is to estimate the regression function m(x) in the model
y=m(x)+e¢
@ Thus more generally we consider a kernel weighting function K(-).

@ This yields the kernel regression estimator

N 1 ZN (Xi_XO ) Vi
N : 22
m(XO) Nh 2/ ] (x,fxo) (22)
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Kernel regression (2)

@ Several common kernel functions, uniform, Gaussian, Epanechnikov,
quadratic and quartic, have already been given. The uniform kernel
leads to the roughest estimates, the Gaussian has the computational
advantage of not having to compute the indicator function
1(]z| < 1), and as stated earlier the Epanichnikov is optimal.

@ This estimator is called Nadaraya & Watson estimator.

@ The kernel regression estimator is a special case of the weighted
average with weights

Lo (Xizxo
= 1 NhN ( hx,-—)xo (23)
i Lic1 K (%52)

which by construction sum to one.

Wio,h

Pravin K. Trivedi University of Queensland ¢ TE estimation September 2017 354 / 356



Curse of dimensionality

o Extending the NPR to a general k-dimensional regression is difficult
because of the "curse of dimensionality."

@ CoD essentially implies that in a high dimensional regression we will
encounter many empty "hyperspaces" - regions with no observations
unless the sample size is very large.

@ The required sample size increases exponentially with the dimension
making NPR not very practicable.

@ NPR can be used if one has just one or two regressors.

@ Alternatively, one might choose to apply the nonparametric approach
to a subset of regressors only, e.g. partial linear regression.
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Major limitations for applied work

@ the lack of a commonly accepted method to choose an appropriate
bandwidth

@ typical expressions for an "optimal" bandwidth involve unknown
properties of the function we are trying to estimate

@ the lack of a simple way to compute reliable standard errors.

© Curse of dimensionality which restricts modeling to low dimensions
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