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Introduction
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Impact of interventions

Interested in measuring the impact of an actual or hypothetical
intervention in the context of an econometric model

Interventions may be external (exogenous) or self-selected
(endogenous)

Variable of interest is called outcome.

Variable of intervention is called treatment

Both outcome and treatment can be discrete or continuous.

Discrete means categorical, i.e. binary or multi-valued

Continuous means measured on a continuous scale, like income
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Examples: external interventions

Does textbook subsidy improve learning?

Do good lecture notes improve student grades?

Do teacher incentives reduce absenteeism?

Do minimum wage laws reduce employment?

Does class size affect student performance? How much?
(Maimonides rule works?)
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Examples: endogenous interventions

How much does an additional year of education add to earnings?

How much does more comprehensive health insurance increase health
expenditure?

How much does a newly adopted technology affect productivity?

Main complication of endogenous treatment is selection

Total effect of intervention depends upon pure treatment effect and
selection effect

Total TE = Pure TE + Selection effect ; goal is decomposition
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Why we need a treatment evaluation framework

Understanding the impact of interventions is central to policy making
and evaluation.

Treatment effect (TE) is a measure of the impact of an intervention;
impact is defined by reference to a chosen benchmark

TE is calculated by comparing two outcomes, at least one of which is
hypothetical, i.e. unobserved or unobservable.

Econometricians treat TE as a causal parameter in a cause-effect
framework (J. Pearl disagrees)

We need a set of relationships and assumptions (econometric
framework) for deciding whether the causal parameter of interest is in
principle identifiable.

Given identifiability we need an estimation procedure to estimate TE.
To address these questions econometrically we need a framework of
relationships which involve causal parameters.
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Why regression is not a causal relationship

Consider y = βx + u; y denotes health status, x denotes smoking
intensity

Write u = y − βx = y − E [y |x ]; what is the interpretation of β?

gradient of E [y |x ]; (calculus)
a parameter of the joint distribution of (y , x); (statistical - justifies
regressing x on y also)
marginal effect of a unit change in x on E [y |x ]; (calculus -says nothing
about causality)
does β predict the effect of change in x on y? (depends upon
exogeneity of x)
is β a causal parameter in the sense of measuring the the average
impact of an exogenously administered change in x on y? (closer to
causal)
what is the interpretation of the OLS estimate of β? (causal?
statistical? calculus?)
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What do the textbooks say?

Chen and Pearl review 6 textbooks and argue ...."... textbooks
provide weak or misleading discussion of causality"

Chris.Auld.com blog reviews additional ten texts and with a couple of
exceptions reaches a similar evaluation

Standard textbook interpretations are confused

Issue cannot be settled until we provide more details of the framework
and available data

Need to know the status of x
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Standard econometric approach

Structure consists of (in matrix and vector notation)
1 variables W (“data”matrix) partitioned as [Yendog Zexog ] ;
2 a joint multivariate probability distribution of W, f (W);
fJ (Y,Z|θ) = fC (Y|Z, θ1)× fM (Z|θ2);

3 a priori W ordered according to hypothetical cause and effect
relationships with specified a priori restrictions on the model;

4 specification of functional forms and the restrictions on the
parameters of the model.

models can be expressed as structural ("behavioral" or
"autonomous") equations or reduced form ("derived") equations.
a treatment variable D ∈ Y or D ∈ Z, but often no treatment
assignment rule
key parameter is marginal effect of a change in a variable on another
variable.
If the perturbation comes from another endogenous variable, ME is
computed using a structural equation; otherwise we use the reduced
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Objectives of econometric model

1 Data description and summary
2 Conditional prediction and policy analysis, prospective and
retrospective
—Simulation of counter-factual scenarios
—Analysis of interventions

3 Estimation of causal ("structural", "key") parameters
4 Empirical confirmation or refutation of hypotheses.

—very highly structured potentially large models
— reduced form studies which aim to uncover correlations
and associations

Impact of policy may vary across impacted population because of
differential responses

Interested in the distribution of impacts, not necessarily just the
average impact
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Does TE differ from traditional econometric modeling?

Traditionally, regression methodology was the cornerstone of modeling;
marginal effects are of special interest.
Distinction made between "structural" and "reduced form" parameters;
"structural" = "causal"? or portal to "causal"?
TE or ME treated as a causal parameter which could be recovered in a
structural regression model .
Experimental framework with treatment, controls, and potential outcomes
not explicitly used.
Inference about causality is probabilistic and implied; example: demand and
price
Identification and estimation of causal ("structural") parameters of interest
because they are invariant
However, simulations and comparison of generated "scenarios" with
benchmarks widely used.
Methodology did not give a special status to covariate balance or the TE
parameter.

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 11 / 356



Neyman-Fisher-Rubin Framework

Recognition that not all parameters are "causal", and that causal
interpretation requires a particular framework has led to development
of alternative frameworks, called Potential Outcome Model (POM),
derived from statistical experimental literature.

How to get a causal parameter estimate?

Some argue that only an experiment can settle the issue

POM framework, originally due to Neyman and Fisher, but expanded
by Rubin, is a response.

N-F-R introduce the idea of counter-factual causality
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Distinctive features of modern TE analysis

1 Causal inference requires counterfactuals generated by explicitly
stated models of outcomes

2 Because inference on causality with observational data is in principle
impossible. .

3 Interpretation of a causal parameter is based on a comparison of
potential outcomes associated with levels of intervention

4 Potential outcome is a function of treatment and controls but focus is
on causal parameter(s) associated with treatment (intervention)

5 Interventions are defined by treatment assignment rule
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Distinctive features of modern TE analysis (contd.)

6. Identification of TE parameter is sought under weak functional form
restrictions

7. New analytical tools designed explicitly for TE (matching, RCT,
RDD)

8. Much attention is paid to the data used for identifying causal
parameters - "not all data are necessarily relevant"

9. Borrows terminology and framework from experimental statistical
literature

10. Mechanism by which causal intervention occurs is usually not spelt
out fully - "blackbox feature"
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Angrist-Pischke View

AP claim in Mastering ‘Metrics (2015) that "five most valuable
econometric methods ["the Furious Five"] are"

random assignment (RCT)
regression (RA)
[matching methods!]
differences-in-differences (DiD)
instrumental variables (IV)
regression discontinuity design (RDD)

These topics - mostly regression based - constitute the core of this
course
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Course Description

I We survey number of identification and estimation strategies and their
critiques.
I These widely used methods, are related to other established
regression-based approaches.
I The goal of the course is to explain the logic, strength, and limitations
of these methods.
I All methods we cover are potentially subject to criticism when applied
incorrectly.
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Plan of lectures

1 Preliminaries and overview

2 Rubin-Fisher-Neyman potential outcome model

3 Randomized and quasi-randomized trials

4 Regression adjustment

5 Matching methods

6 Natural experiments and event analysis; differences-in-differences

7 Endogenous treatment effects

8 Instrumental variable approach

9 Selection models

10 Regression discontinuity design

11 TE in general settings

12 Stata applications
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Recommended references

Books
Angrist, J. D. & Pischke, Jö.-S., Mastering ‘metrics: The path from cause to
effect, Princeton University Press, 2014
Cerulli, G., Econometric Evaluation of Socio-Economic Programs, Springer, 2013.
Imbens, G. W. & Rubin, D. B., Causal inference in statistics, social, and
biomedical sciences, Cambridge University Press, 2015
Lee, M.-J. , Micro-econometrics for policy, program, and treatment effects,
Oxford University Press Oxford, 2005
Glennerster, R. & Takavarasha, K. Running randomized evaluations: A practical
guide Princeton University Press, 2013
Stata 15 Manual: STATA TREATMENT EFFECTS REFERENCE MANUAL:
POTENTIAL OUTCOMES/COUNTERFACTUAL OUTCOMES
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Survey articles, text books, critiques, reflections

S. Athey and G W. Imbens, The State of Applied Econometrics: Causality and
Policy Evaluation, The Journal of Economic Perspectives, Vol. 31, No. 2 (Spring
2017), pp. 3-32
Deaton, A. Instruments, randomization, and learning about development J. of
Economic Literature, 2010, 48, 424-455
Imbens, G. W. & Wooldridge, J. M. Recent developments in the econometrics of
program evaluation J. of Economic Literature, 2009, 47, 5-86
Lee, David S., and Thomas Lemieux. Regression discontinuity designs in
economics. J. of Economic Literature 48.2 (2010): 281-355.
Imbens, Guido W., and Thomas Lemieux. "Regression discontinuity designs: a
guide to practice." J. of Econometrics 142.2 (2008): 615-635.
Imbens, G. W. Matching methods in practice: Three examples J. of Human
Resources, 2015, 50, 373-419
Several graduate level texts, e.g. Cameron and Trivedi’s Microeconometrics:
Methods and Applications (chapter 25) and Wooldridge’s Econometric Analysis of
Cross Section and Panel Data (chapter 21), provide chapter-length treatment of
treatment evaluation.
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Established approaches of TE
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Causal relationships

The central issue concerns the impact of (policy) intervention
("treatment"), endogenous or exogenous, on an outcome variable of
interest.
I What alternative frameworks are available for analyzing the
interventions?
I Was there an impact? Who was impacted?
I What impact-related parameter can we identify?
I What are the obstacles to identification of the treatment effect?
I What are the limitations of regression-based approach?
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POM framework
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Experimental approach to causation

Neyman (1923 (Polish), 1990 (English)) put forward the idea that
causal effects are comparisons of potential outcomes.

Neyman’s example: potential yield of i th variety on k th plot, Uik ,
Experimental design research of R A Fisher reinforced the concept of
treatment assignment

Assumes stable unit treatment value (SUTVA). and something like
random assignment; means i’s outcome depend only on i’s treatment

No peer group effects exist/allowed; partial equilibrium approach

Initially the concept of POM used mainly in the experimental setting.
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Fisher-Rubin causal model

Formal statement of treatment assignment (randomized vs.
nonrandomized assignment) mechanism introduced by RAFisher
(1925)

Extension of the causal parameter concept to nonrandomized
observational settings due to Rubin (1974, 1975, 1978)

Very relevant to econometric model with endog treatment, e.g.
y2 = f1(y1, x), y1 = f2(z , x)

A comparison between hypothetical outcomes under different
treatments can be made irrespective of the assignment mechanism.
(Rubin)

Connection between randomized treatment and potential outcomes
was initially present in SEM in econometrics but weakened later
(according to Imbens and Rubin, chapter 2)
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Newer TE models (1)

Emphasis is on a small number of "causal" parameters, sometimes
just one.

Distinction is between outcome and treatment variables. Other
variables are just controls.

Standard model has just two levels of treatment, D = 0 or
D = 1(binary treatment).

Multi-level treatment set is D1,D2,D3, ...,Dm where treatment may
be ordered or not.

Continuous treatment variable can be accommodated.
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Newer TE models (2)

Parameters of special interest are

ATE = E (outcome|treatment, controls) − E (outcome|no treatment, controls)
over the entire population
ATET = E (outcome|treatment, controls) − E (outcome|no
treatment,controls) over the treated population

The canonical version consists of just one or two equations, one
so-called "structural" or "causal" equation which included a
treatment variable (D) and the other a reduced form equation
interpreted as treatment assignment rule.
Which has more policy relevance: ATE or ATET?

Standard notation: y0refers to outcome w/o treatment (D = 0), y1
refers to outcome under treatment, D = 1

Central question: under what assumptions is the causal parameter
identified, and then consistently estimatable?
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Restrictions on treatment assignment

Restriction on ass. Econometric interpretation Comment
1. Individualistic i ′s TA prob. does not depend on xj
2. Probabilistic ∀ i , 0 <Pr (D = 1 or 0|x ,y0, y1) < 1 All can receive

∀ possible (x ,y0, y1) treatment
3. Unconfounded Zero dependence of assignment CI assmption

on potential outcome exogeneity
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Definition: Classical RCT

Classical randomized control trials (RCT or CRCT) satisfies all three
restrictions.

In CRCT researcher knows and controls functional forms of
assignment mechanism.

In CRCT assignment mechanism is not confounded .

Treatment assignment and subsequent outcome are conditionally (on
controls) independent

⇒ TE is identified and estimation straight-forward.
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Definition: Observational study

In observational studies, exact assignment probabilities unknown.

& may have information about the assignment mechanism but not its
functional form.

Treatment assignment may be unconfounded, but treatment receipt
may be confounded (e.g. selection)

⇒ Cond. independence of outcome fails and TE less straightforward to
estimate.

Regular assignment mechanism is individualistic, probabilistic,
unconfounded, but Pr (D = 1 or 0|x ,y0, y1) has unknown functional
form.

Irregular assignment mechanism may require a different approach,
e.g. differences-in-differences.
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Application with random assignment

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 31 / 356



Potential Outcome Model framework (1)

Treatment evaluation concerned with measuring the impact of
(broadly defined) interventions on outcomes

Leading case: Continuous outcome variable, say y ; treatment variable
is discrete, D, where D = 1 if treatment is chosen or applied and
D = 0 otherwise.

If intensity of treatment can vary, use the term multiple treatments;
the choice of a benchmark for comparisons is more flexible.
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Simple RCT design

Eligible subject
invited to

participate

Agrees
?

Yes

No

Randomize

Drop from
study

Assign to
control

Assign to
treatment

- RCT ⇒ Treatment is randomly assigned and hence
independent of potential outcome.

- RCT precludes any selection effect which would imply
E [y ,D] 6= 0

- In observational data selection bias cannot be avoided in
general.
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Potential Outcome Model framework (2)

Leading case: observe (yi , xi ,Di ), i = 1, ...,N. x is in general a vector
of pretreatment variables.

Interested in the impact of a hypothetical change in D on y , holding
x constant. Main feature of the so-called potential outcome model
(POM).
A key point: causal statements require both a factual and a
counterfactual which in general is unobservable; ("missing data
problem"), controls provide the counterfactuals

Counterfactual scenario can be generated using POM.

Target parameters are ATE and ATET.
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Assumptions for TE

SUTVA⇒ Potential outcomes of unit i does not vary with treatments
applied to other units. Same version of treatment applies to everyone.

Individual outcome has idiosyncratic (unpredictable) i.i.d. component

No individual is simultaneously observed in both states. Causal
inference carried out in terms of counterfactuals.
Triplet (y1, y0,D) is the basis of treatment evaluation. Outcome under
treatment = y1, outcome for non-treated = y0.

How the outcome of an average untreated individual would change if
such a person were to receive the treatment?

Assume (1) randomized assignment of treatment and (2) any one that
is assigned treatment gets it, and anyone that is not does not get it.

Estimates of treatment effects?
ATE = E [y |D = 1]− E [y |D = 0]. Each RHS term can be
estimated as a sample average
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Issues with POM

RCTs provide a framework for simultaneously generating treated and
counterfactuals.

RCT can potentially remove the selection bias and TE easy to
estimate.

Inference based on observational data is more common.

Observational data are commonly subject to (1) self-selection bias,
(2) problem of finding relevant control group.

But RCT is/may be possible only under exceptional conditions.

—Social experiments (expensive, ethically questionable at
times and diffi cult to implement)

—Natural experiments
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Toolkit for RCT
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RCT Toolkit

0) Duflo, Glennerster and Kremer have a sort of manual for implementing
RCT. See also the book
Glennerster, R. & Takavarasha, K. Running randomized evaluations: A
practical guide Princeton University Press, 2013
1) Rationale for use of randomization: (a) remove selection bias and (b)
combat publication biases.
2) How to incorporate randomization in a research design.
3) Design issues: sample size, stratification, level of randomization, and
data collection methods.
4) How to allow for departure from perfect randomization.

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 38 / 356



Selection bias

(1) Randomization resolves the selection bias problem.
The regression version of the ATE expression is obtained from

yi = α+ βDi + [γxi ] + εi

The treatment effect is the OLS coeffi cient of β =
E [yi |Di = 1, [xi ]]− E [y |D = 0, [xi ]] as E [εi |Di , [xi ]] = 0, i.e. Di is
uncorrelated with εi .,the unconfoundedness assumption.
(2) Other methods to control for one variety of selection bias
a. Controlling for selection-on-observables bias by including x on which y
also depends.

yi = α+ βDi + γxi + εi

(3) Want cov(x ,D) = 0 to gain effi ciency and to avoid confounding.
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Types of selection bias - selection on observables

Given yi = α+ βDi + γxi + εi , and cov(ε,D) 6= 0 means that
assignment is correlated with outcome.

Then β (group mean difference) is not a consistent estimate of ATE.

Suppose, however, that the assumption cov(ε,D |z) = 0 where z is a
vector of exogenous variables so that cov(ε, z) = 0

i.e. conditional on z, treatment assignment and treatment outcome are no
correlated.

Implies we can assume random assignment if we can control for z.
Then a consistent estimate of ATE (β) is obtained from the
regression yi = α+ βDi + γzi + εi

This is the case of selection on observables
Requires knowledge of functional form linking y and observable z
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Types of selection bias - selection on unobservables

Given the regression yi = α+ βDi + γxi + εi ; if cov(ε,D |x) 6= 0,
then again treatment assignment and outcome are correlated.

Referred to as (i) selection on unobservables model, or (ii)
endogenous dummy variable model.

OLS estimator of β is inconsistent.

Consistent estimation methods include

- (i) MLE based on a two-equation model of outcome and treatment
assignment (STATA 15’s erm command),
- (ii) instrumental variable method based on untestable hypothesis about
assignment mechanism (STATA’s ivregress command)

Options require functional form assumptions
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Publication bias

(1) Definition of publication bias
Publication bias occurs when editors, reviewers, researchers, or
policymakers have a preference for results that are statistically significant
or support a certain view, ⇒ selective suppression of negative results.
(2) RCT prevents manipulation of the experiment to produce biased results
(3) RCT solves the publication bias
a. If RCT is correctly implemented, there can be no question that the
results give us the impact of the particular intervention that was tested.
b. In randomized evaluation the treatment and comparison groups are
determined before a researcher knows how these choices will affect the
results, limiting room for ex post discretion, which is called
“cherry-picking”.
c. Randomized evaluations can also partially overcome the file drawer and
journal publication bias.
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RCT design considerations
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Sample and power considerations

In RCT implementation, the goal is to ensure statistically significant
estimate of ATE, suffi ciently high power against alternatives.

Table: Components of size and power analysis

Description Symbol
significance level (type 1 error probability) α
type 2 error probability β
power 1− β = π
total sample size N
treated sample size; control sample size N1; N0
treatment group (mean, variance) (µ1, σ

2
1)

control group (mean, variance) (µ0, σ
2
0)

treatment effect size δ = µ1 − µ0
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Required sample size in RCT

To run RCT we have to determine N1,N0
Null hypothesis of zero treatment effect: H0 : µ1 = µ0
Two-sided paired z-test or t-test can be used to test the null of zero
treatment effect.

Cannot simultaneously determine both α,and β. But prefer a smaller
type II error.

In practice, require a test of minimum desired power (1− β) given a
specified minimum detectable average difference δ between treated
and untreated groups.

δ,effect size, depends upon the scale of measurement, so we work
with a standardized value, δ/σ

We use the following to solve for required sample sizes after choosing
other values.
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Tests and power equation for two-sided t-test

z =
(y1 − y0)− (µ1 − µ0)√

σ21/N1 + σ20/N0
∼ N(0, 1)

t =
(y1 − y0)− (µ1 − µ0)√

s21/N1 + s20/N0
∼ t(ν)

π = Φ(δ/σD − z1−α/2) +Φ(−δ/σD − z1−α/2)

where y1 = N
−1
1 ∑

i
y1i , y0 = N

−1
0 ∑

i
y0i , s21 = ∑(y1i − y1)2/N1 and

s20 = ∑(y0i − y0)2/N0, σD =
√
(σ21/N1 + σ20/N0).

z-test can be used when variances are known (tricky issue in practice).
Given unknown/ unequal variances, the t-statistic test has an
approximate Student’s t−distribution with (in general non-integer) d.
of f. ν obtained using so-called Satterthwaite’s formula.
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Power of a one-sided paired t-test

Type I error — rejecting H0 when it is true; Type II error — failing to reject
H0 when it is false.
The probability of a Type II error depends on unknown population
parameter so can only be computed for given values.
Consider the power of a one sided test for α = .05, in a large sample
where the test statistic has normal distribution
Then the power of the test H0 : µ = µ0 vs. H1 : µ = µ1 is given by

π(δ) = 1−Φ
[
1.64− δ

σ̂D/
√
N

]
, where σ̂D is the standard error of the mean difference (y1 − y0)
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Example of sample size calculation

Assuming equal sample sizes, and given desired δ,π and α the power
equation can be solved iteratively for the required sample size; or in the
case of unequal samples, can solve for required N1 given N0, and vice
versa. Standard practice sets α = .05, and π = 0.8 or 0.9. In Stata this
computation is done using the command power twomeans.
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Remarks

Power increases with sample size (N), treatment effect size δ, and
decreases with variance of outcome σ2.

Power equation can be solved for (equal) sample size if we fix π, δ, σ2

Variance parameters are generally unknown and may require a pilot
to determine starting values.

More illustrations are given in the C-T draft chapters
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Variants of RCT
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Required TE using a regression based test

Two-sample t- or z-test is equivalent to testing the significance of
regression coeffi cient β in the regression

yi = α+ βDi + εi

Assume that a proportion P of the sample is treated, and
εi ∼ iid(0, σ2), then

var(β̂) = σ2/N(P(1− P))

The power of a test for a true effect size of β 6= 0 and significance
level of α, is the probability of rejecting the null hypothesis.

To achieve power π, we need

β̂ > (t(1−π) + tα)std .err .(β̂)
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Minimum TE

The minimum detectable effect size for a given power (δ), significance
level (α), sample size (N), and portion of sample being treated (P) is

MDE = δ = (t(1−π) + tα)
√

σ2/N(P(1− P))

Remark: There is a trade-off between power and size.
Equal division between treatment and comparison group is optimal,
because the MDE is minimized at P = 0.5.
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Stratified randomization

Balancing samples is important because it limits the range of
alternative explanation of the data and paradoxes.

In a randomized experiment, controlling for other covariates won’t
affect the consistency of β̂, but it can reduce its variance.

Hence including valid regressors (variables that impact outcome) in
the regression will increase power.

And stratifying (or blocking) ex ante is more effi cient than controlling
ex post, since it ensures an equal proportion of treated and untreated
units within each block and therefore minimizes variance.

An extreme version of blocked design is the pairwise matched design
where pairs of units are constituted (for example, twins), and in each
pair, one unit is randomly assigned to the treatment and one unit is
randomly assigned to the control.
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Level of randomization

Usually the researcher can choose the level of randomization: the
individual or the group level.

Factors need to be considered:

(1) Budget. The larger the groups that are randomized, the larger the
total sample size needed to achieve a given power. This makes
individual-level randomization attractive.
(2) Spillovers from treatment to comparison groups can bias the estimation
of treatment effects, especially for randomization at individual level.
(3) Randomization at the group level may be much easier from the
implementation point of view.
(4) Randomizing strata will generally lead to correlated or clustered
observations. Variance calculations of the treatment effect should adjust
for clustering.
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Re-randomization

Characteristics x may be poorly balanced across treatment and
control groups

Startification, blocking and matching methods can be used to
improve balance (see under matching)

Simultaneous stratification in multiple dimensions can be diffi cult and
may reduce sample size

Recommendation is that if sample is unbalanced, re-randomize until
balance achieved.

Re-randomization could reduce the robustness of conclusions and
increase the cost of RCT.

How many randomizations is enough?
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Data collection

(1) Practical application of size/power calculations must overcome the
diffi culty that it requires as inputs parameter values which are typically
unknown. Use results from previous studies or conduct baseline surveys or
pilot trials.
• Baseline survey generates control variables that will reduce the variability
in final outcome and therefore reduces sample size requirements.
• Make it possible to examine the interactions between initial conditions
and the impact of the program.
(2) Using administrative data (collected by the implementing organization
as part of their normal functioning) could reduce the cost.
(3) Assumption that treatment randomization is across individuals when in
practice randomization often takes place across strata first and then across
individuals within the strata.
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Pros and cons of RCT

See Deaton, JEL 2010, for a strong critique of RCT
P.1: Improves effi ciency in principle. See example below.
P.2: Smaller sample size required, hence lower cost of RCT
P.3: Improves understanding of causal mechanism (Duflo, AEA Ely Lecture 2017)
C.1: Although by randomization x ⊥ D, by chance corr(x ,D) may arise.
(Hawthorne effect)
C.2: If x correlated or connected with past outcomes, and randomization is not
perfect then corr(x , u) 6= 0
If x is to be included then ensure that it is pre-treatment value and decision to
include made before the RCT is run.
C.3: Treated and untreated groups may not be balanced in respect of covariates
x .
C.4: Optimal experimental design for a randomized trial may depend upon
expectations of participants.
C.5: Questionable external validity.
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Two-stage randomization design dependent on behavior
(Chassang et al, 2015)
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Is RCT a "gold standard" for estimation of causal
parameters?

Has a black box character if RCT design not based on understanding
of why the treatment works; e.g. treated mosquito nets

If mechanism linking treatment and outcome not very clearly
established, may not be able to say more than "it works" or "it
worked"

RCT may not be feasible for ethical reasons.

Treatment effect may depend on behavior/expectations of the treated.

Adaptive behavior on the part of subjects means the untreated group
may find substitutes for treatment and contaminate the sample.

External validity may be questionable if outcome heavily dependent
on special features of the RCT environment.

External validity doubtful if mechanism of treatment effect not
understood.
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Mean difference vs. regression adjustment
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Regression adjustment approach

Whereas test of group mean difference is easy to implement directly
using standard software, there are advantages in doing so in
regression framework.

This is especially the case when the regression involves multiple control
variables, perhaps with nonlinearities in control variables.

TEs from RCT can also be calculated using the marginal effects
(ME) approach.

ME approach is a unified approach to calculation of treatment effects
in both RCT and observational data.

Refer to the regression based approach as regression adjustment (RA).
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Estimation with group mean difference and OLS

Consider the "double regression" model

yi = β1 + β2Di + β3xi + β23Dixi + ui .

This potentially allows for different response to xi between groups.
Dropping the interaction term implies β3 does not vary between
groups.

Assume selection on observables only, and i.i.d. errors u′i
Assume random treatment assignment and hence
Cor(yjDj ) = 0, j = 1, 0

Potential outcomes (PO) yi ,PO , can be generated as predictions of
the two regression models for treated (factual) and untreated
(counterfactual) groups.
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POM difference equals ME

Initially ignore xi
Then ATE is identified with the group mean difference
E (y |D = 1)− E (y |D = 0) which can be calculated

with the sample group average difference, or by OLS regression of yi on 1
and Di .

POM(1) = E [y i |D i= 1] = β1+β2+E [ui |D i= 1] = β1+β2= µ1
POM(0) = E [y i |D i= 0] = β1+E [ui |D i= 0] = β1= µ2
POM(1) −POM(0)= E [y i |D i= 1]−E [y i |D i= 0] = µ1−µ2= β2= ATE

ÂTE = (β̂1 + β̂2)− β̂1 = β̂2 - also marginal effect (ME) of D is
consistent.

ÂTET = N−11
N1

∑
i=1
(ŷi |Di = 1) −N−11

N1

∑
i=1
(ŷi |Di = 0) is consistent

Including xi and/or Dixi means that we are controlling for covariates
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Test of non-zero TE

It follows that the null hypothesis of zero treatment effect is
equivalent to the hypothesis H0 : β2 = 0 vs. H1 : β2 6= 0.
A two-sided t-test is based on the Wald test statistic

T =
β̂2√
v̂ar(β̂2)

∼ t(ν)

This assumes i.i.d. errors but can be robustified against heteroskedasticity.
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RA example based on simulated data
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Simulation design

Generate a noisy sample with true treatment effect of 2 units in a model
with significant covariate
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Two-sample t-test
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Two-sample t-test has low power

The estimated treatment effect is close to the true value of 2, but has
a large standard error.

Because the outcome is noisy, there is loss of power

Controlling for the variation due to a relevant covariate x will improve
the fit of the model and lead to a more precise estimate of the TE.

The confidence interval should be narrower.

Controlling for x allows us to make do with a smaller sample than
otherwise.
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Conditioning on valid x improves precision and power
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The teffects ra command

For linear regression based inference it operates as follows.

For a binary treatment, we run two regressions of y on x , one for the
the subsample with D = 1, and a second for the subsample with
D = 0.

Each regression is used to generate predictions for the full sample.
Denote these, respectively, as ŷ1 and ŷ0. These are estimates of (in
principle unobservable) potential outcome means, POM.

The ATE is the average of the difference between the two POMs.

Example which follows shows that for this sample the difference
between the two is small.

Explain why there is a difference at all and what it means for
randomization.
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Example of teffects ra
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TEs in nonlinear regression
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How to measure treatment effects

In linear models ATET = ATE = ME (marginal effect) = constant

In nonlinear models, irrespective of the assignment mechanism, ME
and treatment effect are not constant but depend upon the functional
form of the conditional mean.

A marginal treatment effect measures the effect on the conditional
mean of y of a change in treatment variable D.

For continuous treatment MEj = ∂E [y |D = D∗]/∂D where D∗ is
the treatment level. If E [y |x] = exp(x′β) and xj is the treatment
then MEj = exp(x∗′β)βj which varies with x

∗

For discrete treatment variable D the finite difference method yields
marginal effect MEj = E [y |x = x∗,D = 1]− E [y |x = x∗,D = 0].
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Marginal TE as building blocks for ATE

In nonlinear models the marginal TE varies with the point of
evaluation.
In nonlinear models coeffi cients are more diffi cult to interpret
Three common choices of evaluation are (1) at sample values and
then average; (2) at the sample mean of the regressors; and (3) at
representative values of the regressors.

AMTE=ATE Average marginal TE Average of ME at
each treatment level

AMTET=ATET ATE for the subpopulation Average of ME for
receiving treatment treatment receipients

MEM=ATEM Marginal TE at mean ME at D =D, x = x
treatment value

MER=ATER Marginal effect at a ME at D = D∗, x = x∗

representative value
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Marginal TE for polynomial regressors

If treatment variable appears as polynomials computing ATE becomes
more complicated.

Example: First consider a linear model that includes a cubic function
in regressor D. Then E [y |x, z ] = x′β+ α1D + α2D2 + α3D3 and
MED = α1 + 2α2D + 3α3D2. How to compute the ATEM?

Let E [y |x, z ] = exp(x′β+ α1D + α2D2 + α3D3) Then
MED = E [y |x, z ]× (α1 + 2α2D + 3α3D2). AMTE is the average of
such terms evaluated for each subject.
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Marginal TE for regressors in the presence of interaction
terms

Marginal treatment effects in models with interactions are more
diffi cult to interpret and calculate.

Stata’s powerful postestimation margins command can be used for
linear and nonlinear regression. Example will be given in the practical
session.

Main message: marginal (treatment) effects provide the basis for
calculating TEs in nonlinear regression models.

Implication: Having to specify a functional form to estimate TE is
potentially a major limitation.
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Predictive margins for estimating TEs
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Predictive means and predictive margins

Given estimated regression ŷ = x′ β̂, the conditional mean
E [y |x = x∗] = x∗′β̂ is called the predictive mean (PM).
When the dimension of x is high, we may want to estimate the PM at
specific values of, say x∗, and then contrast these.

Standard method is to create group-specific predictive means for
group-specific contrasts, including contrasts of treated and controls, if
one of the x variables is a treatment variable.

Lane and Nelder (1982) introduced the term predictive margins to
cover post estimation prediction of some variable of interest.

The usefulness and flexibility of PM comes from the fact that it can
be evaluated in a variety of ways and the result can be displayed
graphically.

Specifically PM can be used to generate TEs.
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TEs using margins

Given estimated regression ŷ = x′ β̂+w′γ̂, the conditional mean
E [y |x = xk ,w = w∗] = xk ′β̂+w∗′γ̂
Different choices of w∗ will generate different PM
In Stata PMs can be generated postestimation using either the
predict command or the margins command

margins command is very flexible/powerful and can create a variety
of contrasts, including PMs for treated and control groups.

Flexibility comes from being able to use the at option to specify the
evaluation point.

Role of margins plot in displaying results
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Example: TEs using margins

We revisit the generated data set with a binary treatment variable
D.previously analyzed using the teffects ra command

First run the regression y = α+ βD · x + γD + ε in which the slope
parameter βD varies according to D (i.e. model allows an interaction
effect)

Next we apply the margins D command to generate a table of PMs

The difference between PMs is the estimated treatment effect.

The approach can be applied in nonlinear models if no packaged
command is available.
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Example

using margins.pdf

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 83 / 356



TE estimation using matched samples
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Matching

The essential idea behind matching methods is that treatment effects can
be estimated by constructing samples of treated and untreated individuals,
closely matched according to specific criteria and then comparing their
average outcomes. Matching methods can be applied to RCTs,
experimental data, and observational data. The better the match and
more balanced the sample, the less biased will be the ATE estimate.
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Matching vs. Regression

However, TEs can also be estimated using regression methods applied
under same assumptions as matching. So why prefer matching?

1 Regression methods rely on strong functional form assumptions.
2 Matching methods are more robust as they avoid functional form
assumptions.

3 Working with a balanced sample is key to getting robust estimates
and with matching methods this is feasible.

4 With regression methods appropriate conditioning is required to
mitigate the biases due to unbalanced samples. Omitted variables
make this diffi cult.

5 Regressions typically use all the available data, but a smaller trimmed
balanced data set may provide "better" estimates.
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Assumptions required to apply matching methods

1 Conditional independence assumption: Conditional on x, outcomes
are independent of treatment:. y0, y1 ⊥ D |x. Also known as
unconfoundedness assumption or ignorability assumption. Equivalent
to regressor exogeneity and no omitted variables.

2 The overlap or matching assumption states that
0 < Pr[D = 1|x] < 1.Means that every unit in the sample has a
positive probability of receiving treatment and there are no units
which are certain to be treated or to be not treated.

3 Conditional mean independence assumption states
E [y0|D = 1, x] = E [y0|D = 0, x] = E [y0|x] which means that
participation does not depend upon y0 which should hold in a RCT.
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Assumptions

Assumption 1 is also equivalent to the
no-selection-bias-on-observables assumption. That is, conditional on
x, D and y are independent.

Any selection effects that might exist are fully captured by the
regressors x.
Sample balance is not explicitly required as an assumption but has a
role if 2 is to hold.

OLS requires assumptions 1 and 3, but does not explicitly require 2.
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Background

1 Identification of treatment effect in observational setting is diffi cult.
2 Randomized treatment design is a "gold standard" (may be!).
3 Comparing treated and control groups in a way that approximates or
mimics randomized treatment is a goal.

4 Matching problem: How to construct suitable control groups?
5 Dehejia & Wahba (DW) study matching methods with emphasis on
propensity score (PS) approach using the NSW sample.

6 DW claim: PS methods can produce treatment estimates comparable
to those from randomization.
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General ATET formula

Denote the comparison group for the treated case i with
characteristics xi as Aj (x) = {j | xj ∈ c(xi )} where c (xi ) is the
characteristics neighborhood of xi . Let NC denote the number of
cases in the comparison group and let w(i , j) denote the weight given
to the j th case in making a comparison with i th treated case,
∑j w(i , j) = 1. Then a general formula for the matching ATET
estimator is

∆M =
1
NT

∑
i∈{D = 1}

[y1,i −∑
j
w(i , j)y0,j ]

where 0 < w(i , j) < 1, and {D = 1} is the set of treated individuals.
Different matching estimators are generated by varying the choice of
w(i , j).
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Simple DW(2002) matching

Simple matching compares cells with exactly the same discrete x

∆M = ∑
k∈{D = 1}

wk [y1 − y0]

where y1 is the mean outcome of the treated and y0 is the mean
outcome of the untreated and wk is the weight of the k th cell, i.e. the
fraction of observations in cell k.

A specific example (Dehejia and Wahba, 2002) is

1
NT

∑
i

(
yi −

1
NC ,i

∑
j∈{D = 0}

yj

)

where NT is the number in the treated group (D = 1) and Nc ,i is the
number in the comparison group corresponding to the i th observation.
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General matching problem

I Mental experiment about matching methods — treated group is
observed w/o a randomized trial
I Need to construct a matched control group —how to proceed?
I Consider the problem of constructing cells with matched occupants
within the cell
I xi (i = 1, ...NT ) observed vector of characteristics of treated. Find
(y cj , x

c
j , j = 1, ...,NC )

I For each cell with matched samples compute average cell difference in
treated and untreated outcomes
I Issues: (1) dim(x)?− discrete vs. continuous x ; (2) Thin cells and
empty cell depending on dim(x); (3) One-one or one-many matching?
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Other matching methods (1)

Nearest neighbor matching method: Choose Ai (x) =
{j | minj ‖xi − xj‖} where ‖‖ denotes the Euclidean distance between
vectors. If w(i , j) = 1 when j ∈ Ai (x), and zero otherwise, then this
specification uses only one case to construct the comparison group for
the treated cases.

Kernel matching is non-parametric; it uses a weighted average of all
individuals in the control group with weights given by

w(i , j) =
K (xj − xi )

∑NC
j=1 K (xj − xi )

,

where K is a kernel.
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PS matching

Let D = 1 indicate treatment applied, D = 0 the opposite.

Let Pr [D = 1|x] denote the conditional probability of receiving
treatment, 0 < Pr [D = 1|x] < 1
Propensity score is the estimated conditional probability : F [D = 1|x]
where F denotes parametrically specified c.d.f.

Standard choices of F are normal c.d.f. Φ(·) and logistic c.d.f. Λ(·)
Propensity score (inexact) matching means constructing a subgroup
with similar propensity score, usually based on some interval.
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Advantages

1) avoid functional form assumptions for the outcome equations in
estimating ATET and
2) can estimate it at specific values of x.
Disadvantage: if x is high dimensional then the number of matches can
become very small.
In such cases propensity score matching is better.

Nearest neighbor and kernel matching can be defined in terms of
propensity scores also.

For example, for nearest neighbor matching we can define Ai (p(x)) =
{pj | minj ‖pi − pj‖}.
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Exact matching on X

Key assumption of Proposition 1 is randomized treatment conditional
on observables

Assumes we have an exhaustive list of matching characteristics
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Dimensionality reduction in matching
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Propensity score matching - properties

Proposition allows us to reduce the dimension of characteristics,

permits coexistence of continuous and discrete characteristics

Introduces a propensity score as unidimensional matching variable

Standard functional forms used for estimating propensity scores based
on (yi , xi )T and (yi , xi )C

Matching according to a propensity score involves bracketing:
(yi , xi )T ,B and (yi , xi )C ,B

The overlap condition for identification
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TE Methods under matching
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Matching methods

We assume that the assignment mechanism is individualistic,
probabilistic and satisfies uncounfoundedness.

Functional form of the assignment mechanism is not known.
Functional form of the outcome is assumed.

The set-up assumes an active (D = 1) and passive (D = 0)
treatment states.

The standard regression methodology for estimating TEs is valid
conditional on functional form assumptions.
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PS Methods

As the probability of receiving treatment may vary across individuals,
reweighting the data is an attempt to balance the sample prior to
regression.

This is a variation on RCT but can be expected to yield consistent
estimate.

OLS less attractive because it may not be robust when the treated
and untreated samples are unbalanced and do not overlap.

Two suitable methods of matching are inverse probability weighting
and propensity score matching.

Both methods require initially a model of the conditional probability
of receiving treatment.
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Inverse Probability Weighting (1)

IPW addresses the problem that sampled individuals do not have the same
probability of being treated.
The solution is two-fold.
First estimate the probability of receiving treatment using a logit
regression,
Next weight the data before estimating the potential outcome
regression(s).
Finally generate POM estimates and TEs given the regression estimates as
in the RA case. .
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Inverse Probability Weighting (2)

1. Estimate the conditional probability p(D = 1|xi ) = p̂(xi ) of receiving
and (1− p̂(xi )) of not receiving treatment, respectively.
Essentially the estimation of propensity score, typically from a logit or
probit regression of Di on xi .
2. Assume that outcome equation has interactions. Then instead of
estimating the equation yi = α+ x′iβ+γDi + δ(Di · xi )δ+ ui by OLS, we
estimate

wiyi = α+ wi (x′iβ+γDi + δ(Di · xi )) + ui )
where wi = 1/p̂i (xi ) if Di=1 = 1 and wi = 1/(1− p̂i (xi )) if Di = 0.
3. Using the resulting estimates of (α, β,γ, δ), generate POM estimates
for the treated and untreated groups.
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Inverse Probability Weighting (3)

4. For successful implementation want a well-fitting conditional probability
model.
5. Method could be computationally unstable if have many observations
with p̂i (xi ) close to 0 or 1.
6. A desirable diagnostic is to check the covariate balance between the
treated and untreated groups (before and after weighting)
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Propensity score matching

PSM is by far the most popular method of matching.

The essential idea: construct a cell whose occupants constitute a
matched control group.

Given a matched set, average cell difference in treated and untreated
outcomes can be computed.

But the following issues have to be addressed:

regressors include both discrete and continuous variables;
some cells may be sparse or even empty;
whether matching should be one-to-one or one-to-many.
larger the number of regressors in the model, the more compelling the
issues.
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Propensity score matching (2)

A successful match means that there is at least one untreated subject
who matches a treated subject, i.e. a counterfactual exists.

Apply a matching criterion - a measure of the distance between the
treated and untreated subjects.

A dimensionality problem due to large number of regressors.

Solution: Replace the regressors by a one-dimensional function of the
regressors and use the value of the function to define a match.

PS is a natural matching criterion.
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PSM details

1 Use intelligently saturated logit regression to generate PS
2 Blocking and weighting: Generate matches to obtain a balanced
sample with satisfactory overlap.

Requires some form of bracketing (or smoothing) to create matched
pairs or matched sets.
Stratification or interval matching divides the range of variation of the
propensity score in intervals.
Within each interval, the treated and control units have, on the
average, the same propensity score.
ATE is the weighted average of these average outcome differences
within cells/strata/blocks.
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Blocking and weighting (1)

Stratification or interval matching is based on idea of dividing the
range of variation of the propensity score in intervals such that within
each interval, the treated and control units have, on the average, the
same propensity score. ATET is the weighted average of these
differences.
Denote by b the blocks defined over intervals of propensity score.
Then the treatment effect within bth block is defined as

ATETSb = (N
T
b )
−1 ∑

i∈I (b)
Y1i − (NCb )−1 ∑

j∈I (b)
Y0j

where I (b) is the set of units in block b, NTb is the number of treated
units in the bth block, and NC0 is the number of control units in the b

th

block. Then the treatment effect based on stratification is defined as

ATETS =
B

∑
b=1

ATETSb ×
[

∑
i∈I (b)

Di

/
∑
∀i
Di

]
where the weight for each block is given by the corresponding fraction of
treated units and where B is the total number of blocks.
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Blocking and weighting (2)

Radius matching in which Ai (p(x)) = {pj | ‖pi − pj‖ < r} is
based on propensity scores. This means that all control cases with
estimated propensity scores falling within radius r are matched to the
i th treated case.

We can express ATET in terms of p(x), assuming the overlap
condition 0 < p(x) < 1.

ATET = E
[

(D − p(x)) y
Pr[D = 1] (1− p(x))

]
,

ATE = E
[
(D − p(x)) y
p(x) (1− p(x))

]
the last result being due to Dehejia (1997).

For proof see Cameron and Trivedi (2005, ch. 25.4)
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Nearest neighbor matching

NNM is related to PSM. Previous example was radius matching.

Create a matched set based on closeness of (k × 1) vector of
regressors xi to vector xj .
Euclidean distance metric: ||(xi − xj )′Ω−1(xi − xj )|| where Ω is the
k × k matrix of variances and covariances of elements of x .
Can specify the required minimum number of matches.

To generate counterfactual take a weighted average of the outcomes
in the reference group.

If the group size is small may need to make a bias adjustment.

In Stata the relevant commands are teffects ipw, teffects
psmatch, teffects nnmatch

Examples and analysis of data from a well-known RCT - Oregon
Health Insurance Experiment - will be covered in the practical session
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Stata’s teffects commands
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Differences-in-differences approach
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D-i-D approach

This approach commonly used when evaluating the impact of a shock
(change) due to a "natural experiment" (NE)

NE creates a dichotomy between "before-shock" and "after-shock"
data which can be used to make inferences about the impact

Assume that the variable of interest was moving along some time
path and would have continued to do so even in absence of a shock.

The shock acts as a shifter - the new time path shifts either up or
down but otherwise remains parallel to the "before-shock" path.

Object of interest is the estimated size of the shift.

Observations in the pre-shock period act as control outcomes, and
those after shock are treated outcomes
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John Snow cholera data 1849/1854

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 114 / 356



D-i-D transformation (1)

For i th treated case the change in the outcome is [yia − yib |Dia = 1]
for the untreated group the change is [yia − yib |Dia = 0] .
Then the difference is [yia − yib |Dia = 1]− [yia − yib |Dia = 0] where
subscripts a and b denote "after" and "before"

(1) yit ,b = φi + δt + εit ; (2)
yit ,a = yit ,b + α+ εit ≡ φi + δt + αDit + εit

Then E [yia − yib |Dia = 1]− E [yia − yib |Dia = 0] = α : the ATE.
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D-i-D transformation (2)

The underlying assumption is that there is a separable trend path
{δt} that is common to both treated and control groups.

Any time-invariant factors would be eliminated by the differencing
transformation.

If there are other time-varying factors, then D-i-D will end up with a
regression, not a constant. Example which follows shows this.

The data framework may be complicated, e.g. a panel consisting of
clusters with multiple treatments. Then group effects and time-effects
will need to be added, as in panel data models.
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D-i-D transformation (3)

Regression adjustment is an alternative to taking differences. Replace
φi by x

′
iβ+ γyib to obtain

yia,0 = x′iβ+ γyib + δa + εia,0

yia,1 = x′iβ+ γyib + δa + αDia + εia,1.

Estimate α by regressing yia,1 on a constant, yia,0 , xi and Dia.
No assumption like support or overlap condition is required

Transformation is also applied to the error term which induces serial
correlation (MA-1) - a problem if time series is long

Using default estimator of variance matrix will overstate the precision
of the estimator.

Instead should use a robust sandwich variance estimator.

Bertrand, M., E Duflo, and S. Mullainathan. "How much should we trust

differences-in-differences estimates?." QJE 119.1 (2004): 249-275.
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DID assumptions

α is a causal parameter because after controlling for x, and yb TE
completely accounts for the posttreatment difference between the
treated and control groups. Further, the fixed effect is given a linear
functional form.

Assumes addition of pre-treatment data is feasible

But a matching strategy can be based on weaker assumptions.

By assumption the same drift term both before and after.

No heterogeneity in response
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Consequences of differencing

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 119 / 356



DID in a nonlinear model

Consider the probit model of outcome, which is nonlinear. T denotes
time period, say 0 or 1; G denotes group, say 0 or 1.

T × G = 1 for the treated group
untreated group E [y0|T ,G , x] = Φ[βTT + βGG + x

′βx ]

treated group E [y1|T ,G , x] = Φ[βTT + βGG + α(T × G ) + x′βx ]

τ = Φ[βT + βG + α+ x′βx ]−Φ[βT + βG + x
′βx ]

which measures the change in the probability due to the treatment.

In principle this result applies to any case with a nonlinear strictly
monotonic transformation, e..g., quantile.

DID now better labelled as change-in-change, CIC.

Ref: Athey and Imbens, Econometrica, 2006, 431-497
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Example 1: Impact of training on wages (Dehejia and
Wahba)

Application of D-i-D
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Example 1: Effect of Training on Earnings

The National Supported Work (NSW) demonstration project,
conducted in the 1970’s, measured the impact of training on earnings
by a randomized experiment with a treatment group and a control
group.

The effect of training could then be measured by direct comparison of
sample means.

Comparison of the treated with the nontreated must then control for
differences in observed characteristics, and possibly in unobserved
characteristics.

Lalonde (1986) contrasted outcomes for the NSW treated group with
those for control groups drawn from two national surveys. He
concluded that the observational methods were unreliable.

Dehejia and Wahba (1999; 2002) reanalyzed a subset of the Lalonde
data using alternative matching methods that they argued led to
conclusions closer to those from experimental data.
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Dehejia and Wahba Data

Treated sample is one of 185 males who received training during
1976-77.

Control group: 2,490 male household heads under the age of 55 who
are not retired, drawn from the Panel Survey of Income Dynamics
(PSID).

Another comparison group is from the CPS.

Dehejia and Wahba (1999) call these two samples the RE74
subsample (of the NSW treated) and the PSID-1 sample (of
nontreated).
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Summary statistics

Variable Definition Treated PSID Control

AGE age in years 25.82 34.85

EDUC education in years 10.35 12.12

NODEGREE 1 if EDUC < 12 0.71 0.31

BLACK 1 if race is black 0.84 0.25

HISP 1 if Hispanic 0.06 0.03

MARR 1 if married 0.19 0.87

U74 1 if unemployed in 1974 0.60 0.10

U75 1 if unemployed in 1975 0.71 0.09

RE74 real earnings in 1974 (in 1982 $) 2,096 19,429

RE75 real earnings in 1975 (in 1982 $) 1,532 19,063

RE78 real earnings in 1978 (in 1982 $) 6,349 21,554

D 1 if received training (treatment) 1.00 0.00

Sample size 185 2,490
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Comparison of treated and control groups

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 125 / 356



Comparisons

Treated group differs considerably from the control group.

Disproportionately black (84 percent) with less than high school
degree (71 percent) and unemployed in the pre-treatment year 1975
(71 percent). Estimates of the effect of training should control for
these differences.

The outcome of interest is post-treatment earnings, RE78.

One possible measure = mean difference in RE78 between treated
and control individuals, leading to estimate
$6, 349− $21, 554 = −$15, 205. This is called a treatment-control
comparison estimator.
It can equivalently be computed as the coeffi cient of the treatment
indicator D in OLS regression of RE78 on an intercept and D using a
combined treatment-control sample.
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Comparisons (2)

Treatment estimate is misleading; mostly reflects the difference in the
types of individuals in the two samples

To control for this difference include pre-treatment characteristics as
regressors, and estimate by OLS

RE78i = x′iβ+ αDi + ui , i = 1, ..., 2675.

Leads to much smaller estimated treatment effect α̂ = $218 when,
following Dehejia and Wahba, the regressors x are specified to be an
intercept, AGE, AGESQ, EDUC, NODEGREE, BLACK, HISP, RE74
and RE75.

This approach is called the control function or regression adjusted
estimator.
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Estimated effects

Method Definition Estimate St. Error

Treatment-control comparison RE78D=1 − RE78D=0 −15,205 656

Control function estimator α̂ from OLS regression 1 218 768

Before-after comparison RE78D=1 − RE75D=1 4,817 625

Differences-in-differences α̂ from OLS regression 2 2,326 749

Propensity score See text 994 −
Note: Standard errors for first four estimates are computed using

heteroskedastic-consistent standard errors from the appropriate OLS regression.
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Differences-in-Differences

Before-after (BA) comparison looks at the difference between
post-treatment earnings RE78 and pre-treatment earnings RE75.
Using mean earnings for the treated group this yields estimate
$6, 349− $1, 532 = $4, 817.
This estimate may be misleading as it reflects all changes over this
time period, such as an improved economy, and not just training.

Difference-in-differences (DID) estimator additionally calculates a
similar quantity for the control group, $21, 554− $19, 063 = $2, 491,
and uses this as a measure of non-treatment related changes over
time in earnings, so that the change over time solely due to treatment
is $4, 817− $2, 491 = $2, 326.
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Differences-in-Differences (2)

DID estimator equivalent to the estimate of α in the regression

REit = φ+ δD78it+γαDit + αD78it ∗Dit +ui , i = 1, ..., 2675, t = 75, 78.

Here REi ,75 denotes earnings in the pre-treatment period and REi ,78
denotes earnings in the post-treatment period, so the regression is
one with 5, 350 earnings observations.

Indicator variable D78it equals one in the post-treatment period, the
indicator variable Dit equals one if the individual is in the treated
sample, and the interaction term D78it ∗Dit equals one for treated
individuals in the post-treatment period.

Intercept φ can be replaced by x′itβ. This makes no difference in this
example where regressors are time-invariant so that xit = xi .
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Simple Propensity Score Estimate

A third approach compares the outcome RE78 uses a better
counterfactual.
Generated by specifying a regression model. For example, the
regression specifies E [RE78|x] to equal x′β+ α, if treated, with
counterfactual x′β, if not treated. This places restrictions on both the
effect of regressors x and on the effect of treatment which,
conditional on x, is assumed to be constant across individuals.
Match on the propensity score, defined as the conditional
probability of treatment Pr[D = 1|x]. For this example we estimate
using only 1975 data the logit model

Pr[Di = 1|xi ] = Λ(x′iβ), i = 1, ..., 2675, (1)

where Λ(z) = ez/(1+ ez ), and following Dehejia and Wahba (1999)
the regressors chosen are AGE, AGESQ, EDUC, EDUCSQ,
NODEGREE, BLACK, HISP, MARR, RE74, RE75, RE74SQ,
RE75SQ, U74*BLACK.
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PS Graph-NSW Data
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PS Graph

Treatment effect is estimated as the difference between a given
treated individual (D = 1) and control sample individual (D = 0)
with the same (predicted) propensity score.

Each panel includes a fitted nonparametric regression of RE78 on the
propensity score.

Treatment effect is generally less than one thousand dollars, though is
large and positive for propensity score around 0.80.
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PS Estimators

Many ways to compare individuals with similar propensity score and
then averaging over all treated individuals.

A simple strategy is to stratify data by propensity score, denoted
p(x), and let the counterfactual be the within-strata average of RE78
for the control group. For example, if a treated observation has
propensity score p(x) =0.35 then the counterfactual may be the
average of p(x) for control group observations with
0.30 < p(x) ≤ 0.40.
Total effect is then ∑s ws (RE78s ,D=1 − RE78s ,D=0), where
RE78s ,D=1 and RE78s ,D=0 denote, respectively, the strata s averages
of RE78 for the treated and control observations, and the weights ws
equal the fraction of treated observations in each strata.
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Stratification matching

Stratification matching : use ten equally-spaced strata with
0.0 < p(x) ≤ 0.1, 0.1 < p(x) ≤ 0.2 and so on. Restrict this
procedure to cases where the propensity scores for the treated and
control samples overlap. Here the propensity score ranges from
0.0005 to 0.9420 for the treated sample and from 0.0000 to 0.9371,
leading to dropping of 1, 423 control group individuals and 8 treated
individuals. The resulting estimated total effect is $995.
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Comparison with the CPS control group
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Comparison with the PSID control group
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Matching Using Propensity Scores

Fitted Propensity Score: Obtained using two different logit
specifications, from DW (1999) and DW (2002) respectively.

Matching Algorithms and Balancing: DW algorithm for matching
propensity scores.

Start with a parsimonious logit model to estimate p(x).
1 Sort data according to p̂(x). Initially a rough grid with equal ranges
may be used. The sample observations are stratified such that within
a stratum the p̂(x) for treated and control units are close.

2 Within each stratum test for the equality of means between treated
and control units for each covariate. Regressors are balanced if there
is no statistically significant difference.

3 If, for some stratum, there is no balance, then for the unbalanced
stratum use a finer grid to achieve balance.

4 If there are many unbalanced strata, then the original logit model is
reestimated with an improved specification that includes interaction
and higher order terms among the regressors.
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Matched PS

Minimum p̂(x) Treated Untreated Total

0.000364 9 960 969

0.10 10 56 66

0.20 14 33 47

0.40 24 22 46

0.60 33 7 40

0.80 95 8 103

Total 185 1086 1271

Note: From the second row, for example, the propensity score lies between 0.10 and

0.20 for 10 treated and 56 untreated individuals.
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NSW - CPS comparison
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NSW - PSID Comparison
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Matched PS (II)

Above PS computation has been restricted to the common support
region by testing the balancing property using those observations
whose propensity scores lie in the intersection of the supports of the
propensity score of the treated and the control units.

This restriction reduces the original sample significantly. The size of
the control group drops down from 2490 units to 1086 for the DW
(2002) specification.

Results differ from DW (2002) because the latter exclude control
units from NSW-PSID composite samples not on the basis of
common support region but on the basis of whether the estimated
propensity score of a sample unit is less than the minimum of the
estimated propensity score for the treated units.
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ATET Results (1)

Matching # # ATET Std.Err % of

procedure treated control $1794
DW (2002) specificationa

Nearest neighbor 185 53 2385 1209c 133

Radius, r = 0.001 54 517 −7815 1118d -436

Radius, r = 0.0001 24 92 −9333 2282d -520

Radius, r = 0.00001 15 19 −2200 2986d -123

Stratification 185 1086 1452 1041c 81

Kernel 185 1058 1309 975c 73
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Sensitivity analysis
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ATET Results (2)

A selection of results for various matching methods are summarized above.
The nearest neighbor estimate of ATET for the DW (2002) specification is
$2385 and for the DW (1999) specification, it is approximately at $560.
The performance of stratification and kernel matching is also mixed,
ranging from $1452 to $2156.
The benchmark estimate of the treatment effect is $1794; obtained by
regressing RE78 on D for the DW (2002) version of the NSW sample of
both participants and non-participants.
For the DW (2002) specification, the nearest neighbor estimator is very
close to the benchmark estimate and is even better than DW (2002) in
terms of reduced bias.
For stratification and kernel estimates, the bias is larger. For the radius
matching estimator, this bias is worse which gives negative estimates of
the treatment effect as opposed to the positive estimates that DW (2002)
found using caliper matching.
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Conclusions

1. PS methods approximate Lalonde’s benchmark estimates well.
2. the choice of the matching algorithm becomes important after
"irrelevant comparison units" have been discarded.
3. "Selection-only-on-observables" is an important and strong assumption.
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Comment from Smith and Todd (JoE, 2005)

DW found low bias in applying PSM , but some have expressed
skepticism of this finding.

Several studies of Heckman and coauthors conclude that the following
conditions should hold for low bias to be achieved.

1 Should include a rich set of variables related to program participation
and labor market outcomes

2 Comparison group should be drawn from the same local labor market
as the participants

3 Outcome variable should be measured in the same way for treated and
comparison groups.

These conditions are not met in the DW studies.

Smith and Todd show that DW results are sensitive to their choice of
subsample of LaLonde data.
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OHIE background

OHIE an important modern example of RCT or a social experiment in
the tradition of the famous RHIE.

Background: See Finkelstein et al. (2012) and Baicker et al. (2013).

Here we provide only the essential details for interpreting the
application that follows.

At the time of the experiment the Oregon Health Program (OHP)
was separated into two components

OHP Plus, which served the categorically eligible Medicaid
population, and

(OHP) Standard, an expansion program targeting low-income
uninsured adults, ineligible for OHP Plus.
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OHIE background (2)

Due to budgetary constraints OHP Standard was wound back and
closed to new applicants in 2004, leading to significant attrition over

the following four years.

After 80 per cent decline in enrollments, in January of 2008 the state
determined to expand the program by an additional 10,000 positions.

Anticipating excess demand the OHP sought and received permission
to assign selection by lottery.
The RCT provides an opportunity to assess the impact of expanded
health insurance coverage on a variety of health and financial
outcomes within

RCT design framework.
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OHIE background (3)

Lottery enrollment (February to March 2008) some 90,000 individuals

Over the next 6 months the government conducted eight waves of
lottery draws resulting in some 35,000 individuals being offered the
opportunity to apply for OHP coverage.

Opportunity to apply was extended to all members of the selected
individual’s household, thus selection was random conditional on the
number of household members in the lottery list.

Approximately 35,000 individuals from 30,000 unique households were
selected, and of those approximately 30 per

cent were eligible and enrolled by the given deadlines.
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OHIE background (4)

Following the treatment, researchers tracked lottery participant
outcomes over the next 12 months with three mail surveys.

Examples consider the third of these mail surveys, which was
undertaken in seven mail out waves approximately 12 months after
treatment (July and August 2009).

Nearly all individuals selected in the lottery as well as an
approximately equal number of non-selected individuals were mailed
questionnaires regarding health care needs, experiences and costs over
the previous 6 months.

Following an intensive follow-up protocol undertaken on a subset of
non-responders, the researchers achieved an estimated response rate
of approximately 50 per cent.

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 152 / 356



OHIE background (5)

Examples measure the impact of expanded health coverage on out of
pocket medical expensitures over a 12 month period.

Include indicator variables capturing household size and survey wave
to control for potential correlation with the probability of treatment.

Include a set of relevant covariates to improve effi ciency — smoking
status, income as a percentage of the federal poverty line, education
level and employment
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Example 2: Oregon Health Insurance Experiment
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OHIE RCT Data

The OHIE can be viewed as an important modern example of RCT or
a social experiment.

The background to this experiment has been covered in detail
elsewhere.

The size and complexity of the OHIE data set is reflected in the
public use data files that we were able to access.

In this section we will focus on the continuous variable
cost_tot_oop_12m which measures out of pocket medical
expenses last 12 months
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OHIE RA t-test
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RA ATE estimate
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RA ATET estimate
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IPW ATE estimate
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PSM ATE estimate
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Diagnostic checks for treatment balance

For matching methods to work satisfactorily the treated and
untreated groups should be "similar".

This should be tested. One way - graph and compare the distribution
of propensity scores.

Stata has teffects overlap (post-estimation) command to check
this. This should be run after teffects nnmatch or teffects
psmatch command

If the match is not good, consider trimming the sample or changing
the matching criterion.

If sample sizes are similar a comparison is easier.
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Stata’s teffects overlap command
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Output from the overlap command
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TE estimation with observational data
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Linking counterfactual to linear models

Treatment effect models are ’black box’in the sense that they don’t
explain how the causal chain goes from treatment to the response.

Effectiveness of a treatment is closely connected to the mechanism by
which the treatment is delivered. Absent a specification of that
mechanism, more tenuous is the causal inference derived from it.
Examples: Hours watching TV —> weight gain (or academic
performance)

Regression models are ’structural’in the sense that they specify how
a ’third’variable comes in and links treatment and response.

Treatment variable may be heterogeneous if a broad label is used to
describe a variety of diverse treatments (distinct from heterogeneous
response itself)
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Structural form equations and treatment effect

Key assumption (invariance): Given outcome equation (’y -eqn’) and
treatment equation (’D-eqn’), the yj equation does not change when
the D-equation does, otherwise the parameters in the yj equation are
useless for policy intervention on D. Consider a structural form for yi
(related to Marschak-Lucas policy evaluation critique)

yi = β1 + β2Di + β3xi + ui .

With self selection into treatment we have the structure:

Di = αxxi + αcci + εi .

After substituting the second into the first we get the reduced form:

yi = β1 + β2βcci + (β3 + β2αx )xi + ui + εi ,

where xi , ci are observed and ui , εi are error terms.
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Structural form equations and treatment effect (2)

If Di is exogenously assigned then equation (2) disappears from the
system. Structure (1) is unaffected by changes in (2) (by the
invariance assumption) and hence the parameters in (1) are useful for
policy analysis.

Estimating the reduced form (3) is problematic if the parameters in
(2) change ("Lucas critique") as then the parameter in (3) change
also.
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IV Estimation of LATE
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Local ATE (LATE)

Outcome is a function of observable x and a participation decision
indicator D :

yi = x′iβ+ αDi + ui , (2)

Participation depends on IV z (which may be binary); interpret as
treatment assignment mechanism

D∗i = γ0 + γ1zi + vi , (3)

D∗i is a latent variable; has observable counterpart Di generated by

Di =
{
0 if D∗i ≤ 0
1 if D∗i > 0

. (4)
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Assumptions

Assumptions. (1) IV z appears in the D-equation and does not
appear in y-equation. May be continuous or discrete, and in a special
case is binary: exclusion restriction. Exclusion of regressors x from the
y -equation is a simplification.

(2) Conditional on (x, z) Cov[z , v ] = Cov[u, z ] = Cov[x,u] = 0,

Cov[D, z ] 6= 0.

D depends upon z in a nontrivial fashion → use the notation D (z)
to emphasize dependence of D on z .

(3) No randomness of coeffi cients in (3)

(4) Many studies assume a just-identified model with untestable
exclusion restriction, but this is not essential.

Under the above assumptions IV estimation of (β,α) is consistent.

OLS is biased because Cov[D, u] 6= 0
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Estimation method

What is different from standard just-identified model with only
continuous endogenous variables?

This model has an endogenous dummy variable which could represent
choice behavior → endogenous selection
Outcome equation could also be discrete/binary.
Joint conditional distribution of (yi ,Di ) is harder to specify in an
unrestricted fashion ; joint normality often assumed

In the standard case, 2sls, IV/GMM, MLE are widely-used estimators.

Standard problems are: weak instruments; sensitivity to different valid
instruments which vary in their strength

Ignoring discreteness of D,linear methods (as well as diagnostic tests
of linear models) are often applied
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LATE estimator (1)

Let z ′ = z + δ, δ 6= 0. Then noting E [D |x,D (z)] = Pr[D (z) = 1],
taking expectations gives

E [y |x,D (z)] = x′β+ αPr[D (z) = 1],

E [y |x,D
(
z ′
)
] = x′β+ αPr[D

(
z ′
)
= 1],

where, after subtraction, we have

E [y |x, z ′]− E [y |x, z ] = α
[
Pr[D

(
z ′
)
= 1]− Pr[D (z) = 1]

]
.

Solving for the local average treatment effect (LATE):

αIV =
E [y |x, z ′]− E [y |x, z ]

Pr[D (z ′) = 1]− Pr[D (z) = 1] ,

=
E [y |z ′]− E [y |z ]

Pr[D (z ′) = 1]− Pr[D (z) = 1] . (5)

where the second line averages over x.
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LATE estimator (2)

This expression is well-defined if
Pr[D (z ′) = 1]− Pr[D (z) = 1] 6= 0.
The sample analog of this expression is the ratio of the mean
difference between the treated and the nontreated divided by the
change in the proportion treated due to the change in z .

If the y -equation has no x, then

α̂IV =
ĉov[y ,z ]
ĉov[D,z ]

plim α̂IV =
E [y |z ′]− E [y |z ]

Pr[D (z ′) = 1]− Pr[D (z) = 1]
α̂IV = ratio of the average causal effect of z on y and the average
causal effect of z on D.
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Remarks and critique of the IV model

As it stands, the IV estimator has a blackbox character. The role of z
needs some elaboration.

Why and how does z impact D? Which of the participants in the
treatment get impacted and why?

Is there a theory of the mechanism by which z impacts D? Is there
more than one operating mechanism?

Suppose there is more than one IV; could different IVs differ in their
total impact because different subpopulations are susceptible to
different IVs? What does α̂IV measure? ATE?

Angrist, Imbens, Rubin (AIR, JASA 1996) divide the population into
("compliers, defiers, never takers, always takers") depending upon
assignment and choice of treatment.

AIR argue that α̂IV is a measure of treatment effect on the compliers.
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Assumptions of AIR (JASA 1996)

Stable Unit Treatment Value Assumption (SUTVA) → (No ’general
equilibrium’effects or no interdependence in treatment effects.)

Definition: Causal effect of z on D for i is Di (1)−Di (0)
Definition: Causal effect of z on Y : for i is Yi (1,Di (1))− Yi (0,Di (0))

Potential outcomes: Y [z ,Di (z)]→ [Yi (0, 0) , Yi (1, 0), Yi (0, 1),
Yi (1, 1)]
Potential treatments: [Di (z)
→ Di (0) = 0; Di (0) = 1; Di (1) = 0; Di (1) = 1; Potential
assignments: z → zi = 0; zi = 1
Assume treatment assigned randomly so all units have same
probability of assignment.
Assume treatment effect is not zero or that z → D is a nontrivial
effect.
Assume a valid exclusion restriction so zero causal effect for
never-takers and always-takers.
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Classification of units
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Are above assumptions enough for identification?

No, b/c causal parameter E [Yi (1,Di (1))− Yi (0,Di (0))] is a
weighted average of the effects on compliers and defiers

Need monotonicity assumption to rule out defiers.
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Monotonicity assumption

Above analysis applies when the treatment effect does not vary with
individuals.

If, however, the treatment effect is heterogeneous, then there is a
potential for confounding the variation induced by z - - is the
observed variation due to z−differences or α−differences?
Under heterogeneity the idiosyncratic component of the treatment
effect,

ui ,1 = ui ,0 +Di (αi (xi )− α (xi )),

is a function of αi (xi )− α(xi ). Then the previous assumptions are
not enough to determine ATE or ATET.

Solution: add monotonicity assumption as an additional identifying
condition. This says that the instrument affects participation in a
monotone fashion. This means that if on average participation is
more likely given Z = w than given Z = z , then anyone who would
participate given Z = z must also participate given Z = w .
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Interpretation of “local”

Because it measures the treatment effect on the “compliers” that are
induced to participate in the treatment as a result of the change in z .

LATE depends upon the particular values of z used to evaluate the
treatment and on the particular instrument chosen.

“Movers”may not be representative of the whole treated, let alone
the whole population. ⇒ LATE parameter may not be informative
about the consequences of large policy changes.

If the instrument is binary, the LATE parameter and the IV estimate
are equivalent.

Under overidentification the LATE parameter estimated for each
instrument will in general differ. However, a weighted average may be
constructed.
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Critique of LATE

Heckman (JEL, 2010) cites and summarizes many previous
discussions of LATE. Imbens (JEL, 2010) responds.

(1) Unclear who the "compliers" are and whether LATE extends to the
population.
(2) In general LATE 6= ATE or ATET; if no heterogeneity then
LATE = ATE
(3) LATE is mechanical, does not make explicit the implicit economic
assumptions .

Different instruments identify different parameters and may refer to
different TEs.

Marginal treatment effect is more insightful and more fundamental
than LATE

LATE framework is too limited. Treatments may be multinomial or
continuous or ordered. Greater generality is required.
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IV when treatment effect is heterogeneous (1)

Consider a linear model with an endogenous treatment variable whose
coeffi cient is random, i.e. treatment effect is not constant across the
treated.

Suppose treatment variable y2 is continuous. Outcome y1 is the
outcome depends on y2 and exogenous xi . The model is

y1,i = (α+ vi )Di + x′iβ1+ εi

= αDi + x′iβ1+ εi + viy2i
= viD i + αy2i + x′iβ1+ wi ;

D∗i = γzi + x′iβ2+ηi ,

wi = εi + vi
(
Di −D

)
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IV when treatment effect is heterogeneous (2)

Marginal (TE) response = (a+ vi )
Assume E [εi |xi ,D2i ] = E [vi |xi ,Di ] = 0. Then
E [εi + viDi |xi , y2i ] = 0, and V[εi + viDi |xi , y2i ] depends upon xi and
hence is heteroskedastic.
OLS estimator of (α, β1) is consistent but not effi cient. Follows from
the assumed exogeneity of y2.
Now y2 is endogenous. Assume:

E [εi |xi , zi ] = E [ηi |xi , zi ] = E [vi |xi , zi ] = 0,
E [ε2i |xi , zi ] = σ2ε ; E [v

2
i |xi , zi ] = σ2v ; E [η

2
i |xi , zi ] = σ2η.

Endogeneity is introduced by permitting correlation between v and η.
Specifically assume that E [vi |η] = ρηi , which would hold if (v η )
were bivariate normal distributed. Under these assumptions, z is a
valid instrument, and x1 is exogenous. The exclusion of z from the y1
equation is an identifying restriction.
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IV is consistent!

For estimation of (??) use instruments (z x)
However for consistent estimation need E [wi |xi , zi ] = 0.

—first component of wi , εi , is uncorrelated with zi by assumption;
— second component of wi is vi

(
Di −D

)
can be shown (using iterated

expectations) to not affect the result that the IV estimator is consistent.

IV estimator is consistent but not effi cient because of the
heteroskedastic error.
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More on heterogeneity and LATE estimation

Consider 3 cases
Case 1: Multiple group specific instruments (z1,..., zm) impact a single
endogenous treatment variable, each has different impact on the
treatment variable D, but treatment effect of D on y is homogeneous
across groups.
Case 2: Treatment effect varies across groups but is constant within
each group. A single IV is available for the endogenous treatment.
Care 3: There is dual heterogeneity, with multiple instruments
impacting treatment, and variation in treatment effect across groups.

We apply standard LATE methodology of IV regression of y on
(D, x). What parametr is identified?

Case 1: LATE is identified;
Case 2: Weighted sum of group-specific LATE parameter is identified;
Case 3:
Case 3: Under additional assumption of independence between
(∂D/∂z) and (∂y/∂D) , a weighted average of group-speciifc TEs.

Interpretation of LATE is harder if the details of mechanism are
unclear.
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IV-LATE Estimation in nonlinear models
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IV and LATE estimation in nonlinear models

Suppose conditional expectation function E [y |x ] is not linear as we
have assumed so far.

Specifically suppose that yi = E [yi |xi ] + ui = exp(x′iβ)+ ui and
some components of xi are correlated with ui
The (L)ATE effect of the treatment variable xj in this model is the
AME = N−1 ∑N

i=1 βj exp(x
′
iβ)

Also suppose that we have available a suffi cient number of IVs which
satisfy the moment restriction E [z′i (yi − exp(x′iβ)]= 0

This is a nonlinear IV problem which solves :

min
β
Q(β) =

[
N

∑
i=1
[z′i (yi − exp(x′iβ)]

]
W

[
N

∑
i=1
[z′i (yi − exp(x′iβ)]

]

where W is a weighting matrix. Details omitted here.
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Implementing nonlinear IV or nonlinear GMM

In Stata we can implement nonlinear GMM is several ways.

(1) Using evaluator moment function version of GMM- see example
below
(2) Using a 2-step procedure based on residual augmentation
(3) Using a control function for endogenous regressors

Methods (2) and (3) are two step methods in which we estimate first
the treatment assignment function, use the estimates to generate a
new variable(s), and then add this variable(s) to the outcome
equation and estimate it on the assumption that conditional on the
inclusion of generated regressors, there is no endogeneity problem.
How to get the ATE or AME for a binary treatment variable?

Use bootstrap to estimate the standard errors if any 2-step procedure
was used to handle endogeneity
Use margins command if it works, otherwise use Stata’s
postestimation predict command to get sample estimates of
E [y |x,D = 1] and E [y |x,D = 0]
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NLIV estimation of over-identified model
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Varieties of IV-based TE analysis

1. The assignment (selection) equation based on well-argued theory or evidence
of how the mechanism works. Causal parameter is then plausible and may be
generalizable.
2. Argument supporting the assignment mechanism is essentially a blackbox in
which case we may be restricted to a conclusion like "it worked" or "it works" but
external validity is questionable. 3. A statistically valid instrument arrives by a
drone from somewhere, role in the assignment mechanism unknown, then accept
or reject?

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 190 / 356



Regression Discontinuity Design
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Two influential case studies

David S. Lee. (2008) Randomized experiments from non-random selection
in U.S. House elections, Journal of Econometrics, 142(2), 675-697.
W. van der Klaauw, (2002) Estimating the Effect of Financial Aid Offers
on College Enrollment: A Regression-Discontinuity Approach ,
International Economic Review, 43(4), 2002, 1249-87
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RDD Design

Consider a framework for evaluating causal effects of interventions in
which assignment to a treatment is determined at least partly
by the value of an observed covariate lying on either side of a
fixed threshold.
Crossing the threshold ⇒ treatment will be assigned. Not crossing
the threshold ⇒ treatment not assigned.

Example: Offer of financial support in college depends upon
satisfactory academic performance measured by a threshold value.

RDD designs were first introduced in the evaluation literature by
Thistlewaite and Campbell [1960. Regression-discontinuity analysis:
an alternative to the ex-post Facto experiment. Journal of
Educational Psychology 51, 309—317]

RD may be sharp (single-valued threshold→ SRD) or fuzzy (a band→
FRD)
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Researchers interested in the causal effect of a binary intervention (as
in the RCM)
Distinguish between two designs, the Sharp and the Fuzzy (SRD and
FRD) designs. Di is a deterministic function of one of the
covariates, the forcing (or treatment-determining) variable
X : Di = 1{Xi ≥ c}.
No idiosyncratic element in selection for treatment.
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Fuzzy RDD

Propensity score
Pr(D=1|S)

Sharp RD Design

Fuzzy RD Design

SSelection variable S

{Xi ≥ c} ⇒ i ∈ treatment group (where participation is mandatory),
and all units with {Xi < c} ⇒ i ∈ the control group (whose
members are not eligible for the treatment).
All selected for treatment comply and choose to be treated (No
"Groucho Marx" effect!)
No other possible source of discontinuity in response, hence no
confounding.
c is the known discontinuity point such that Pr[D = 1|Xi ≥ c ] = 1;
Pr[D = 1|Xi < c ] = 0
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Using a control function

Suppose the outcome equation is

yi = xiβ+ αDi + ui , (6)

In the sharp RD design

E [u|c,D ] = E [u|c ], (7)

where u denotes the error on the outcome equation, because c is the only
systematic determinant of D, c will capture any correlation between D
and u.

If D = 1|Xi ≥ c ],dependence between Di and ui would make OLS
inconsistent
Treatment can be estimated by specifying and including the
conditional mean function E [u|D, c ] as a “control function” in the
outcome equation. Thus

yi = β+ αDi + k (xi ) + εi , (8)

where εi = yi − E [yi |Di , xi ]. If k(x) is correctly specified, the
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Identification Assumptions

ATE estimated by comparing average y value of those just above and
those just below the cutoff.
In this RD design,

lim
x↓c

E [y |x ]− lim
x↑c

E [y |x ] = α+ lim
x↓c

E [u|x ]− lim
x↑Sc

E [u|x ]. (9)

Formally assume that without treatment, individuals in a small
interval around c would have similar average outcomes

Assumption A1. The conditional mean function E [u|x ] is continuous at
c .

lim
x↓c

E [y |x ]− lim
x↑c

E [y |x ] (10)

Assumption A2. The mean treatment effect function E [αi |x ] is right
continuous at c.

yi = β+ αWi + k (xi ) + εi , (11)

where εi = yi − E [yi |Di , xi ]
Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 197 / 356



SRD (1)

Under randomization (Y (1), Y (0)) ⊥ D
To identify the average causal effect of the treatment, the SRD
design looks at the discontinuity in the conditional expectation of the
outcome, i.e.

τSRD = E [Yi (1)− Yi (0)|Xi = c ]
Justification? Appeal to smoothness and continuity of distribution
function assumption.
Conditional regression of Y (1) and Y (0) on X = x are continuous in
x . Then the estimand is the difference of two regression functions at a
point.

τSRD = lim
x�c
E [Yi (1)|X = x ]− lim

x�c
[Yi (0)|Xi = x ]

Compare mean outcomes for treated and untreated at the margin.
Identify the intervention effect locally at the threshold for selection.
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SRD (2)

Because of stochastic independence assumption (Y (1), Y (0)) ⊥
D |X = c , SRD is interpreted as a quasi-experimental design. Similar
to an exclusion restriction.

The local dispersion in outcomes at c is purely random and equivalent
to variation under random assignment.

For a suffi ciently large sample
τ = limx�c E [Yi (1)|X = x ]− limx�c [Yi (0)|Xi = x can be estimated
using only data in the neighborhood of c .

If sample not large enough, assume parametric form for the regression
function (usually two polynomial) away from discontinuity.
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SRD (3)

Example: Party affi liation and voting behavior of congressman. Here
x = 50% of the votes. Districts in which the Democratic vote is just
less than 50% are very similar to the districts in which the vote
exceeds 50%. Yet party affi liation (here the causal variable) leads to a
sharp difference in voting behavior at 50%, i.e. a case of SRD.

In the FRD design the probability of receiving the treatment need not
change from zero to one at the threshold. Design allows for a smaller
jump in the probability of assignment (propensity score) to the
treatment at the threshold:
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FRD

FRD allows for random unobserved component in the treatment
assignment; for identification require additional assumption.
Treatment assignment may depend upon both observables and
unobservables (to the econometrician)
Assume: Y (1),Y (0),D(c) stochastically independent of X in the
neighborhood of c .
In FRD design the probability of receiving the treatment need not
change from zero to one at the threshold. May have a smaller jump
in the probability of treatment assignment at the threshold:

τFRD =
limx�c E [Yi |X = x ]− limx�c [Yi |Xi = x ]
limx�c E [Di |X = x ]− limx�c [Di |Xi = x ]

=
∆ in outcome

∆ in assignment probability

where limx�c E [Di |X = x ]− limx�c [Di |Xi = x ] 6= 0 because of the
known discontinuity at c .
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FRD with heterogeneous response

In the case of heterogeneous treatment responses we need
additional assumptions.

Assumption A2*. The average treatment effect function E [αi |x ] is
continuous at c.
Assumption A3. Di is independent of αi conditional on x near x = c .

yi = β+ αE [Di |xi ]+ k (xi ) + εi , (12)

where εi = yi − E [yi |Di , xi ] and k(xi ) is a specification of E [ui |xi ].
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Monotonicity assumption

I Assumption A4: Di (x) is non-increasing in x at x = c .
I Assumptions of an FRD analysis ⇒ comparing treated and control units
with Xi = c, is likely to be the wrong approach.
I Categorize heterogeneous responses into: (1) compliers; (ii) defiers; (iii)
never-takers, and (iv) always-takers
I Why? Because the treated units with Xi = c is heterogeneous with both
compliers and always-takers, and control units at Xi = c consist only of
never-takers. More on this when we cover the Local ATE in the IV case.
IComparing these different types of units has no causal interpretation
under the FRD assumptions.
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Other assumptions

I Fuzzy nonparametric regression discontinuity: D determined by x and
ε.
I SRD rare in practice because treatment assignment usually involves
multiple (not just one) decisions.
I To deal with fuzzy RDD, need to assume

i) Selection is on observable at x ≈ τ

ii) The propensity score for receiving treatment has a break
at τ
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Key theoretical and conceptual contributions

1 the interpretation of estimates for fuzzy regression discontinuity
(FRD) designs allowing for general heterogeneity of treatment effects
(Hahn et al., 2001, HTV from hereon),

2 adaptive estimation methods (Sun, 2005),
3 specific methods for choosing bandwidths (Ludwig and Miller, 2005),
and

4 various tests for discontinuities in means and distributions of
non-affected variables (Lee, 2007; McCrary, 2007)
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Interpretation and connections with TET estimation
External validity

D = 1 if x > c , otherwise 0, where τ is a known threshold. Although
the T and C groups are not comparable in most x values, they are
comparable on a small neighborhood of x = τ. The treatment D is
imposed on the individuals by a law or rule depending on x or ε.

In time series RDD is equivalent to the before-after (BA) design.

Comparison between DD design vs. RDD and BA.

DD has the advantage that there the control group is subject to a
time effect but not the treatment effect; but in BA and RDD,
everybody potentially gets the treatment.

SRD/FRD designs at best provide estimates of the average effect for
a subpopulation

FRD design restricts the relevant subpopulation even further to that
of compliers at this value of X .
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Graphical Analysis

Graphical analyses: RD designs suggests that the effect of the treatment
of interest can be measured by the extent of the discontinuity in the
expected value of the outcome at a particular point.
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Graphical Analysis 2
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Parametric estimation of RD model

RDD can be implemented by parametric methods.

Using parametric regression model to extrapolate counterfactual is an
option

yi = β1 + βwDi + βxxi + ui , E (u) = 0; E (u|x) = 0
where βD 6= 0 implies a break or discontinuity in the regression function as
x increases.

Parametric RDD is heavily model-dependent, so the possibility of
misspecification is a serious problem. This motivates nonparametric
RDD.
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Parametric estimation under endogenous selection

If Cov[D, u] 6= 0, OLS regression will produce a biased estimate of α.
Consider

yi = β+ αE [Di |xi ] + k (xi ) + εi , (13)

where εi = yi − E [yi |xi ] and k(xi ) is a specification of E [ui |Si ].
Stage 1: Propensity score function for a fuzzy RD design as

E [Di |xi ] = f (xi ) + γ1[xi ≥ c ] (14)

where continuous function of x , f (xi ), is continuous at c . By
specifying the functional form of f (or by estimating f semi- or
nonparametrically) we can estimate γ, the discontinuity at c .

Stage 2: The control function-augmented outcome equation is then
estimated with Di replaced by the first stage estimate of E [Di |xi ] =
Pr[Di = 1|xi ]; this estimate will be discontinuous in x whereas the
included control function for k (x) would be continuous in x at c . Correct
specification of f (Si ) and k(Si ) ⇒ consistency of two-stage procedure.
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Nonparametric estimation

Nonparametric regression can estimate the treatment effect in both
the SRD and FRD designs.

yji = βd j + g(xi ) + uji

where g(·) is an unknown function continuous at the point of
discontinuity;

Leads to the interpretation of borderline randomization. βd is the
treatment effect for the subpopulation x ≈ τ.

Two unusual features in estimation:

(1) we need the value of the regression function at a single point, and
(2) that single point is a boundary point.
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Nonparametric estimation 2

Then the usual nonparametric kernel regression does not work very
well.

Local linear regression (Fan and Gijbels, 1996) is more relevant.

Instead of locally fitting a constant function, we can fit linear
regression functions to the observations within a distance h on either
side of the discontinuity point.
In the FRD design, the treatment effect is a ratio of two differences.
So local linear regression should be used for both differences.
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LATE - RDD - Matching

Identification assumptions of FRD and LATE are very similar

SRD/FRD cannot identify the treatment effects on individuals far
from the discontinuity threshold. Hence similar to LATE

Matching excludes selection on unobservables. Inference based on
balanced samples using observables

Combining RE and matching can help deal with endogenous or
self-selected treatrment (GMM, control functions, IV)
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Examples of RDD

I See Lee & Lemeiux (JEL, 2010) for coverage of applications in
education, labor, political economy, crime, environment, health etc
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Implementing RD estimation in Stata
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Implementing RD

Two main user-provided packages are rdrobust (Calanico et al:
Stata Journal, 2014, 16(2)) and rd (Nichols, Stata Journal 2007,
7(4))

rdrobust is more up to date and complete; includes commands for
point and interval estimation, bandwidth and window selection and
data plots.

Standard data plot commands in Stata include twoway scatters;
another useful one i user-provided cmogram

Graphical plots can be very suggestive and have a significant role in
implementing rd analysis.

rd analysis can also be implemented in a parametric setting so
standard estimation commands have a role also
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Simulating RD data using a parametric model
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Code for a scatter plot
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RD plot with linear fitted lines
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Binned smoothed data
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cmogram plot with np regression
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rd plot with lpolyci superimposed

scatter

49.pdf
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Eyeball test of y/x discontinuity
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Stata’s rdrobust command
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Empirical Application of RD
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Incumbent advantage example

In this well-known application to data from the US senate elections
the interest is in discontinuity in relation between percentage of vote
(y) at t + 1 given the margin achieved at t. Does the incumbent
advantage in polling jump at the point of discontinuity?
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Parametric test of srd using quadratic regression
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rdrobust output 1 under srd
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rdrobust output under srd 2
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rdrobust under frd set-up

How to generate frd sample? How in practice does frd data get
generated?

One way is that treatment assignment depends on both the running
variable x and another unobserved missing variable z .

Reconsider the dgp used under srd.

With the cut-off now obscured we expect RD estimate under srd
assumptions to be possibly biased

A numerical example based on generated data illustrates that the
estimated treatment effect depends upon choice of local polynomial
and bandwidth selected.
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Example of frd data generation
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Estimation under srd assumptions applied to frd data
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srd estimate based on frd data
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Power and sample size determination in RDD (1)

Parametric RDD model: yi = c + βDDi + γg(xi ) + εi

Parameter of interest is βD .Suppose we apply OLS.

varRDD (β̂D ) =
σ2y (1− R2)

Np(1− p)(1− r2D ,x )

where R2 =regression R2, p =proportion of treated; r2D ,x = squared
correlation between D and x , σ2y = variance of outcome.

Then (Lee, Hyunshik, and Tom Munk. "Using regression discontinuity design for
program evaluation."
Proceedings of the 2008 Joint Statistical Meeting. American Statistical
Association, 2008))
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Power and sample size determination in RDD (2)

In designing RDD we are dealing with a design question which is
essentially the same as in an RCT

Hence sample size can be determined using the same tools as in RCT.

We require α (significance level), 1− β (desired power), and desired
minimum detectable standardised treatment effect size, δ = βD/σ

Then the required sample size is determined by

N∗ =
(1− R2)(z1−α − zβ)

2

δ2p(1− p)(1− r2D ,x )
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Power and sample size determination in RDD (3)

In a large sample the power is given by

1− β = 1− Pr

Z <
z1−α − δ

√
Np(1− p)(1− r2D ,x )

(1− R2)


RDD is less effi cient than RCT; Variance of βD under RCT is given by

varRCT (β̂D ) =
σ2y (1− R2)
Np(1− p)

so the relative effi ciency of RCT is RE = 1/(1− r2D ,x )
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Multi-level treatment with many counterfactuals
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Multilevel treatment effects

Most of preceding discussion has focussed on a binary set-up with just
one level of treatment which is received or not.

In practice treatments are often multi-valued

Each subject receives one of several mutual exclusive treatments.

Multilevel treatments may be exogenous or self-selected and
endogenous.

For example in the context of health insurance a purchaser of an
insurance policy may choose between policies with different levels of
generosity and coverage which then would affect the use of medical
services.

We consider extending the analytical methods considered so far to
such settings.

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 238 / 356



ML treatments - features

Multilevel treatment models may have ordered or unordered
treatments.

In either case there will be pairwise comparisons between either
adjacent or far apart levels of treatment

Implication - multilevel treatments involve many more parameters,
more counterfactuals, and require additional computations to support
pairwise comparisons

However, even in a multivalued treatment case, binary methodology
can be used for specific pairwise comparisons,

In general a multivalued treatment effects framework will deliver
greater effi ciency; Cattaneo( 2010} establishes

consistency and normality of a class of ATE estimators
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Assumptions in ML TE estimation

As before assume conditional independence (selection on observables)
and exclude endogenous treatment.

Then results on regression adjustment and propensity scores extend to
multivalued treatments.

Stata’s teffects commands {teffects ra}, {teffects ipw},
{teffects ipwra}, teffects aipw

extend to multivalued treatments and will be illustrated in the next section.

Commands {teffects psmatch}, {teffects nnm} do not.
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Example

We use data on prescription drug expenditures of the elderly Medicare
population in the USA in 2003 and 2004 derived from Medicare
Current Beneficiary Survey. See (Li & Trivedi, HEC, 2014) for details.

This is subset of the data used pertaining to the elderly seeking
prescription drug coverage through privately obtained access to
various sources

Includes employer-sponsored plans {ESI}, {Medigap} plans and
Medicare managed care plans {MMC}.

Sample includes individuals with prescription drug insurance from
these three sources and we add a fourth comparison group of
{Medicare} elderly without such coverage.

The objective is to estimate treatment effects of the three levels of
insurance {inslevel} which is treated as exogenous (!)
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Frequency distribution across 3 plans with drug coverage
and one without (RA)
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Ordered frequency distribution across 3 plans with drug
coverage and one without
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Annual expenditure on prescription drugs by level of
coverage
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ATE of insurance levels 1-3 relative to no insurance (level
0)

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 245 / 356



ATET of insurance levels 1-3 relative to no insurance (level
0)
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Continuation of previous table
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ATE of insurance levels 1-3 relative to adjacent level
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Other estimators

This exercise could also be implemented using teffects aipw command; for
details see chapters.
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Maximum likelihood estimation of TEs for models with
endogenous treatments
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Estimation of a canonical 2-equation model with
endogenous treatment

Begin with the canonical two-equation model presented during the
coverage of LATE.

This model has one "structural" equation for a continuous outcome
variable y and one reduced form equation for a binary treatment
variable, D.

Estimation of this model was done using 2SLS or IV estimation, under
the assumption that a valid IV is available and that there is an
exclusion restriction for identification.

Under certain additional assumptions this model can be extended and
estimated by maximum likelihood.

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 251 / 356



Assumptions

1 Key assumption is that of joint multivariate normal distribution of
errors

2 Second key assumption is that the endogeneity structure is recursive,
not simultaneous. No feedback from outcome to the treatment is
allowed.

3 Many empirically interesting extensions are now estimable and
described in the table below.

4 Binary or continuous treatment variable, including multivalued
treatment, is allowed.

5 Additional endogenous variables may enter the outcome equation.
6 A specific form of selection is allowed also.
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Scope of Stata’s new eregress command

1 Expanded scope of the eregress command is described in the table
below.

2 Linear and nonlinear joint normal models supported include LIML,
probit, ordered probit, tobit.

3 Sub-command endogenous is an option for specifying reduced form
for additional endogenous regressors.

4 Equation for endogenous treatment is specified using entreat
subcommand

5 Ignoring endogeneity of treatment variable often amounts to neglect
of selection bias; i.e. then the estimated treatment effect includes the
selection component. i.e. ÂTE = Pure TE + Selection effect
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Stata’s extended TE commands for endogenous treatments
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Computational detail

Joint normality and recursive structure assumptions allow
factorization of the likelihood function into a conditional part and a
marginal part.

Conditional part is the structural outcome equation, the marginal part
is the one or more of reduced form equations for endogenous
regressors.

Computation is now feasible using the algorithm proposed by
Roodman, D.. "Estimating fully observed recursive mixed-process
models with cmp." (2009).

Post-estimation Stata’s margins command or the estat teffects
command can be used to estimate ATE.
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Interpreting ATE with endogenous treatment

When the regressor is endogenous, it includes the effect of individual
specific random error term,

Hence treatment effect measures the total effect of the regressor and
the effect of the idiosyncratic error. ATE = E [y |x,η]
Averaging over all impacted observations then implies averaging over
the random component also.

The resulting ATE is then called either the average structural mean
(ASM) or, in a binary outcome model, the average structural
probability (ASP).

In a linear model the implication is not consequential, but in a
nonlinear model, computation involves numerical integeration to
average over the error term.
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Application of eregress to endogenous ordered probit
treatment variable

An empirical application of eregress to an ordered probit model with
endogenous multinomial treatment is given in the course packet.
The variable of interest is log prescription drug expenditure; endogenous
treatment variable is an ordered variable for category of private insurance
There are four categories, the base category provides no coverage.
Multinomial probit model is used as reduced form for insurance choice.
The treatment effect is measured as percentage increase over the base
category.
Estimated ATE for the three insurance levels are shown in the table below.
They are estimated to be 39.8, 81.0, and 155.5 per cent higher,
respectively.
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ATE for the three insurance levels
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Preview of selected topics not covered in the course (1)

Extensions to linear and nonlinear panel data models

Heterogeneity in responses characterized in a flexible manner

Random effect models allowing for heterogenous response parameters
(Li & Trivedi, HEC, 2014)
Finite mixture models (Munkin & Trivedi, HEC, 2012)
Dirichlet mixture models (Hu, Munkin, Trivedi, JAE, 2015)

Studying impact on a the distribution of outcomes, not just the means

Medicare Plan D choices and impact on prescription drug expenditure
(Li & Trivedi, HEC, 2014)
Bayesian approaches

Interdependence between hierarchical treatments
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Li-Trivedi example of multi-level counterfactuals
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Average vs. median ATET
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Treatment effects of drug plans with different
counterfactuals (1)
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Treatment effects of drug plans with different
counterfactuals (2)
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Brief remarks about some under-researched topics
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Idiosyncratic list of under-researched topics

1 Estimating the distribution of TEs

Motivation: Policy interventions often impact the full
distribution of outcomes, distribution is nonsymmetric,
so focus on ATE insuffi cient

2 TEs in panel data framework

Motivation: Interventions have short-term and
long-term impacts.

3 Joint treatment of multi-valued treatments and multi-valued
outcomes

Motivation: Interventions may target several outcomes
and use several interventions simultaneosuly.
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Modeling the distribution of outcomes

Three methods are available and well-established

1 Quantile regression for continuous outcomes

1 continuous/discrete exogenous intervention (qreg)
2 binary endogenous treatment (ivqte)

2 Bayesian modeling

1 Posterior distribution of any function of parameters and variables for
exogenous or endogenous interventions

3 Regression adjustment

1 Postestimation predictive margins generating conditional distributions
for specified configurations of exogenous variables
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CQR approach explained
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CQR approach explained (2)

Treatment shifts the distribution of outcomes (vertical axis) as do
other covariates.

The shift can be vertical upwards or downwards, or different at
different quantiles (horizontal axis)

At each quantile of interest we can estimate a conditional quantile
function with treatment variable and conditioning covariates.

This can be done with a single- or multivalued intervention

Potential outcomes can be generated at each quantile of interest
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Bayesian posterior distribution of ATET, ATE

"We estimate the posterior distributions of the ATE and LATE, parameters
for a synthetic “representative” individual who is a white 40-year-old male with 13
years of education, with very good health, and without any injuries, physical
limitation, or chronic conditions, who is married and has three family members,
including himself, annual income of $32,000, living in a metropolitan area in the
South, observed in year 2001, and whose employment is with a firm of 146
employees."
From Munkin & Trivedi (JBES, 2006)
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Posterior distribution of ATET, ATE : Example

From:From Munkin & Trivedi (JBES, 2006)
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Post. distribution ATET and ATE

From: Deb, Munkin, Trivedi: JAE-2006
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TE in panel framework

Panel data allows us to study treatment effects in a dynamic
framework allowing for unobserved heterogeneity as well.

For continuous outcomes and linear models, RA is the obvious
approach as it can simultaneously deal with several complications

For nonlinear models (binary or count outcomes, interval regression,
survival models) random effects framework is easier to handle

Main limitation is that regressor balance is hard to maintain.
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MV-outcomes and interventions

This topic is at an embyonic stage.

Usual practice is to study a single outcome at any time, ignoring
possible dependence between outcomes.

The standard assumption rules out dependence between outcomes of
different subjects.

For identification may need to rule out also dependence between
different outcomes also
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Appendix A: Binary Outcome Models and
Propensity Scores
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Introduction

Discrete choice or qualitative response models are for y that takes
only a finite number of discrete values.

Here we consider binary outcome models where only two values are
taken, 0 and 1.

Particularly logit and probit models, which are nonlinear models.
Regression models for binary outcomes are constructed to model the
conditional probability of a binary discrete outcome

Examples: Whether to buy a new car; whether to vote for a particular
party; whether to choose a particular course

Topic well covered in most texts.
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Outline

General properties of binary outcome models

Probit, logit, LPM and OLS models.

Latent variable formulations, especially random utility model.
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Simple binary outcome model

The coin toss example of introductory statistics.

Let p denote the probability of a head (y = 1) on one coin toss.

Then Pr[y = 1] = p and Pr[y = 0] = 1− p.
For N tosses yi is the i th of N independent realizations of head or tail.

The MLE for p is the sample mean y ,
i.e. the proportion of tosses that are heads.
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Bernoulli distribution

Pr[y = 1] = p and Pr[y = 0] = 1− p.
Compact expression for density

f (y) = py (1− p)1−y .

This is Bernoulli density which is the binomial with one trial per
observation.

Moments

E [y ] = 1× p + 0× (1− p) = p
V[y ] = (1− p)× p + (0− p)× (1− p) = p(1− p).

Note that p can be interpreted as E [y ] or as Pr[y = 1].
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Examples

Economic applications are

labor supply: y = 1 if work and y = 0 otherwise
insurance status: y = 1 if have private health insurance, y = 0
otherwise

Assumption of independent trials may be reasonable.

Assuming a constant probability p for each trial is not and expected
to depend of an individual’s characteristics.

Extend the Bernoulli model so pi may be a function of regressors xi .
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Binary outcome models

Regression model formed by parameterizing pi to depend on
regressors xi and parameters β.

Usually specify single-index model

E[yi |xi ] = pi = F (x′iβ).

Usually chose F (·) to be a cumulative distribution function (cdf).
Then 0 ≤ F (·) ≤ 1 ⇒ 0 ≤ p ≤ 1.

logistic cdf gives logit model.
standard normal cdf gives probit model.
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Plot of the logistic function
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Propensity score

Given functional form F , and fitted model F (x′ β̂), for each
i = 1, ...,N, we can generate postestimation fitted values

p̂i (yi = 1|xi ) = F (x′i β̂).

These fitted values are conditional (fitted) probabilities E [yi = 1|xi ].
They are referred to as propensity scores.
In the matching literature, the propensity score is a scalar measure of
similarity and is an alternative to matching based on the vector x.
Low values of PS indicate that y = 1 is unlikely to be on=bserved.
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Maximum likelihood (MLE)

Density

f (y) = py (1− p)1−y , p = F (x′β)
⇒ ln f (y) = y lnF (x′β)+(1− y) ln(1− F (x′β))

Log-likelihood function is

L(β) = ∑N
i=1

{
yi lnF (x′iβ) + (1− yi ) ln(1− F (x′iβ))

}
.

Let F ′(z) = ∂F (z)/∂z . MLE solves

∑N
i=1

{
yi

F (x′iβ)
F ′(x′iβ)xi +

1− yi
1− F (x′iβ)

F ′(x′iβ)xi

}
= 0.
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Asy. Distribution OF MLE

The MLE f.o.c. simplify to

∑N
i=1

yi − F (x′iβ)
F (x′iβ)(1− F (x′iβ))

F ′(x′iβ)xi = 0

∑N
i=1

[
yi − F (x′iβ)√

F (x′iβ)(1− F (x′iβ))

]
F ′(x′iβ)xi√

F (x′iβ)(1− F (x′iβ))
= 0.

General ML result if density correctly specified

For binary outcome MLE

β̂ML
a∼ N

[
β0,
(
−E[∂2L/∂β∂β′]

∣∣
β0

)−1]
a∼ N

[
β0,

(
∑N
i=1

1
F (x′iβ0)(1− F (x′iβ0))

F ′(x′iβ0)
2xix′i

)−1]
.
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Misspecification

For binary data the dgp density is always Bernoulli as

Pr[y = 1] = p
⇒ Pr[y = 0] = 1− Pr[y = 1] = 1− F (x′β).

Therefore only possible misspecification of dgp is if p 6= F (x′β).
Clearly inconsistent estimator if p 6= F (x′β) as then

E[yi − F (x′iβ)] 6= 0

leading to left-hand side of f.o.c. not having expected value 0.
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Weighted NLS interpretation

Since

E[y |x] = F (x′β)
V[y |x] = F (x′β)(1− F (x′β))

∂E[y |x]/∂β = F ′(x′β)x

the MLE first-order conditions imply

∑N
i=1

yi − E[yi |xi ]
V[yi |xi ]

∂E[yi |xi ]
∂β

= 0.

Residuals are orthogonal to regressors upon weighting to adjust for
heteroskedasticity. i.e. nonlinear WLS .
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Logit model

Logit is a widely used functional form, especially in biometrics

Computationally convenient.

The logit model specifies

p = Λ(x′β) =
ex
′β

1+ ex′β
,

Λ(z) = ez/(1+ ez ) = 1/(1+ e−z ) is the logistic cdf.
The derivative Λ′(z) = Λ(z)(1−Λ(z)) is the logistic density.
For this reason also called logistic regression model .
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Logit MLE

The logit ML conditions simplify to

∑N
i=1(yi −Λ(x′iβ))xi = 0.

F.O.C. are nonlinear in parameters

Notice that there is no "error term" in the binary model.

The logit MLE has distribution

β̂Logit
a∼ N

[
β0,
(
∑N
i=1 Λ(x′iβ0)(1−Λ(x′iβ0))xix

′
i

)−1]
.
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Probit model

The probit model specifies

p = Φ(x′β).

Φ(z) =
∫ z
−∞ φ(s)ds =

∫ z
−∞(1/

√
2π) exp(−s2/2)ds is the c.d.f. of

the standard normal.

The derivative Φ′(z) = φ(z) = (1/
√
2π) exp(−z2/2) is the

standard normal p.d.f.

The f.o.c.do not simplify, unlike logit case.

The probit MLE has distribution

β̂Probit
a∼ N

[
β0,

(
∑N
i=1

φ(x′iβ0)
2

Φ(x′iβ0)(1−Φ(x′iβ0))
xix′i

)−1]
.
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Linear probability model (LPM)

The LPM specifies
p = x′β.

The LPM MLE f.o.c. conditions are

∑N
i=1

yi − x′iβ
x′iβ(1− x′iβ)

xi = 0,

The LPM model has the obvious weakness of permitting probabilities
outside the (0, 1) interval.

Furthermore, the MLE estimator can be numerically unstable if x′iβ
close to 0 or 1.
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OLS

The LPM is more simply estimated by OLS , which also specifies
E[yi |xi ] = x′iβ.
The LPM OLS f.o.c. conditions are

∑N
i=1(yi − x

′
iβ)xi = 0,

Allow for the intrinsic heteroskedasticity of binary data

β̂OLS
a∼ N

[
β0, (X

′X)−1X′ΩX(X′X)−1
]

where for Ω use
Ω̂ = Diag[(yi − x′i β̂)2]
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How to interpret coeffi cients (1)

Coeffi cients in different models are not directly comparable due to
different scaling.
Instead compare across models effect of a one unit change in
regressors on P[y = 1|x] =E[y = 1|x].
Now

E[y |x] = F (x′β)
∂E[y |x]/∂x = F ′(x′β)× β

where F ′(z) = ∂F (z)/∂z .

Thus the effect depends on the functional form of F and the
evaluation point x, in addition to parameter β.
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How to interpret coeffi cients (2)

This suggests for slope parameters the rule of thumb

β̂Logit ' 4β̂OLS

β̂Probit ' 2.5β̂OLS

β̂Logit ' 1.6β̂Probit.

This works quite well, for 0.1 ≤ F (x′β) ≤0.9.
Better to compare marginal effects, not coeffi cients.
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Odds ratio calculations for logit (1)

For the logit model

p = exp(x′β)/(1+ exp(x′β)
⇒ p

1−p = exp(x′β)
⇒ ln p

1−p = x′β.

p/(1− p) is the odds ratio which measures the probability that
y = 1 relative to the probability that y = 0.

E.g. Pharmaceutical drug study where y = 1 denotes survival and
y = 0 denotes death. An odds ratio of 2 means that the odds of
survival are twice those of death.
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Odds ratio calculations for logit (2)

Statistical analyses and packages offer the option of printing the odds
ration p/(1− p) = exp(x′β).
Suppose the j th regressor increases by one unit.
Then x′β increases to x′β+βj .
And exp(x′β) increases to exp(x′β+βj ) = exp(x

′β)× exp (βj ).
Thus the odds ratio has increased by a multiple exp (βj ) .

E.g. a logit slope parameter of 0.1 means that a one unit change in
the regressor increases the odds ratio by a multiple exp(0.1) ' 0.105.
The relative probability of y = 1 has increased by 10.5 percent.

This interpretation widely used in applied biostatistics.
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Semi-elasticity interpretation

For economists it is more natural to interpret βj as a semi-elasticity
for the odds ratio, since ln p/(1− p) = x′β.
Then a logit slope parameter of 0.1 means that a one unit change in
the regressor increases the odds ratio by a multiple 0.1.

This coincides exactly with the interpretation used in statistics for
very small of βj , since then exp(βj ) = βj .
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Which functional form?

Which F — logit, probit or linear probability?

Theoretically it depends on the data generating process (dgp).

Unlike other applications of ML there is no problem in specifying the
distribution — the only possible distribution for a (0, 1) variable is the
Bernoulli.

The problem lies in specifying a functional form for the parameter of
this distribution.

If the dgp has pi = Λ(x′iβ0) then a logit model should be used, and
estimators based on other models such as probit are potentially
inconsistent.

Similar conclusions hold if instead for the dgp has pi = Φ(x′iβ0) or
pi = x′iβ0.
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Why logit?

Logit model is the binary model used by statisticians :

F.o.c. and asymptotic distribution are relatively simple.
Logit model corresponds ises the canonical link function for the
binomial, a generalized linear model.
Coeffi cients can be interpreted in terms of the log-odds ratio.
Easy generalization to multinomial logit.
A discriminant analysis interpretation can be given.
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Why Probit?

The probit model is often used by economists .

It is motivated by a latent normal random variable.
So ties in with tobit models and multinomial probit.

Empirically, either logit and probit can be used

little difference between results from probit and logit analysis, once
rescale parameter estimates.
Greatest difference is in prediction of probabilities close to 0 or 1.
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Why LPM?

The LPM should not be used as probabilities outside the (0, 1)
interval and be numerically unstable.

Nonetheless OLS can be useful for preliminary data analysis.

Very widely used in the context of endogenous binary variable

In practice standard errors of slope coeffi cients are often quite similar
across logit, probit and OLS (even using the incorrect s2(X′X)−1 in
the case of OLS).

Final results should, however, use probit or logit.
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Measuring the fit of the model

Several measures of model adequacy have been proposed.

Many are very specific to binary outcome models.

There is no single best measure . See Amemiya (1981) and Maddala
(1983).

Approaches:

R-squared measures.
Compare ŷ with y .
Compare predicted P̂r[y = 1] with actual Pr[y = 1].
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Pseudo-R-squared

There are many R-squareds for binary models as R2 in linear model
has many interpretations.

McFadden proposed two. We favor McFadden (1974)

R2 = 1− LfitL0
,

where

Lfit = log-likelihood in the fitted model
L0 is the log-likelihood in the intercept-only model.

This R2 should be only used for discrete choice models.
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In other nonlinear models instead use

R2 = 1− (Lmax −Lfit )/(Lmax −L0),

where Lmax is the maximum possible value of the log-likelihood.

For binary outcome models Lmax = 0.
For some other models Lmax can be unbounded restricting use of this.
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Predicting y=1

Many measures compare predicted ŷ with y .

The problem is in defining a rule for when ŷ = 1.
Obvious is ŷ = 1 when p̂ = F (x′ β̂) > 0.5.
But this can e.g. yield ŷ = 0 all the time if most of the sample has
y = 0.
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Predicting Pr[y=1]

Can compare predicted P̂r[y = 1] with Pr[y = 1].
But testing whether on on average the predicted probabilities equal
the sample frequencies is not helpful over the entire sample, since for
the logit model with an intercept the f.o.c. imply
∑N
i=1 yi −Λ(x′i β̂) = 0, so that ∑N

i=1 p̂i = ȳ .

Useful for subsamples.
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Random utility models (1)

In the random utility formulation a consumer selects the choice with
highest utility .

The discrete variable y

takes value 1 if choice 1 has higher utility
takes value 0 if choice 0 has higher utility.

The random utility model specifies the utilities of alternatives 0 and 1
to be

U0 = µ0 + ε0 = x′β0 + ε0
U1 = µ1 + ε1 = x′β1 + ε1

where

µ0 and µ1 are deterministic components of utility, whose dependence
on regressors is detailed below.
ε0 and ε1 are random components of utility.
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Random utility models (2)

The alternative with highest utility is chosen. So the observed choice
is

Pr[y = 1] = Pr[U1 > U0]
= Pr[µ1 + ε1 > µ0 + ε0]
= Pr[ε0 − ε1 < µ1 − µ0]
= F (µ1 − µ0),

where F is the cdf of (ε0 − ε1).

Different distributions of ε0 and ε1 give different discrete choice
models.
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Random utility models (3)

Binary probit arises if ε0 and ε1 are normal, as is readily seen by
noting that then (ε0 − ε1) is normally distributed, upon normalization
of the variance of (ε0 − ε1) to unity.

Binary logit model arises if ε0 and ε1 are type I extreme value
distributed, defined soon, as then the difference (ε0 − ε1) can be
shown to be logistic distributed.

The random component ε in utility model is needed. Otherwise,
choice would be deterministic, with alternative 1 always chosen if
µ1 > µ0.
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Appendix B: Nonparametric density and regression
estimation
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Outline

1 Motivating NP methods
2 The histogram estimator
3 Nonparametric kernel density estimator
4 Nonparametric regression estimators
5 Stata Commands
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Parametric or non-P?

I We are often interested in looking at the key features of a distribution
of some variable
I If the focus is on wage distribution, we may want to see more than just
the mean
I In comparing distribution differences and changes over time, a visual
tool is helpful and suggestive.
See example from DiNardo and Tobias (JEP, 2001)
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Why nonparametrics?
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Parametric and nonparametric regression

I Up to now, all regression models relied on functions (or densities)
which depend on an unknown finite-dimensional parameter.
◦ A finite-dimensional parameter is an element of Rq with q < N.
◦ For example, linear regression models use an additive combination

of the covariates (x0).
◦ Nonlinear regression models specify a known function of (a linear

index of) the covariates.
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Parametric vs. nonparametric methods

I ML theory is based on a assumption about the density of the data,
which depends on a finite dimensional parameter.
I If the functional form or the distributional assumption is wrong, the
parameter estimators of these models are inconsistent, however.
I To circumvent this kind of misspecification problem due to assumptions
about functional form, nonparametric methods can be used .
I Nonparametric density and nonparametric regression estimators are the
base for most nonparametric econometric models.
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Density estimation

1. Parametric density estimation:
I Assume a density and use estimated parameters of this density
e.g. normal density estimate: assume yi ∼ N [µ, σ2] and use N [y , s2].
I Nonparametric density estimate: a histogram
◦ break data into bins and use relative frequency within each bin
◦ Problem: a histogram is a step function, even if data are continuous

2.Smooth nonparametric density estimate: kernel density estimate.
◦ Kernel density estimate smooths a histogram in two ways:
◦ use overlapping bins so evaluate at many more points
◦ use bins of greater width with most weight at the middle of the bin.
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Empirical density (1)

I Let the data z1, ..., zn be a sample from the distribution of a random
vector Z
I Interested in the general problem of estimating the distribution of Z
nonparametrically, i.e. without restricting it to belong to a known
parametric family.
I First consider how to estimate nonparametrically the density function of
Z .
I Distribution function (cdf) and the density function are equivalent ways
of representing the distribution of Z , but there may be advantages in
analyzing a density:
◦ The graph of a density may be easier to interpret if one is interested in

aspects such as symmetry or multimodality.
◦ Estimates of certain population parameters, such as the mode, are more

easily obtained from an estimate of the density.
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Uses of NP density (2)

Use of nonparametric density estimates
Nonparametric density estimates may be used for:
◦ Exploratory data analysis.
◦ Estimating qualitative features of a distribution (e.g. unimodality,

skewness, etc.).
◦ Specification and testing of parametric models.

• If Z = (X ,Y ), they may be used to construct a nonparametric estimate
of the conditional mean function (CMF) of Y given X
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Histogram (1)

A histogram is a "naive" estimate of the density

Method: Split the range of y into equally spaced intervals and
calculate the fraction of the sample in each interval.

More formally: consider estimation of the density f (X = x0) of a
scalar continuous random variable X evaluated at x0.

Since the density is the derivative of the cdf F (X = x0), i.e.
f (X = x0) = dF (x0)/dx , we have

f (x0) = lim
h→∞

F (x0 + h)− F (x0 − h)
2h

= lim
h→∞

Pr [x0 − h < x < x0 + h]
2h

.
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Histogram (2)

For a sample {xi , i = 1, ...,N} of size N, use the estimator

f̂HIST(x0) =
1
N

N

∑
i=1

1(x0 − h < xi < x0 + h)
2h

, (15)

where the indicator function

1(A) =

{
1 if condition A is satisfied

0 otherwise.

The estimator f̂HIST(x0) is a histogram estimate centered at x0 with
bin width 2h,

Since it equals the fraction of the sample that lies between x0 − h and
x0 + h divided by the bin width 2h.

If f̂HIST is evaluated over the range of x at equally spaced values of x
each 2h units apart, it yields a histogram.
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Histogram (3)

The estimator f̂HIST(x0) gives all observations in x0 ± h equal weight
as

f̂HIST(x0) =
1
Nh

N

∑
i=1

1
2
× 1

(∣∣∣∣xi − x0h

∣∣∣∣ < 1) . (16)

This "naive" density estimate is a step function, even if the
underlying density is continuous.

Smoother estimates can be obtained by using weighting functions
other than the indicator function above.

Choosing intervals of different widths can produce rather different
looking figures

See the example below.
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Limitations of the histogram estimator

Although widely used, the histogram estimator has several drawbacks

• The results depend on the choice of the range (a0, b0].
• Given (a0, b0], the results also depend on the number of bins J or,
equivalently, on the bin width h.

For example, given the data, increasing J (reducing h) tends to give a
histogram that is only informative about the location of the distinct
sample points.
Reducing J (increasing h) eventually leads to a completely
uninformative rectangle.
However, J may safely be increased if the sample size N also increases.
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Limitations of the histogram estimator (2)

Keeping the bin width h fixed over the range of the data can lead to
loss of detail at points where the data are clustered

If h is reduced to deal with this problem, then estimates may appear
noisy where data are sparse.

Histogram is a step function with jumps at the end of each bin, so
cannot incorporate prior information on the degree of density
smoothness.

Method is problematic if we want derivatives of the density
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Limitations of the histogram estimator

I "The shape of the histogram can potentially be influenced by where you
place the bin centers. Moreover, with a histogram, choosing the width of
the bins and the location of the first bin also determines the choice of bin
centers."
"The histogram assigns equal weight to all points falling in the bin"
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Histogram examples (2)

data

82.pdf
The graphs show histograms of the logarithm of wage (from the data set Mroz.dta). The histogram of the top left panel divides

the data in 20 classes (the default value of the histogram command of Stata), that of the top right panel uses 30 classes, and

those of the bottom left and right panels use 50 and 100 classes, respectively. For the histogram of the bottom right panel, a

normal density fitted to the data is added (blue line).
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The histogram method

The histogram method is a useful tool for exploratory data analysis,
but has some undesirable features,

• the need to choose a partition of the range of Z into cells,
• the density estimates of f are not smooth.
Now consider a method that tries to overcome these two problems.
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Kernel density estimator

What is a kernel? It is merely a smoothing or weight-assigning
function.
Consider the empirical density (2). Putting a = z − h and b = z + h,
where h is a small positive number, gives

f̂ (z) =
1
2Nh

N

∑
i=1
1 (z − h < Z < z + h) . (17)

which is the fraction of sample points falling in the interval (z − h, z + h]
divided by the length 2h of the interval.

An advantage of this method over the histogram method is that there is no
need to partition the range of Z into cells.

However, f̂ (z) still has two drawbacks: (1) estimates depends on the constant h
(2) f̂ (z) is a step function with jump points z = Zi ± h

Can get smooth kernel density estimates if we modify f̂ (z) such that
estimates of f are smooth.
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Smooth kernel density estimator (1)

Now f̂ (z) may also be written as

f̂ (z) =
1
Nh

N

∑
i=1
w
(
z − Zi
h

)
where

w(u) =
{
1/2 if − 1 < u < 1

0 otherwise.

is a symmetric bounded non-negative function that integrates to one and
corresponds to the density of a uniform distribution on the interval [−1, 1].

f̂ (z) is not smooth because it is a sum of step functions.

If we replace w by a smooth function K , we get a smooth estimate of
f because it is a sum of smooth functions.
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Smooth kernel density estimator (2)

The kernel density estimator generalizes the histogram estimate
(16) by using an alternative weighting function, so

f̂ (x0) =
1
Nh

N

∑
i=1
K
(
xi − x0
h

)
. (18)

The weighting function K (·) is called a kernel function and satisfies certain
restrictions.
The kernel function K (·) is a piecewise continuous function, symmetric
around zero, which integrates to unity, and satisfies additional boundedness
conditions.
The parameter h is a smoothing parameter called the bandwidth, and two
times h is the window width.
The density is estimated by evaluating f̂ (x0) at a wider range of values of
x0 than used in forming a histogram —usually evaluation is at the sample
values x1, ..., xN .
A typical kernel density estimator proceeds by using the formula for the
general kernel density where the function K (0) is replaced by one of the
functions in the table that follows.
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Kernel density estimator

Some commonly-used kernel functions are:

Kernel Kernel Function K (z) δ

Uniform (or box or rectangular) 1
2 × 1(|z | < 1) 1.3510

Triangular (or triangle) (1− |z |)× 1(|z | < 1) -
Epanechnikov (or quadratic) 3

4 (1− z2)× 1(|z | < 1) 1.7188
Gaussian (or normal) (2π)−1/2 exp(−z2/2) 0.7764

Uniform kernel uses same weights as a histogram of bin width 2h, except
that it produces a running histogram which is evaluated at a series of points
x0 rather than using fixed bins.

Different kernels merely change the relative weights.

Given K (·) and h the estimator is very simple to implement. If the kernel
estimator is evaluated at r distinct values of x0 then computation of the
kernel estimator requires at most Nr operations, when the kernel has
unbounded support.
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Kernel weights
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Gaussian kernel example

f (x0) =
1
Nh

N

∑
i=1

(
1√
2π

)
exp

(
−1
2

[
(xi − x0)2

h

])
If we were estimating the probability density function at x0, the most
weight would go to observations at x0.

Why? Because the value of this kernel is maximized at xi = x0.

Because the "support" of this kernel is the entire real line, we use all
the data to estimate the probability density function at x0.

However, the weight we assign observations far away from x0 with a
Gaussian kernel is quite small.
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Kernel Density Example

A random sample of size 100 drawn from the N [0, 252] distribution.
For the particular sample drawn the sample mean is 2.81 and the
sample standard deviation is 25.27.

Figure shows the effect of different kernels for given choice of
bandwidth, here h = 12.5, ignoring possible adjustment of bandwidth
for different kernels

The Gaussian kernel gives quite similar results to the Epanechnikov.

The other two kernels, the biweight and the rectangular are not nearly
as smooth. As already noted the rectangular uses the same weight
function as the histogram, and produces a running histogram.

The variation in density estimate with kernel choice is not as great as
the variation with bandwidth choice..
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Kernel density example

Kernel Density: Different Kernels
N( 0, 25^2)  var iate

 Epanechnikov  G auss ian
 Biweight  Rectangular

­100 ­50 0 50 100
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.005
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.02
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Nonparametric Density Example

Data: hourly wage and education for 175 women aged 36 years who
worked in 1993.

Data from the Michigan Panel Survey of Income Dynamics (PSID).

A histogram of the natural logarithm of wage.

The bin width is chosen so that there are 30 bins, each of width
about 0.20.
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Nonparametric density example (2)

This is an unusually narrow bin width for only 175 observations, but
many details are lost with a larger bin width.

log-wage data possibly slightly left-skewed.
0

.2
.4

.6
D

en
si

ty

0 1 2 3 4 5
Log Hourly Wage

Histogram for Log Wage
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Nonparametric density example (2)

The kernel density estimate based on the Stata kdensity command,
which uses the Epanechnikov kernel (Stata default kernel).

Choice of bandwidth.

Stata selects a default bandwidth of h = 0.21.
The kernel estimate is a weighted average of observations that have log
wage within 0.21 of the log wage at the current point of evaluation,
with more weight placed on data closest to the current point of
evaluation.
Figure shows three kernel density estimates, with bandwidths of 0.07,
0.21 and 0.63, corresponding to one-third the default, the default, and
three times the default bandwidth.
Smallest bandwidth is too small as it leads to too jagged a density
estimate.
Largest bandwidth oversmooths the data.
The goldilocks choice is the default value of 0.21, which gives a
smooth estimate.
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Choice of bandwidth

"Choice of bandwidth essentially involves a trade-off between bias
(misreporting the shape) and variance (lack of precision) of the estimates.
Intuitively, the larger the bandwidth, the "smoother" the resulting
estimates (lower variance), but we may have oversmoothed the true
density and thus obtained a biased estimate of that density. Note that this
is a problem for histograms as well...."

MSE[θ̂] =E[θ̂ − θ]2 =E[θ̂ − E[θ̂] + E[θ̂]− θ]2 =var[θ̂]+
(
bias [θ̂]

)2
Optimality criterion balances bias and variance using a mean squared
error type criterion. At a specific point y the MSE criterion is

MSE (h) = E
([
f̂ (y)− f (y)

]2)
=

(
E
[
f̂ (y)− Ef (y)

])2
+ var

[
f̂ (y)

]
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Choice of bandwidth (2)

A practitioner is interested in the global or total MSE at all values
of y . The relevant measure then is mean integrated squared error
(MISE) defined as

MISE (h) = E
(∫ [

f̂ (y)− f (y)
]2
dy
)

=

(∫
E
[
f̂ (y)− Ef (y)

]2
dy +

∫
var
[
f̂ (y)

]
dy
)

where the first term corresponds to the squared bias and the second
to the sampling variance.
The optimal value of h, hopt , is that which minimizes MISE, i.e. the
one that provides the best trade-off between bias and variance
But to calculate hopt we need to calculate the expectations, which
requires knowledge of the true distribution of y !!
It can be shown that hopt depends upon (i) the true density function
and how it fluctuates, (ii) the choice of the kernel, and (iii) the
sample size.
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Automatic choice of bandwidth

Silverman rule-of-thumb bandwidth:

h̃opt = 1.059σN−1/5 if the reference distribution is N [µ, σ2]

If the reference distribution is not Normal, and/or there are outliers in
the data, a preferred alternative is

h̃opt = 0.9N−1/5
(
min

{
σ̂,
q3 − q1
1.349

})
where q3 − q1 is the interquartile range (the difference between the 75th
and 25th percentile) and 1.349 is the iqr of the standard normal.

As is preferred, this bandwidth gets smaller as N - the number of
observations- increases, but does not go to zero "too fast."
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Choice of bandwidth (2)

The optimal bandwidth varies with the kernel. The optimal kernel is
the Epanechnikov, though this advantage is slight.

While there is little loss in using the simplest kernels such as uniform
and triangular, smoother kernels such as Epanechnikov and Gaussian
are preferred as they lead to smoother kernel density estimates.

Bandwidth choice is much more important and the optimal value
varies with the kernel.

In practice one uses Silverman’s plug-in estimate or its variants

These plug-in estimates for h work well in practice, especially for
symmetric unimodal densities, and even if f (x) is not the normal
density. Usual to check for sensitivity by using variations such as
twice and half the plug-in estimate.

For a discussion of cross-validation (CV) and Adaptive Methods see
Ahamada and Flachaire (2010,chapter 1)
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Nonparametric density example (3)

Possible uses of kernel density estimate?

1 Comparison to the normal, by superimposing a normal density with
mean equal to the sample mean and variance equal to the sample
variance.

2 A second possibility is to compare log wage kernel density estimates
for different subgroups.
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Kernel density examples
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A canonical example
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Nonparametric regression

I Consider regression of scalar dependent variable y on a scalar regressor
variable x . The regression model is

yi = m(xi ) + εi , i = 1, ...,N,
εi ∼ iid [0, σ2ε ].

(19)

I There are no functional form assumptions and no distributional
assumptions
I Our task is to consider methods for estimating the function m in the
regression equation
I A nonparametric method widely used is the lowess local regression
method, a local weighted average estimator similar to kernel regression
that instead uses a variable bandwidth.
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Lowess regression (1)

I Formally, the local linear regression estimator of m(x0) is given as the
α∗, which minimizes the weighted least squares function:

minαo ,α1

N

∑
i
[(yi − α0 − α1(xi − x0))2K ((xi − x0)/hn)],

with K denoting the kernel and hn the bandwidth.
I A local weighted regression line at each point x is fitted using centered
subsets that include the closest 0.8N observations, the Stata default,
where N is the sample size, and the weights decline as we move away from
the center point.
I Near the end-point lowest and highest values of x smaller uncentered
subsets are used.
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Lowess regression (2)

The local weighted average estimator takes the form

m̂(x0) =
N

∑
i=1
wi0,hyi , (20)

where the weights wi0,h = w(xi , x0, h),sum to one, so ∑i wi0,h = 1.

The weights are specified to be relatively large (small) for values of xi
close to (far from) x0.

As h becomes smaller m̂(x0) becomes less biased, as only observations
close to x0 are being used, but more variable, as fewer observations
are being used. The parameter h is generic notation for a window
width parameter, with smaller values of h leading to a smaller
window with most weight placed on observations with xi close to x0.

Pravin K. Trivedi University of Queensland School of Economics p.trivedi@uq.edu.au ()TE estimation September 2017 349 / 356



OLS & Lowess

The OLS predictor for the linear regression model is a weighted
average of yi , since some algebra yields

m̂OLS(x0) =
N

∑
i=1

{
1
N
+
(x0 − x̄)(xi − x̄)

∑j (xj − x̄)2
}
yi .

The OLS weights, however, can actually increase as the distance
between x0 and xi increases if, for example, xi > x0 > x̄ .

Local regression instead uses weights that are decreasing in |xi − x0|.
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Lowess regression example

As an illustration, consider data generated from the model

yi = 150+ 6.5xi − 0.15x2i + 0.001x3i + εi , i = 1, ..., 100,(21)

xi = i ,

εi ∼ N [0, 252].

The Lowess estimator provides a smooth estimate of m(x) as it uses
kernel weights rather than an indicator function
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Lowess regression example

Kernel Density Estimates with Bandwidth 25
x

 Moving Average Wid th 25  Actua l da ta
 Actua l cond itiona l mean

0 50 100
100

200

300

400

Figure plots the Lowess estimate with k = 25. This local regression estimate is
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Kernel Regression (1)

Kernel regression is a weighted average estimator using kernel
weights. Issues such as bias and choice of bandwidth presented for
kernel density estimation are also relevant here.

The goal is to estimate the regression function m(x) in the model
y = m(x) + ε

Thus more generally we consider a kernel weighting function K (·).
This yields the kernel regression estimator

m̂(x0) ≡
1
Nh ∑N

i=1 K
( xi−x0

h

)
yi

1
Nh ∑N

i=1 K
( xi−x0

h

) . (22)
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Kernel regression (2)

Several common kernel functions, uniform, Gaussian, Epanechnikov,
quadratic and quartic, have already been given. The uniform kernel
leads to the roughest estimates, the Gaussian has the computational
advantage of not having to compute the indicator function
1 (|z | < 1), and as stated earlier the Epanichnikov is optimal.
This estimator is called Nadaraya & Watson estimator.

The kernel regression estimator is a special case of the weighted
average with weights

wi0,h =
1
NhK

( xi−x0
h

)
1
Nh ∑N

i=1 K
( xi−x0

h

) (23)

which by construction sum to one.
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Curse of dimensionality

Extending the NPR to a general k-dimensional regression is diffi cult
because of the "curse of dimensionality."

CoD essentially implies that in a high dimensional regression we will
encounter many empty "hyperspaces" - regions with no observations
unless the sample size is very large.

The required sample size increases exponentially with the dimension
making NPR not very practicable.

NPR can be used if one has just one or two regressors.

Alternatively, one might choose to apply the nonparametric approach
to a subset of regressors only, e.g. partial linear regression.
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Summary

Major limitations for applied work

1 the lack of a commonly accepted method to choose an appropriate
bandwidth

1 typical expressions for an "optimal" bandwidth involve unknown
properties of the function we are trying to estimate

2 the lack of a simple way to compute reliable standard errors.
3 Curse of dimensionality which restricts modeling to low dimensions
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